--- license: mit datasets: - Dahoas/full-hh-rlhf base_model: - google/gemma-7b --- # Model Card for MA-RLHF ICLR 2025 Github This repository contains the official checkpoint for [Reinforcement Learning From Human Feedback with Macro Actions (MA-RLHF)](https://arxiv.org/pdf/2410.02743). ## Model Description MA-RLHF is a novel framework that integrates macro actions into conventional RLHF. The macro actions are sequences of tokens or higher-level language constructs, with can be computed through different defined termination conditions, like n-gram based, perplexity-based, or parsing-based termination conditions. By introducing macro actions into RLHF, we reduce the number of decision points and shorten decision trajectories, alleviating the credit assignment problem caused by long temporal distances. |Model|Checkpoint|Base Model|Dataset| |-----|----------|-|-| |TLDR-Gemma-2B-MA-PPO-Fixed5|πŸ€— [HF Link](https://huggingface.co/baidu/TLDR-Gemma-2B-MA-PPO-Fixed5)|[google/gemma-2b](https://huggingface.co/google/gemma-2b)|[openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) |TLDR-Gemma-7B-MA-PPO-Fixed5|πŸ€— [HF Link](https://huggingface.co/baidu/TLDR-Gemma-7B-MA-PPO-Fixed5)|[google/gemma-7b](https://huggingface.co/google/gemma-7b)|[openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) |TLDR-Gemma-2-27B-MA-PPO-Fixed5|πŸ€— [HF Link](https://huggingface.co/baidu/TLDR-Gemma-2-27B-MA-PPO-Fixed5)|[google/gemma-2-27b](https://huggingface.co/google/gemma-2-27b)|[openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) |HH-RLHF-Gemma-2B-MA-PPO-Fixed5|πŸ€— [HF Link](https://huggingface.co/baidu/HH-RLHF-Gemma-2B-MA-PPO-Fixed5) |[google/gemma-2b](https://huggingface.co/google/gemma-2b)|[Dahoas/full-hh-rlhf](https://huggingface.co/datasets/Dahoas/full-hh-rlhf) |HH-RLHF-Gemma-7B-MA-PPO-Fixed5|πŸ€— [HF Link](https://huggingface.co/baidu/HH-RLHF-Gemma-7B-MA-PPO-Fixed5) |[google/gemma-7b](https://huggingface.co/google/gemma-7b)|[Dahoas/full-hh-rlhf](https://huggingface.co/datasets/Dahoas/full-hh-rlhf) |APPS-Gemma-2B-MA-PPO-Fixed10|πŸ€— [HF Link](https://huggingface.co/baidu/APPS-Gemma-2B-MA-PPO-Fixed10) |[google/codegemma-2b](https://huggingface.co/google/codegemma-2b)|[codeparrot/apps](https://huggingface.co/datasets/codeparrot/apps) |APPS-Gemma-7B-MA-PPO-Fixed10|πŸ€— [HF Link](https://huggingface.co/baidu/APPS-Gemma-7B-MA-PPO-Fixed10) |[google/codegemma-7b-it](https://huggingface.co/google/codegemma-7b-it)|[codeparrot/apps](https://huggingface.co/datasets/codeparrot/apps) ## Model Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "baidu/HH-RLHF-Gemma-7B-MA-PPO-Fixed5" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", torch_dtype='auto', trust_remote_code=True) input_text = """ Human: Would you be able to explain the differences between the Spanish and Italian language? Assistant: Of course. Can you tell me more about the specific areas where you’re interested in knowing more? Human: I’m thinking between the Spanish spoken in Mexico and Italian spoken in Italy. Assistant: """ input_ids = tokenizer(input_text, return_tensors='pt').to(model.device) output_ids = model.generate(**input_ids, max_new_tokens=20) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) print(response) ``` ## Citation ``` @inproceedings{ chai2025marlhf, title={{MA}-{RLHF}: Reinforcement Learning from Human Feedback with Macro Actions}, author={Yekun Chai and Haoran Sun and Huang Fang and Shuohuan Wang and Yu Sun and Hua Wu}, booktitle={The Thirteenth International Conference on Learning Representations}, year={2025}, url={https://openreview.net/forum?id=WWXjMYZxfH} } ```