description: Merging MISCHIEVOUS-12B-Mix models with sliced slerp # Metadata and Rationale model_description: | This configuration merges two versions of the MISCHIEVOUS-12B-Mix model: 0.4v and 0.3v. 0.3v was further fine-tuned on a specific dataset (ADD DATASET NAME HERE if known). The sliced slerp approach allows for layer-specific control over the merging process. base_model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v dtype: bfloat16 merge_method: slerp tokenizer_source: union # Slices Configuration (Layer-Specific Merging) slices: - sources: - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v layer_range: [0, 10] - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v layer_range: [0, 10] parameters: t: - name: self_attn value: [0.8, 0.85, 0.9, 0.95, 1.0] - name: mlp value: [0.9, 0.95, 1.0, 1.05, 1.1] - name: layer_norm value: [0.6, 0.65, 0.7, 0.75, 0.8] - name: embed_tokens value: [1.0] - sources: - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v layer_range: [10, 20] - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v layer_range: [10, 20] parameters: t: - name: self_attn value: [0.7, 0.75, 0.8, 0.85, 0.9] - name: mlp value: [1.0, 0.95, 0.9, 0.85, 0.8] - name: layer_norm value: [0.5, 0.55, 0.6, 0.65, 0.7] - name: embed_tokens value: [1.0] - sources: - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v layer_range: [20, 30] - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v layer_range: [20, 30] parameters: t: - name: self_attn value: [0.6, 0.65, 0.7, 0.75, 0.8] - name: mlp value: [0.8, 0.75, 0.7, 0.65, 0.6] - name: layer_norm value: [0.4, 0.45, 0.5, 0.55, 0.6] - name: embed_tokens value: [1.0] - sources: - model: bamec66557/MISCHIEVOUS-12B-Mix_0.4v layer_range: [30, 40] - model: bamec66557/MISCHIEVOUS-12B-Mix_0.5v layer_range: [30, 40] parameters: t: - name: self_attn value: [0.9, 1.0, 1.1, 1.2, 1.3] - name: mlp value: [0.7, 0.65, 0.6, 0.55, 0.5] - name: layer_norm value: [0.7, 0.75, 0.8, 0.85, 0.9] - name: embed_tokens value: [1.0] # Regularization (Prevent Overfitting During Merging) regularization: - method: weight_clipping clip_range: [-0.2, 0.2] - method: random_noise scale: 0.015 - method: l2_norm scale: 0.01 # Postprocessing (Enhance Merged Model Quality) postprocessing: - operation: random_noise scale: 0.0025 - operation: non_linear_scaling parameters: function: tanh - operation: sharpening intensity: 0.3 - operation: gaussian_smoothing sigma: 1.5 - operation: smoothing parameters: adaptive: true range: [0.8, 1.2] kernel_size: 5 - operation: normalize - operation: dynamic_scaling scale_range: [0.75, 1.25] # Evaluation (Crucial for Assessing Merge Quality) evaluation: metrics: - perplexity - accuracy # If applicable (e.g., classification tasks) - bleu # For translation tasks - rouge # For summarization tasks datasets: - wikitext # General language understanding - lambada # Long-range dependency modeling - (ADD RELEVANT TASK-SPECIFIC DATASETS HERE) prompts: # Example prompts – REPLACE WITH YOUR OWN - "The quick brown fox jumps over the lazy dog." - "Translate 'Thank you' to Spanish:" - "Write a short summary of the French Revolution." # Logging and Output logging: output_dir: ./merged_models log_level: INFO # Optional: Ties Merging (Advanced Technique) # ties: # enabled: true # method: greedy # Or "optimal", "random" # layers: [0, 10, 20, 30] # Example layers for ties merging