saiful9379 commited on
Commit
a0cb1c0
1 Parent(s): dd4f76a

upload whisper bangla model

Browse files
added_tokens.json ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|af|>": 50327,
3
+ "<|am|>": 50334,
4
+ "<|ar|>": 50272,
5
+ "<|as|>": 50350,
6
+ "<|az|>": 50304,
7
+ "<|ba|>": 50355,
8
+ "<|be|>": 50330,
9
+ "<|bg|>": 50292,
10
+ "<|bn|>": 50302,
11
+ "<|bo|>": 50347,
12
+ "<|br|>": 50309,
13
+ "<|bs|>": 50315,
14
+ "<|ca|>": 50270,
15
+ "<|cs|>": 50283,
16
+ "<|cy|>": 50297,
17
+ "<|da|>": 50285,
18
+ "<|de|>": 50261,
19
+ "<|el|>": 50281,
20
+ "<|en|>": 50259,
21
+ "<|es|>": 50262,
22
+ "<|et|>": 50307,
23
+ "<|eu|>": 50310,
24
+ "<|fa|>": 50300,
25
+ "<|fi|>": 50277,
26
+ "<|fo|>": 50338,
27
+ "<|fr|>": 50265,
28
+ "<|gl|>": 50319,
29
+ "<|gu|>": 50333,
30
+ "<|haw|>": 50352,
31
+ "<|ha|>": 50354,
32
+ "<|he|>": 50279,
33
+ "<|hi|>": 50276,
34
+ "<|hr|>": 50291,
35
+ "<|ht|>": 50339,
36
+ "<|hu|>": 50286,
37
+ "<|hy|>": 50312,
38
+ "<|id|>": 50275,
39
+ "<|is|>": 50311,
40
+ "<|it|>": 50274,
41
+ "<|ja|>": 50266,
42
+ "<|jw|>": 50356,
43
+ "<|ka|>": 50329,
44
+ "<|kk|>": 50316,
45
+ "<|km|>": 50323,
46
+ "<|kn|>": 50306,
47
+ "<|ko|>": 50264,
48
+ "<|la|>": 50294,
49
+ "<|lb|>": 50345,
50
+ "<|ln|>": 50353,
51
+ "<|lo|>": 50336,
52
+ "<|lt|>": 50293,
53
+ "<|lv|>": 50301,
54
+ "<|mg|>": 50349,
55
+ "<|mi|>": 50295,
56
+ "<|mk|>": 50308,
57
+ "<|ml|>": 50296,
58
+ "<|mn|>": 50314,
59
+ "<|mr|>": 50320,
60
+ "<|ms|>": 50282,
61
+ "<|mt|>": 50343,
62
+ "<|my|>": 50346,
63
+ "<|ne|>": 50313,
64
+ "<|nl|>": 50271,
65
+ "<|nn|>": 50342,
66
+ "<|nocaptions|>": 50362,
67
+ "<|notimestamps|>": 50363,
68
+ "<|no|>": 50288,
69
+ "<|oc|>": 50328,
70
+ "<|pa|>": 50321,
71
+ "<|pl|>": 50269,
72
+ "<|ps|>": 50340,
73
+ "<|pt|>": 50267,
74
+ "<|ro|>": 50284,
75
+ "<|ru|>": 50263,
76
+ "<|sa|>": 50344,
77
+ "<|sd|>": 50332,
78
+ "<|si|>": 50322,
79
+ "<|sk|>": 50298,
80
+ "<|sl|>": 50305,
81
+ "<|sn|>": 50324,
82
+ "<|so|>": 50326,
83
+ "<|sq|>": 50317,
84
+ "<|sr|>": 50303,
85
+ "<|startoflm|>": 50360,
86
+ "<|startofprev|>": 50361,
87
+ "<|startoftranscript|>": 50258,
88
+ "<|su|>": 50357,
89
+ "<|sv|>": 50273,
90
+ "<|sw|>": 50318,
91
+ "<|ta|>": 50287,
92
+ "<|te|>": 50299,
93
+ "<|tg|>": 50331,
94
+ "<|th|>": 50289,
95
+ "<|tk|>": 50341,
96
+ "<|tl|>": 50348,
97
+ "<|transcribe|>": 50359,
98
+ "<|translate|>": 50358,
99
+ "<|tr|>": 50268,
100
+ "<|tt|>": 50351,
101
+ "<|uk|>": 50280,
102
+ "<|ur|>": 50290,
103
+ "<|uz|>": 50337,
104
+ "<|vi|>": 50278,
105
+ "<|yi|>": 50335,
106
+ "<|yo|>": 50325,
107
+ "<|zh|>": 50260
108
+ }
config.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "openai/whisper-small",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "gelu",
5
+ "apply_spec_augment": false,
6
+ "architectures": [
7
+ "WhisperForConditionalGeneration"
8
+ ],
9
+ "attention_dropout": 0.0,
10
+ "begin_suppress_tokens": [
11
+ 220,
12
+ 50257
13
+ ],
14
+ "bos_token_id": 50257,
15
+ "classifier_proj_size": 256,
16
+ "d_model": 768,
17
+ "decoder_attention_heads": 12,
18
+ "decoder_ffn_dim": 3072,
19
+ "decoder_layerdrop": 0.0,
20
+ "decoder_layers": 12,
21
+ "decoder_start_token_id": 50258,
22
+ "dropout": 0.0,
23
+ "encoder_attention_heads": 12,
24
+ "encoder_ffn_dim": 3072,
25
+ "encoder_layerdrop": 0.0,
26
+ "encoder_layers": 12,
27
+ "eos_token_id": 50257,
28
+ "forced_decoder_ids": null,
29
+ "init_std": 0.02,
30
+ "is_encoder_decoder": true,
31
+ "mask_feature_length": 10,
32
+ "mask_feature_min_masks": 0,
33
+ "mask_feature_prob": 0.0,
34
+ "mask_time_length": 10,
35
+ "mask_time_min_masks": 2,
36
+ "mask_time_prob": 0.05,
37
+ "max_length": 448,
38
+ "max_source_positions": 1500,
39
+ "max_target_positions": 448,
40
+ "model_type": "whisper",
41
+ "num_hidden_layers": 12,
42
+ "num_mel_bins": 80,
43
+ "pad_token_id": 50257,
44
+ "scale_embedding": false,
45
+ "suppress_tokens": [],
46
+ "torch_dtype": "float32",
47
+ "transformers_version": "4.30.1",
48
+ "use_cache": true,
49
+ "use_weighted_layer_sum": false,
50
+ "vocab_size": 51865
51
+ }
generation_config.json ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "begin_suppress_tokens": [
3
+ 220,
4
+ 50257
5
+ ],
6
+ "bos_token_id": 50257,
7
+ "decoder_start_token_id": 50258,
8
+ "eos_token_id": 50257,
9
+ "forced_decoder_ids": [
10
+ [
11
+ 1,
12
+ null
13
+ ],
14
+ [
15
+ 2,
16
+ 50359
17
+ ]
18
+ ],
19
+ "is_multilingual": true,
20
+ "lang_to_id": {
21
+ "<|af|>": 50327,
22
+ "<|am|>": 50334,
23
+ "<|ar|>": 50272,
24
+ "<|as|>": 50350,
25
+ "<|az|>": 50304,
26
+ "<|ba|>": 50355,
27
+ "<|be|>": 50330,
28
+ "<|bg|>": 50292,
29
+ "<|bn|>": 50302,
30
+ "<|bo|>": 50347,
31
+ "<|br|>": 50309,
32
+ "<|bs|>": 50315,
33
+ "<|ca|>": 50270,
34
+ "<|cs|>": 50283,
35
+ "<|cy|>": 50297,
36
+ "<|da|>": 50285,
37
+ "<|de|>": 50261,
38
+ "<|el|>": 50281,
39
+ "<|en|>": 50259,
40
+ "<|es|>": 50262,
41
+ "<|et|>": 50307,
42
+ "<|eu|>": 50310,
43
+ "<|fa|>": 50300,
44
+ "<|fi|>": 50277,
45
+ "<|fo|>": 50338,
46
+ "<|fr|>": 50265,
47
+ "<|gl|>": 50319,
48
+ "<|gu|>": 50333,
49
+ "<|haw|>": 50352,
50
+ "<|ha|>": 50354,
51
+ "<|he|>": 50279,
52
+ "<|hi|>": 50276,
53
+ "<|hr|>": 50291,
54
+ "<|ht|>": 50339,
55
+ "<|hu|>": 50286,
56
+ "<|hy|>": 50312,
57
+ "<|id|>": 50275,
58
+ "<|is|>": 50311,
59
+ "<|it|>": 50274,
60
+ "<|ja|>": 50266,
61
+ "<|jw|>": 50356,
62
+ "<|ka|>": 50329,
63
+ "<|kk|>": 50316,
64
+ "<|km|>": 50323,
65
+ "<|kn|>": 50306,
66
+ "<|ko|>": 50264,
67
+ "<|la|>": 50294,
68
+ "<|lb|>": 50345,
69
+ "<|ln|>": 50353,
70
+ "<|lo|>": 50336,
71
+ "<|lt|>": 50293,
72
+ "<|lv|>": 50301,
73
+ "<|mg|>": 50349,
74
+ "<|mi|>": 50295,
75
+ "<|mk|>": 50308,
76
+ "<|ml|>": 50296,
77
+ "<|mn|>": 50314,
78
+ "<|mr|>": 50320,
79
+ "<|ms|>": 50282,
80
+ "<|mt|>": 50343,
81
+ "<|my|>": 50346,
82
+ "<|ne|>": 50313,
83
+ "<|nl|>": 50271,
84
+ "<|nn|>": 50342,
85
+ "<|no|>": 50288,
86
+ "<|oc|>": 50328,
87
+ "<|pa|>": 50321,
88
+ "<|pl|>": 50269,
89
+ "<|ps|>": 50340,
90
+ "<|pt|>": 50267,
91
+ "<|ro|>": 50284,
92
+ "<|ru|>": 50263,
93
+ "<|sa|>": 50344,
94
+ "<|sd|>": 50332,
95
+ "<|si|>": 50322,
96
+ "<|sk|>": 50298,
97
+ "<|sl|>": 50305,
98
+ "<|sn|>": 50324,
99
+ "<|so|>": 50326,
100
+ "<|sq|>": 50317,
101
+ "<|sr|>": 50303,
102
+ "<|su|>": 50357,
103
+ "<|sv|>": 50273,
104
+ "<|sw|>": 50318,
105
+ "<|ta|>": 50287,
106
+ "<|te|>": 50299,
107
+ "<|tg|>": 50331,
108
+ "<|th|>": 50289,
109
+ "<|tk|>": 50341,
110
+ "<|tl|>": 50348,
111
+ "<|tr|>": 50268,
112
+ "<|tt|>": 50351,
113
+ "<|uk|>": 50280,
114
+ "<|ur|>": 50290,
115
+ "<|uz|>": 50337,
116
+ "<|vi|>": 50278,
117
+ "<|yi|>": 50335,
118
+ "<|yo|>": 50325,
119
+ "<|zh|>": 50260
120
+ },
121
+ "max_initial_timestamp_index": 1,
122
+ "max_length": 448,
123
+ "no_timestamps_token_id": 50363,
124
+ "pad_token_id": 50257,
125
+ "return_timestamps": false,
126
+ "suppress_tokens": [
127
+ 1,
128
+ 2,
129
+ 7,
130
+ 8,
131
+ 9,
132
+ 10,
133
+ 14,
134
+ 25,
135
+ 26,
136
+ 27,
137
+ 28,
138
+ 29,
139
+ 31,
140
+ 58,
141
+ 59,
142
+ 60,
143
+ 61,
144
+ 62,
145
+ 63,
146
+ 90,
147
+ 91,
148
+ 92,
149
+ 93,
150
+ 359,
151
+ 503,
152
+ 522,
153
+ 542,
154
+ 873,
155
+ 893,
156
+ 902,
157
+ 918,
158
+ 922,
159
+ 931,
160
+ 1350,
161
+ 1853,
162
+ 1982,
163
+ 2460,
164
+ 2627,
165
+ 3246,
166
+ 3253,
167
+ 3268,
168
+ 3536,
169
+ 3846,
170
+ 3961,
171
+ 4183,
172
+ 4667,
173
+ 6585,
174
+ 6647,
175
+ 7273,
176
+ 9061,
177
+ 9383,
178
+ 10428,
179
+ 10929,
180
+ 11938,
181
+ 12033,
182
+ 12331,
183
+ 12562,
184
+ 13793,
185
+ 14157,
186
+ 14635,
187
+ 15265,
188
+ 15618,
189
+ 16553,
190
+ 16604,
191
+ 18362,
192
+ 18956,
193
+ 20075,
194
+ 21675,
195
+ 22520,
196
+ 26130,
197
+ 26161,
198
+ 26435,
199
+ 28279,
200
+ 29464,
201
+ 31650,
202
+ 32302,
203
+ 32470,
204
+ 36865,
205
+ 42863,
206
+ 47425,
207
+ 49870,
208
+ 50254,
209
+ 50258,
210
+ 50358,
211
+ 50359,
212
+ 50360,
213
+ 50361,
214
+ 50362
215
+ ],
216
+ "task_to_id": {
217
+ "transcribe": 50359,
218
+ "translate": 50358
219
+ },
220
+ "transformers_version": "4.30.1"
221
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
normalizer.json ADDED
@@ -0,0 +1,1742 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "accessorise": "accessorize",
3
+ "accessorised": "accessorized",
4
+ "accessorises": "accessorizes",
5
+ "accessorising": "accessorizing",
6
+ "acclimatisation": "acclimatization",
7
+ "acclimatise": "acclimatize",
8
+ "acclimatised": "acclimatized",
9
+ "acclimatises": "acclimatizes",
10
+ "acclimatising": "acclimatizing",
11
+ "accoutrements": "accouterments",
12
+ "aeon": "eon",
13
+ "aeons": "eons",
14
+ "aerogramme": "aerogram",
15
+ "aerogrammes": "aerograms",
16
+ "aeroplane": "airplane",
17
+ "aeroplanes": "airplanes",
18
+ "aesthete": "esthete",
19
+ "aesthetes": "esthetes",
20
+ "aesthetic": "esthetic",
21
+ "aesthetically": "esthetically",
22
+ "aesthetics": "esthetics",
23
+ "aetiology": "etiology",
24
+ "ageing": "aging",
25
+ "aggrandisement": "aggrandizement",
26
+ "agonise": "agonize",
27
+ "agonised": "agonized",
28
+ "agonises": "agonizes",
29
+ "agonising": "agonizing",
30
+ "agonisingly": "agonizingly",
31
+ "almanack": "almanac",
32
+ "almanacks": "almanacs",
33
+ "aluminium": "aluminum",
34
+ "amortisable": "amortizable",
35
+ "amortisation": "amortization",
36
+ "amortisations": "amortizations",
37
+ "amortise": "amortize",
38
+ "amortised": "amortized",
39
+ "amortises": "amortizes",
40
+ "amortising": "amortizing",
41
+ "amphitheatre": "amphitheater",
42
+ "amphitheatres": "amphitheaters",
43
+ "anaemia": "anemia",
44
+ "anaemic": "anemic",
45
+ "anaesthesia": "anesthesia",
46
+ "anaesthetic": "anesthetic",
47
+ "anaesthetics": "anesthetics",
48
+ "anaesthetise": "anesthetize",
49
+ "anaesthetised": "anesthetized",
50
+ "anaesthetises": "anesthetizes",
51
+ "anaesthetising": "anesthetizing",
52
+ "anaesthetist": "anesthetist",
53
+ "anaesthetists": "anesthetists",
54
+ "anaesthetize": "anesthetize",
55
+ "anaesthetized": "anesthetized",
56
+ "anaesthetizes": "anesthetizes",
57
+ "anaesthetizing": "anesthetizing",
58
+ "analogue": "analog",
59
+ "analogues": "analogs",
60
+ "analyse": "analyze",
61
+ "analysed": "analyzed",
62
+ "analyses": "analyzes",
63
+ "analysing": "analyzing",
64
+ "anglicise": "anglicize",
65
+ "anglicised": "anglicized",
66
+ "anglicises": "anglicizes",
67
+ "anglicising": "anglicizing",
68
+ "annualised": "annualized",
69
+ "antagonise": "antagonize",
70
+ "antagonised": "antagonized",
71
+ "antagonises": "antagonizes",
72
+ "antagonising": "antagonizing",
73
+ "apologise": "apologize",
74
+ "apologised": "apologized",
75
+ "apologises": "apologizes",
76
+ "apologising": "apologizing",
77
+ "appal": "appall",
78
+ "appals": "appalls",
79
+ "appetiser": "appetizer",
80
+ "appetisers": "appetizers",
81
+ "appetising": "appetizing",
82
+ "appetisingly": "appetizingly",
83
+ "arbour": "arbor",
84
+ "arbours": "arbors",
85
+ "archaeologically": "archeologically",
86
+ "archaeologist": "archeologist",
87
+ "archaeologists": "archeologists",
88
+ "archaeology": "archeology</span>",
89
+ "archeological": "archaeological",
90
+ "ardour": "ardor",
91
+ "armour": "armor",
92
+ "armoured": "armored",
93
+ "armourer": "armorer",
94
+ "armourers": "armorers",
95
+ "armouries": "armories",
96
+ "armoury": "armory",
97
+ "artefact": "artifact",
98
+ "artefacts": "artifacts",
99
+ "authorise": "authorize",
100
+ "authorised": "authorized",
101
+ "authorises": "authorizes",
102
+ "authorising": "authorizing",
103
+ "axe": "ax",
104
+ "backpedalled": "backpedaled",
105
+ "backpedalling": "backpedaling",
106
+ "bannister": "banister",
107
+ "bannisters": "banisters",
108
+ "baptise": "baptize",
109
+ "baptised": "baptized",
110
+ "baptises": "baptizes",
111
+ "baptising": "baptizing",
112
+ "bastardise": "bastardize",
113
+ "bastardised": "bastardized",
114
+ "bastardises": "bastardizes",
115
+ "bastardising": "bastardizing",
116
+ "battleax": "battleaxe",
117
+ "baulk": "balk",
118
+ "baulked": "balked",
119
+ "baulking": "balking",
120
+ "baulks": "balks",
121
+ "bedevilled": "bedeviled",
122
+ "bedevilling": "bedeviling",
123
+ "behaviour": "behavior",
124
+ "behavioural": "behavioral",
125
+ "behaviourism": "behaviorism",
126
+ "behaviourist": "behaviorist",
127
+ "behaviourists": "behaviorists",
128
+ "behaviours": "behaviors",
129
+ "behove": "behoove",
130
+ "behoved": "behooved",
131
+ "behoves": "behooves",
132
+ "bejewelled": "bejeweled",
133
+ "belabour": "belabor",
134
+ "belaboured": "belabored",
135
+ "belabouring": "belaboring",
136
+ "belabours": "belabors",
137
+ "bevelled": "beveled",
138
+ "bevvies": "bevies",
139
+ "bevvy": "bevy",
140
+ "biassed": "biased",
141
+ "biassing": "biasing",
142
+ "bingeing": "binging",
143
+ "bougainvillaea": "bougainvillea",
144
+ "bougainvillaeas": "bougainvilleas",
145
+ "bowdlerise": "bowdlerize",
146
+ "bowdlerised": "bowdlerized",
147
+ "bowdlerises": "bowdlerizes",
148
+ "bowdlerising": "bowdlerizing",
149
+ "breathalyse": "breathalyze",
150
+ "breathalysed": "breathalyzed",
151
+ "breathalyser": "breathalyzer",
152
+ "breathalysers": "breathalyzers",
153
+ "breathalyses": "breathalyzes",
154
+ "breathalysing": "breathalyzing",
155
+ "brutalise": "brutalize",
156
+ "brutalised": "brutalized",
157
+ "brutalises": "brutalizes",
158
+ "brutalising": "brutalizing",
159
+ "busses": "buses",
160
+ "bussing": "busing",
161
+ "caesarean": "cesarean",
162
+ "caesareans": "cesareans",
163
+ "calibre": "caliber",
164
+ "calibres": "calibers",
165
+ "calliper": "caliper",
166
+ "callipers": "calipers",
167
+ "callisthenics": "calisthenics",
168
+ "canalise": "canalize",
169
+ "canalised": "canalized",
170
+ "canalises": "canalizes",
171
+ "canalising": "canalizing",
172
+ "cancelation": "cancellation",
173
+ "cancelations": "cancellations",
174
+ "cancelled": "canceled",
175
+ "cancelling": "canceling",
176
+ "candour": "candor",
177
+ "cannibalise": "cannibalize",
178
+ "cannibalised": "cannibalized",
179
+ "cannibalises": "cannibalizes",
180
+ "cannibalising": "cannibalizing",
181
+ "canonise": "canonize",
182
+ "canonised": "canonized",
183
+ "canonises": "canonizes",
184
+ "canonising": "canonizing",
185
+ "capitalise": "capitalize",
186
+ "capitalised": "capitalized",
187
+ "capitalises": "capitalizes",
188
+ "capitalising": "capitalizing",
189
+ "caramelise": "caramelize",
190
+ "caramelised": "caramelized",
191
+ "caramelises": "caramelizes",
192
+ "caramelising": "caramelizing",
193
+ "carbonise": "carbonize",
194
+ "carbonised": "carbonized",
195
+ "carbonises": "carbonizes",
196
+ "carbonising": "carbonizing",
197
+ "carolled": "caroled",
198
+ "carolling": "caroling",
199
+ "catalogue": "catalog",
200
+ "catalogued": "cataloged",
201
+ "catalogues": "catalogs",
202
+ "cataloguing": "cataloging",
203
+ "catalyse": "catalyze",
204
+ "catalysed": "catalyzed",
205
+ "catalyses": "catalyzes",
206
+ "catalysing": "catalyzing",
207
+ "categorise": "categorize",
208
+ "categorised": "categorized",
209
+ "categorises": "categorizes",
210
+ "categorising": "categorizing",
211
+ "cauterise": "cauterize",
212
+ "cauterised": "cauterized",
213
+ "cauterises": "cauterizes",
214
+ "cauterising": "cauterizing",
215
+ "cavilled": "caviled",
216
+ "cavilling": "caviling",
217
+ "centigramme": "centigram",
218
+ "centigrammes": "centigrams",
219
+ "centilitre": "centiliter",
220
+ "centilitres": "centiliters",
221
+ "centimetre": "centimeter",
222
+ "centimetres": "centimeters",
223
+ "centralise": "centralize",
224
+ "centralised": "centralized",
225
+ "centralises": "centralizes",
226
+ "centralising": "centralizing",
227
+ "centre": "center",
228
+ "centred": "centered",
229
+ "centrefold": "centerfold",
230
+ "centrefolds": "centerfolds",
231
+ "centrepiece": "centerpiece",
232
+ "centrepieces": "centerpieces",
233
+ "centres": "centers",
234
+ "channelled": "channeled",
235
+ "channelling": "channeling",
236
+ "characterise": "characterize",
237
+ "characterised": "characterized",
238
+ "characterises": "characterizes",
239
+ "characterising": "characterizing",
240
+ "cheque": "check",
241
+ "chequebook": "checkbook",
242
+ "chequebooks": "checkbooks",
243
+ "chequered": "checkered",
244
+ "cheques": "checks",
245
+ "chilli": "chili",
246
+ "chimaera": "chimera",
247
+ "chimaeras": "chimeras",
248
+ "chiselled": "chiseled",
249
+ "chiselling": "chiseling",
250
+ "circularise": "circularize",
251
+ "circularised": "circularized",
252
+ "circularises": "circularizes",
253
+ "circularising": "circularizing",
254
+ "civilise": "civilize",
255
+ "civilised": "civilized",
256
+ "civilises": "civilizes",
257
+ "civilising": "civilizing",
258
+ "clamour": "clamor",
259
+ "clamoured": "clamored",
260
+ "clamouring": "clamoring",
261
+ "clamours": "clamors",
262
+ "clangour": "clangor",
263
+ "clarinettist": "clarinetist",
264
+ "clarinettists": "clarinetists",
265
+ "collectivise": "collectivize",
266
+ "collectivised": "collectivized",
267
+ "collectivises": "collectivizes",
268
+ "collectivising": "collectivizing",
269
+ "colonisation": "colonization",
270
+ "colonise": "colonize",
271
+ "colonised": "colonized",
272
+ "coloniser": "colonizer",
273
+ "colonisers": "colonizers",
274
+ "colonises": "colonizes",
275
+ "colonising": "colonizing",
276
+ "colour": "color",
277
+ "colourant": "colorant",
278
+ "colourants": "colorants",
279
+ "coloured": "colored",
280
+ "coloureds": "coloreds",
281
+ "colourful": "colorful",
282
+ "colourfully": "colorfully",
283
+ "colouring": "coloring",
284
+ "colourize": "colorize",
285
+ "colourized": "colorized",
286
+ "colourizes": "colorizes",
287
+ "colourizing": "colorizing",
288
+ "colourless": "colorless",
289
+ "colours": "colors",
290
+ "commercialise": "commercialize",
291
+ "commercialised": "commercialized",
292
+ "commercialises": "commercializes",
293
+ "commercialising": "commercializing",
294
+ "compartmentalise": "compartmentalize",
295
+ "compartmentalised": "compartmentalized",
296
+ "compartmentalises": "compartmentalizes",
297
+ "compartmentalising": "compartmentalizing",
298
+ "computerise": "computerize",
299
+ "computerised": "computerized",
300
+ "computerises": "computerizes",
301
+ "computerising": "computerizing",
302
+ "conceptualise": "conceptualize",
303
+ "conceptualised": "conceptualized",
304
+ "conceptualises": "conceptualizes",
305
+ "conceptualising": "conceptualizing",
306
+ "connexion": "connection",
307
+ "connexions": "connections",
308
+ "contextualise": "contextualize",
309
+ "contextualised": "contextualized",
310
+ "contextualises": "contextualizes",
311
+ "contextualising": "contextualizing",
312
+ "cosier": "cozier",
313
+ "cosies": "cozies",
314
+ "cosiest": "coziest",
315
+ "cosily": "cozily",
316
+ "cosiness": "coziness",
317
+ "cosy": "cozy",
318
+ "councillor": "councilor",
319
+ "councillors": "councilors",
320
+ "counselled": "counseled",
321
+ "counselling": "counseling",
322
+ "counsellor": "counselor",
323
+ "counsellors": "counselors",
324
+ "crenelated": "crenellated",
325
+ "criminalise": "criminalize",
326
+ "criminalised": "criminalized",
327
+ "criminalises": "criminalizes",
328
+ "criminalising": "criminalizing",
329
+ "criticise": "criticize",
330
+ "criticised": "criticized",
331
+ "criticises": "criticizes",
332
+ "criticising": "criticizing",
333
+ "crueller": "crueler",
334
+ "cruellest": "cruelest",
335
+ "crystallisation": "crystallization",
336
+ "crystallise": "crystallize",
337
+ "crystallised": "crystallized",
338
+ "crystallises": "crystallizes",
339
+ "crystallising": "crystallizing",
340
+ "cudgelled": "cudgeled",
341
+ "cudgelling": "cudgeling",
342
+ "customise": "customize",
343
+ "customised": "customized",
344
+ "customises": "customizes",
345
+ "customising": "customizing",
346
+ "cypher": "cipher",
347
+ "cyphers": "ciphers",
348
+ "decentralisation": "decentralization",
349
+ "decentralise": "decentralize",
350
+ "decentralised": "decentralized",
351
+ "decentralises": "decentralizes",
352
+ "decentralising": "decentralizing",
353
+ "decriminalisation": "decriminalization",
354
+ "decriminalise": "decriminalize",
355
+ "decriminalised": "decriminalized",
356
+ "decriminalises": "decriminalizes",
357
+ "decriminalising": "decriminalizing",
358
+ "defence": "defense",
359
+ "defenceless": "defenseless",
360
+ "defences": "defenses",
361
+ "dehumanisation": "dehumanization",
362
+ "dehumanise": "dehumanize",
363
+ "dehumanised": "dehumanized",
364
+ "dehumanises": "dehumanizes",
365
+ "dehumanising": "dehumanizing",
366
+ "demeanour": "demeanor",
367
+ "demilitarisation": "demilitarization",
368
+ "demilitarise": "demilitarize",
369
+ "demilitarised": "demilitarized",
370
+ "demilitarises": "demilitarizes",
371
+ "demilitarising": "demilitarizing",
372
+ "demobilisation": "demobilization",
373
+ "demobilise": "demobilize",
374
+ "demobilised": "demobilized",
375
+ "demobilises": "demobilizes",
376
+ "demobilising": "demobilizing",
377
+ "democratisation": "democratization",
378
+ "democratise": "democratize",
379
+ "democratised": "democratized",
380
+ "democratises": "democratizes",
381
+ "democratising": "democratizing",
382
+ "demonise": "demonize",
383
+ "demonised": "demonized",
384
+ "demonises": "demonizes",
385
+ "demonising": "demonizing",
386
+ "demoralisation": "demoralization",
387
+ "demoralise": "demoralize",
388
+ "demoralised": "demoralized",
389
+ "demoralises": "demoralizes",
390
+ "demoralising": "demoralizing",
391
+ "denationalisation": "denationalization",
392
+ "denationalise": "denationalize",
393
+ "denationalised": "denationalized",
394
+ "denationalises": "denationalizes",
395
+ "denationalising": "denationalizing",
396
+ "deodorise": "deodorize",
397
+ "deodorised": "deodorized",
398
+ "deodorises": "deodorizes",
399
+ "deodorising": "deodorizing",
400
+ "depersonalise": "depersonalize",
401
+ "depersonalised": "depersonalized",
402
+ "depersonalises": "depersonalizes",
403
+ "depersonalising": "depersonalizing",
404
+ "deputise": "deputize",
405
+ "deputised": "deputized",
406
+ "deputises": "deputizes",
407
+ "deputising": "deputizing",
408
+ "desensitisation": "desensitization",
409
+ "desensitise": "desensitize",
410
+ "desensitised": "desensitized",
411
+ "desensitises": "desensitizes",
412
+ "desensitising": "desensitizing",
413
+ "destabilisation": "destabilization",
414
+ "destabilise": "destabilize",
415
+ "destabilised": "destabilized",
416
+ "destabilises": "destabilizes",
417
+ "destabilising": "destabilizing",
418
+ "dialled": "dialed",
419
+ "dialling": "dialing",
420
+ "dialogue": "dialog",
421
+ "dialogues": "dialogs",
422
+ "diarrhoea": "diarrhea",
423
+ "digitise": "digitize",
424
+ "digitised": "digitized",
425
+ "digitises": "digitizes",
426
+ "digitising": "digitizing",
427
+ "disc": "disk",
428
+ "discolour": "discolor",
429
+ "discoloured": "discolored",
430
+ "discolouring": "discoloring",
431
+ "discolours": "discolors",
432
+ "discs": "disks",
433
+ "disembowelled": "disemboweled",
434
+ "disembowelling": "disemboweling",
435
+ "disfavour": "disfavor",
436
+ "dishevelled": "disheveled",
437
+ "dishonour": "dishonor",
438
+ "dishonourable": "dishonorable",
439
+ "dishonourably": "dishonorably",
440
+ "dishonoured": "dishonored",
441
+ "dishonouring": "dishonoring",
442
+ "dishonours": "dishonors",
443
+ "disorganisation": "disorganization",
444
+ "disorganised": "disorganized",
445
+ "distil": "distill",
446
+ "distils": "distills",
447
+ "dramatisation": "dramatization",
448
+ "dramatisations": "dramatizations",
449
+ "dramatise": "dramatize",
450
+ "dramatised": "dramatized",
451
+ "dramatises": "dramatizes",
452
+ "dramatising": "dramatizing",
453
+ "draught": "draft",
454
+ "draughtboard": "draftboard",
455
+ "draughtboards": "draftboards",
456
+ "draughtier": "draftier",
457
+ "draughtiest": "draftiest",
458
+ "draughts": "drafts",
459
+ "draughtsman": "draftsman",
460
+ "draughtsmanship": "draftsmanship",
461
+ "draughtsmen": "draftsmen",
462
+ "draughtswoman": "draftswoman",
463
+ "draughtswomen": "draftswomen",
464
+ "draughty": "drafty",
465
+ "drivelled": "driveled",
466
+ "drivelling": "driveling",
467
+ "duelled": "dueled",
468
+ "duelling": "dueling",
469
+ "economise": "economize",
470
+ "economised": "economized",
471
+ "economises": "economizes",
472
+ "economising": "economizing",
473
+ "editorialise": "editorialize",
474
+ "editorialised": "editorialized",
475
+ "editorialises": "editorializes",
476
+ "editorialising": "editorializing",
477
+ "edoema": "edema",
478
+ "empathise": "empathize",
479
+ "empathised": "empathized",
480
+ "empathises": "empathizes",
481
+ "empathising": "empathizing",
482
+ "emphasise": "emphasize",
483
+ "emphasised": "emphasized",
484
+ "emphasises": "emphasizes",
485
+ "emphasising": "emphasizing",
486
+ "enamelled": "enameled",
487
+ "enamelling": "enameling",
488
+ "enamoured": "enamored",
489
+ "encyclopaedia": "encyclopedia",
490
+ "encyclopaedias": "encyclopedias",
491
+ "encyclopaedic": "encyclopedic",
492
+ "endeavour": "endeavor",
493
+ "endeavoured": "endeavored",
494
+ "endeavouring": "endeavoring",
495
+ "endeavours": "endeavors",
496
+ "energise": "energize",
497
+ "energised": "energized",
498
+ "energises": "energizes",
499
+ "energising": "energizing",
500
+ "enrol": "enroll",
501
+ "enrols": "enrolls",
502
+ "enthral": "enthrall",
503
+ "enthrals": "enthralls",
504
+ "epaulette": "epaulet",
505
+ "epaulettes": "epaulets",
506
+ "epicentre": "epicenter",
507
+ "epicentres": "epicenters",
508
+ "epilogue": "epilog",
509
+ "epilogues": "epilogs",
510
+ "epitomise": "epitomize",
511
+ "epitomised": "epitomized",
512
+ "epitomises": "epitomizes",
513
+ "epitomising": "epitomizing",
514
+ "equalisation": "equalization",
515
+ "equalise": "equalize",
516
+ "equalised": "equalized",
517
+ "equaliser": "equalizer",
518
+ "equalisers": "equalizers",
519
+ "equalises": "equalizes",
520
+ "equalising": "equalizing",
521
+ "eulogise": "eulogize",
522
+ "eulogised": "eulogized",
523
+ "eulogises": "eulogizes",
524
+ "eulogising": "eulogizing",
525
+ "evangelise": "evangelize",
526
+ "evangelised": "evangelized",
527
+ "evangelises": "evangelizes",
528
+ "evangelising": "evangelizing",
529
+ "exorcise": "exorcize",
530
+ "exorcised": "exorcized",
531
+ "exorcises": "exorcizes",
532
+ "exorcising": "exorcizing",
533
+ "extemporisation": "extemporization",
534
+ "extemporise": "extemporize",
535
+ "extemporised": "extemporized",
536
+ "extemporises": "extemporizes",
537
+ "extemporising": "extemporizing",
538
+ "externalisation": "externalization",
539
+ "externalisations": "externalizations",
540
+ "externalise": "externalize",
541
+ "externalised": "externalized",
542
+ "externalises": "externalizes",
543
+ "externalising": "externalizing",
544
+ "factorise": "factorize",
545
+ "factorised": "factorized",
546
+ "factorises": "factorizes",
547
+ "factorising": "factorizing",
548
+ "faecal": "fecal",
549
+ "faeces": "feces",
550
+ "familiarisation": "familiarization",
551
+ "familiarise": "familiarize",
552
+ "familiarised": "familiarized",
553
+ "familiarises": "familiarizes",
554
+ "familiarising": "familiarizing",
555
+ "fantasise": "fantasize",
556
+ "fantasised": "fantasized",
557
+ "fantasises": "fantasizes",
558
+ "fantasising": "fantasizing",
559
+ "favour": "favor",
560
+ "favourable": "favorable",
561
+ "favourably": "favorably",
562
+ "favoured": "favored",
563
+ "favouring": "favoring",
564
+ "favourite": "favorite",
565
+ "favourites": "favorites",
566
+ "favouritism": "favoritism",
567
+ "favours": "favors",
568
+ "feminise": "feminize",
569
+ "feminised": "feminized",
570
+ "feminises": "feminizes",
571
+ "feminising": "feminizing",
572
+ "fertilisation": "fertilization",
573
+ "fertilise": "fertilize",
574
+ "fertilised": "fertilized",
575
+ "fertiliser": "fertilizer",
576
+ "fertilisers": "fertilizers",
577
+ "fertilises": "fertilizes",
578
+ "fertilising": "fertilizing",
579
+ "fervour": "fervor",
580
+ "fibre": "fiber",
581
+ "fibreglass": "fiberglass",
582
+ "fibres": "fibers",
583
+ "fictionalisation": "fictionalization",
584
+ "fictionalisations": "fictionalizations",
585
+ "fictionalise": "fictionalize",
586
+ "fictionalised": "fictionalized",
587
+ "fictionalises": "fictionalizes",
588
+ "fictionalising": "fictionalizing",
589
+ "fillet": "filet",
590
+ "filleted": "fileted",
591
+ "filleting": "fileting",
592
+ "fillets": "filets",
593
+ "finalisation": "finalization",
594
+ "finalise": "finalize",
595
+ "finalised": "finalized",
596
+ "finalises": "finalizes",
597
+ "finalising": "finalizing",
598
+ "flautist": "flutist",
599
+ "flautists": "flutists",
600
+ "flavour": "flavor",
601
+ "flavoured": "flavored",
602
+ "flavouring": "flavoring",
603
+ "flavourings": "flavorings",
604
+ "flavourless": "flavorless",
605
+ "flavours": "flavors",
606
+ "flavoursome": "flavorsome",
607
+ "flyer / flier": "flier / flyer",
608
+ "foetal": "fetal",
609
+ "foetid": "fetid",
610
+ "foetus": "fetus",
611
+ "foetuses": "fetuses",
612
+ "formalisation": "formalization",
613
+ "formalise": "formalize",
614
+ "formalised": "formalized",
615
+ "formalises": "formalizes",
616
+ "formalising": "formalizing",
617
+ "fossilisation": "fossilization",
618
+ "fossilise": "fossilize",
619
+ "fossilised": "fossilized",
620
+ "fossilises": "fossilizes",
621
+ "fossilising": "fossilizing",
622
+ "fraternisation": "fraternization",
623
+ "fraternise": "fraternize",
624
+ "fraternised": "fraternized",
625
+ "fraternises": "fraternizes",
626
+ "fraternising": "fraternizing",
627
+ "fulfil": "fulfill",
628
+ "fulfilment": "fulfillment",
629
+ "fulfils": "fulfills",
630
+ "funnelled": "funneled",
631
+ "funnelling": "funneling",
632
+ "gage": "gauge",
633
+ "gaged": "gauged",
634
+ "gages": "gauges",
635
+ "gaging": "gauging",
636
+ "galvanise": "galvanize",
637
+ "galvanised": "galvanized",
638
+ "galvanises": "galvanizes",
639
+ "galvanising": "galvanizing",
640
+ "gambolled": "gamboled",
641
+ "gambolling": "gamboling",
642
+ "gaol": "jail",
643
+ "gaolbird": "jailbird",
644
+ "gaolbirds": "jailbirds",
645
+ "gaolbreak": "jailbreak",
646
+ "gaolbreaks": "jailbreaks",
647
+ "gaoled": "jailed",
648
+ "gaoler": "jailer",
649
+ "gaolers": "jailers",
650
+ "gaoling": "jailing",
651
+ "gaols": "jails",
652
+ "gasses": "gases",
653
+ "generalisation": "generalization",
654
+ "generalisations": "generalizations",
655
+ "generalise": "generalize",
656
+ "generalised": "generalized",
657
+ "generalises": "generalizes",
658
+ "generalising": "generalizing",
659
+ "ghettoise": "ghettoize",
660
+ "ghettoised": "ghettoized",
661
+ "ghettoises": "ghettoizes",
662
+ "ghettoising": "ghettoizing",
663
+ "gipsies": "gypsies",
664
+ "glamor": "glamour",
665
+ "glamorise": "glamorize",
666
+ "glamorised": "glamorized",
667
+ "glamorises": "glamorizes",
668
+ "glamorising": "glamorizing",
669
+ "globalisation": "globalization",
670
+ "globalise": "globalize",
671
+ "globalised": "globalized",
672
+ "globalises": "globalizes",
673
+ "globalising": "globalizing",
674
+ "glueing": "gluing",
675
+ "goitre": "goiter",
676
+ "goitres": "goiters",
677
+ "gonorrhoea": "gonorrhea",
678
+ "gramme": "gram",
679
+ "grammes": "grams",
680
+ "gravelled": "graveled",
681
+ "grey": "gray",
682
+ "greyed": "grayed",
683
+ "greying": "graying",
684
+ "greyish": "grayish",
685
+ "greyness": "grayness",
686
+ "greys": "grays",
687
+ "grovelled": "groveled",
688
+ "grovelling": "groveling",
689
+ "groyne": "groin",
690
+ "groynes": "groins",
691
+ "gruelling": "grueling",
692
+ "gruellingly": "gruelingly",
693
+ "gryphon": "griffin",
694
+ "gryphons": "griffins",
695
+ "gynaecological": "gynecological",
696
+ "gynaecologist": "gynecologist",
697
+ "gynaecologists": "gynecologists",
698
+ "gynaecology": "gynecology",
699
+ "haematological": "hematological",
700
+ "haematologist": "hematologist",
701
+ "haematologists": "hematologists",
702
+ "haematology": "hematology",
703
+ "haemoglobin": "hemoglobin",
704
+ "haemophilia": "hemophilia",
705
+ "haemophiliac": "hemophiliac",
706
+ "haemophiliacs": "hemophiliacs",
707
+ "haemorrhage": "hemorrhage",
708
+ "haemorrhaged": "hemorrhaged",
709
+ "haemorrhages": "hemorrhages",
710
+ "haemorrhaging": "hemorrhaging",
711
+ "haemorrhoids": "hemorrhoids",
712
+ "harbour": "harbor",
713
+ "harboured": "harbored",
714
+ "harbouring": "harboring",
715
+ "harbours": "harbors",
716
+ "harmonisation": "harmonization",
717
+ "harmonise": "harmonize",
718
+ "harmonised": "harmonized",
719
+ "harmonises": "harmonizes",
720
+ "harmonising": "harmonizing",
721
+ "homoeopath": "homeopath",
722
+ "homoeopathic": "homeopathic",
723
+ "homoeopaths": "homeopaths",
724
+ "homoeopathy": "homeopathy",
725
+ "homogenise": "homogenize",
726
+ "homogenised": "homogenized",
727
+ "homogenises": "homogenizes",
728
+ "homogenising": "homogenizing",
729
+ "honour": "honor",
730
+ "honourable": "honorable",
731
+ "honourably": "honorably",
732
+ "honoured": "honored",
733
+ "honouring": "honoring",
734
+ "honours": "honors",
735
+ "hospitalisation": "hospitalization",
736
+ "hospitalise": "hospitalize",
737
+ "hospitalised": "hospitalized",
738
+ "hospitalises": "hospitalizes",
739
+ "hospitalising": "hospitalizing",
740
+ "humanise": "humanize",
741
+ "humanised": "humanized",
742
+ "humanises": "humanizes",
743
+ "humanising": "humanizing",
744
+ "humour": "humor",
745
+ "humoured": "humored",
746
+ "humouring": "humoring",
747
+ "humourless": "humorless",
748
+ "humours": "humors",
749
+ "hybridise": "hybridize",
750
+ "hybridised": "hybridized",
751
+ "hybridises": "hybridizes",
752
+ "hybridising": "hybridizing",
753
+ "hypnotise": "hypnotize",
754
+ "hypnotised": "hypnotized",
755
+ "hypnotises": "hypnotizes",
756
+ "hypnotising": "hypnotizing",
757
+ "hypothesise": "hypothesize",
758
+ "hypothesised": "hypothesized",
759
+ "hypothesises": "hypothesizes",
760
+ "hypothesising": "hypothesizing",
761
+ "idealisation": "idealization",
762
+ "idealise": "idealize",
763
+ "idealised": "idealized",
764
+ "idealises": "idealizes",
765
+ "idealising": "idealizing",
766
+ "idolise": "idolize",
767
+ "idolised": "idolized",
768
+ "idolises": "idolizes",
769
+ "idolising": "idolizing",
770
+ "immobilisation": "immobilization",
771
+ "immobilise": "immobilize",
772
+ "immobilised": "immobilized",
773
+ "immobiliser": "immobilizer",
774
+ "immobilisers": "immobilizers",
775
+ "immobilises": "immobilizes",
776
+ "immobilising": "immobilizing",
777
+ "immortalise": "immortalize",
778
+ "immortalised": "immortalized",
779
+ "immortalises": "immortalizes",
780
+ "immortalising": "immortalizing",
781
+ "immunisation": "immunization",
782
+ "immunise": "immunize",
783
+ "immunised": "immunized",
784
+ "immunises": "immunizes",
785
+ "immunising": "immunizing",
786
+ "impanelled": "impaneled",
787
+ "impanelling": "impaneling",
788
+ "imperilled": "imperiled",
789
+ "imperilling": "imperiling",
790
+ "individualise": "individualize",
791
+ "individualised": "individualized",
792
+ "individualises": "individualizes",
793
+ "individualising": "individualizing",
794
+ "industrialise": "industrialize",
795
+ "industrialised": "industrialized",
796
+ "industrialises": "industrializes",
797
+ "industrialising": "industrializing",
798
+ "inflexion": "inflection",
799
+ "inflexions": "inflections",
800
+ "initialise": "initialize",
801
+ "initialised": "initialized",
802
+ "initialises": "initializes",
803
+ "initialising": "initializing",
804
+ "initialled": "initialed",
805
+ "initialling": "initialing",
806
+ "instal": "install",
807
+ "instalment": "installment",
808
+ "instalments": "installments",
809
+ "instals": "installs",
810
+ "instil": "instill",
811
+ "instils": "instills",
812
+ "institutionalisation": "institutionalization",
813
+ "institutionalise": "institutionalize",
814
+ "institutionalised": "institutionalized",
815
+ "institutionalises": "institutionalizes",
816
+ "institutionalising": "institutionalizing",
817
+ "intellectualise": "intellectualize",
818
+ "intellectualised": "intellectualized",
819
+ "intellectualises": "intellectualizes",
820
+ "intellectualising": "intellectualizing",
821
+ "internalisation": "internalization",
822
+ "internalise": "internalize",
823
+ "internalised": "internalized",
824
+ "internalises": "internalizes",
825
+ "internalising": "internalizing",
826
+ "internationalisation": "internationalization",
827
+ "internationalise": "internationalize",
828
+ "internationalised": "internationalized",
829
+ "internationalises": "internationalizes",
830
+ "internationalising": "internationalizing",
831
+ "ionisation": "ionization",
832
+ "ionise": "ionize",
833
+ "ionised": "ionized",
834
+ "ioniser": "ionizer",
835
+ "ionisers": "ionizers",
836
+ "ionises": "ionizes",
837
+ "ionising": "ionizing",
838
+ "italicise": "italicize",
839
+ "italicised": "italicized",
840
+ "italicises": "italicizes",
841
+ "italicising": "italicizing",
842
+ "itemise": "itemize",
843
+ "itemised": "itemized",
844
+ "itemises": "itemizes",
845
+ "itemising": "itemizing",
846
+ "jeopardise": "jeopardize",
847
+ "jeopardised": "jeopardized",
848
+ "jeopardises": "jeopardizes",
849
+ "jeopardising": "jeopardizing",
850
+ "jewelled": "jeweled",
851
+ "jeweller": "jeweler",
852
+ "jewellers": "jewelers",
853
+ "jewellery": "jewelry",
854
+ "judgement": "judgment",
855
+ "kilogramme": "kilogram",
856
+ "kilogrammes": "kilograms",
857
+ "kilometre": "kilometer",
858
+ "kilometres": "kilometers",
859
+ "labelled": "labeled",
860
+ "labelling": "labeling",
861
+ "labour": "labor",
862
+ "laboured": "labored",
863
+ "labourer": "laborer",
864
+ "labourers": "laborers",
865
+ "labouring": "laboring",
866
+ "labours": "labors",
867
+ "lacklustre": "lackluster",
868
+ "legalisation": "legalization",
869
+ "legalise": "legalize",
870
+ "legalised": "legalized",
871
+ "legalises": "legalizes",
872
+ "legalising": "legalizing",
873
+ "legitimise": "legitimize",
874
+ "legitimised": "legitimized",
875
+ "legitimises": "legitimizes",
876
+ "legitimising": "legitimizing",
877
+ "leukaemia": "leukemia",
878
+ "levelled": "leveled",
879
+ "leveller": "leveler",
880
+ "levellers": "levelers",
881
+ "levelling": "leveling",
882
+ "libelled": "libeled",
883
+ "libelling": "libeling",
884
+ "libellous": "libelous",
885
+ "liberalisation": "liberalization",
886
+ "liberalise": "liberalize",
887
+ "liberalised": "liberalized",
888
+ "liberalises": "liberalizes",
889
+ "liberalising": "liberalizing",
890
+ "licence": "license",
891
+ "licenced": "licensed",
892
+ "licences": "licenses",
893
+ "licencing": "licensing",
894
+ "likeable": "likable",
895
+ "lionisation": "lionization",
896
+ "lionise": "lionize",
897
+ "lionised": "lionized",
898
+ "lionises": "lionizes",
899
+ "lionising": "lionizing",
900
+ "liquidise": "liquidize",
901
+ "liquidised": "liquidized",
902
+ "liquidiser": "liquidizer",
903
+ "liquidisers": "liquidizers",
904
+ "liquidises": "liquidizes",
905
+ "liquidising": "liquidizing",
906
+ "litre": "liter",
907
+ "litres": "liters",
908
+ "localise": "localize",
909
+ "localised": "localized",
910
+ "localises": "localizes",
911
+ "localising": "localizing",
912
+ "louvre": "louver",
913
+ "louvred": "louvered",
914
+ "louvres": "louvers",
915
+ "lustre": "luster",
916
+ "magnetise": "magnetize",
917
+ "magnetised": "magnetized",
918
+ "magnetises": "magnetizes",
919
+ "magnetising": "magnetizing",
920
+ "manoeuvrability": "maneuverability",
921
+ "manoeuvrable": "maneuverable",
922
+ "manoeuvre": "maneuver",
923
+ "manoeuvred": "maneuvered",
924
+ "manoeuvres": "maneuvers",
925
+ "manoeuvring": "maneuvering",
926
+ "manoeuvrings": "maneuverings",
927
+ "marginalisation": "marginalization",
928
+ "marginalise": "marginalize",
929
+ "marginalised": "marginalized",
930
+ "marginalises": "marginalizes",
931
+ "marginalising": "marginalizing",
932
+ "marshalled": "marshaled",
933
+ "marshalling": "marshaling",
934
+ "marvelled": "marveled",
935
+ "marvelling": "marveling",
936
+ "marvellous": "marvelous",
937
+ "marvellously": "marvelously",
938
+ "materialisation": "materialization",
939
+ "materialise": "materialize",
940
+ "materialised": "materialized",
941
+ "materialises": "materializes",
942
+ "materialising": "materializing",
943
+ "maximisation": "maximization",
944
+ "maximise": "maximize",
945
+ "maximised": "maximized",
946
+ "maximises": "maximizes",
947
+ "maximising": "maximizing",
948
+ "meagre": "meager",
949
+ "mechanisation": "mechanization",
950
+ "mechanise": "mechanize",
951
+ "mechanised": "mechanized",
952
+ "mechanises": "mechanizes",
953
+ "mechanising": "mechanizing",
954
+ "mediaeval": "medieval",
955
+ "memorialise": "memorialize",
956
+ "memorialised": "memorialized",
957
+ "memorialises": "memorializes",
958
+ "memorialising": "memorializing",
959
+ "memorise": "memorize",
960
+ "memorised": "memorized",
961
+ "memorises": "memorizes",
962
+ "memorising": "memorizing",
963
+ "mesmerise": "mesmerize",
964
+ "mesmerised": "mesmerized",
965
+ "mesmerises": "mesmerizes",
966
+ "mesmerising": "mesmerizing",
967
+ "metabolise": "metabolize",
968
+ "metabolised": "metabolized",
969
+ "metabolises": "metabolizes",
970
+ "metabolising": "metabolizing",
971
+ "metre": "meter",
972
+ "metres": "meters",
973
+ "mhm": "hmm",
974
+ "micrometre": "micrometer",
975
+ "micrometres": "micrometers",
976
+ "militarise": "militarize",
977
+ "militarised": "militarized",
978
+ "militarises": "militarizes",
979
+ "militarising": "militarizing",
980
+ "milligramme": "milligram",
981
+ "milligrammes": "milligrams",
982
+ "millilitre": "milliliter",
983
+ "millilitres": "milliliters",
984
+ "millimetre": "millimeter",
985
+ "millimetres": "millimeters",
986
+ "miniaturisation": "miniaturization",
987
+ "miniaturise": "miniaturize",
988
+ "miniaturised": "miniaturized",
989
+ "miniaturises": "miniaturizes",
990
+ "miniaturising": "miniaturizing",
991
+ "minibusses": "minibuses",
992
+ "minimise": "minimize",
993
+ "minimised": "minimized",
994
+ "minimises": "minimizes",
995
+ "minimising": "minimizing",
996
+ "misbehaviour": "misbehavior",
997
+ "misdemeanour": "misdemeanor",
998
+ "misdemeanours": "misdemeanors",
999
+ "misspelt": "misspelled",
1000
+ "mitre": "miter",
1001
+ "mitres": "miters",
1002
+ "mm": "hmm",
1003
+ "mmm": "hmm",
1004
+ "mobilisation": "mobilization",
1005
+ "mobilise": "mobilize",
1006
+ "mobilised": "mobilized",
1007
+ "mobilises": "mobilizes",
1008
+ "mobilising": "mobilizing",
1009
+ "modelled": "modeled",
1010
+ "modeller": "modeler",
1011
+ "modellers": "modelers",
1012
+ "modelling": "modeling",
1013
+ "modernise": "modernize",
1014
+ "modernised": "modernized",
1015
+ "modernises": "modernizes",
1016
+ "modernising": "modernizing",
1017
+ "moisturise": "moisturize",
1018
+ "moisturised": "moisturized",
1019
+ "moisturiser": "moisturizer",
1020
+ "moisturisers": "moisturizers",
1021
+ "moisturises": "moisturizes",
1022
+ "moisturising": "moisturizing",
1023
+ "monologue": "monolog",
1024
+ "monologues": "monologs",
1025
+ "monopolisation": "monopolization",
1026
+ "monopolise": "monopolize",
1027
+ "monopolised": "monopolized",
1028
+ "monopolises": "monopolizes",
1029
+ "monopolising": "monopolizing",
1030
+ "moralise": "moralize",
1031
+ "moralised": "moralized",
1032
+ "moralises": "moralizes",
1033
+ "moralising": "moralizing",
1034
+ "motorised": "motorized",
1035
+ "mould": "mold",
1036
+ "moulded": "molded",
1037
+ "moulder": "molder",
1038
+ "mouldered": "moldered",
1039
+ "mouldering": "moldering",
1040
+ "moulders": "molders",
1041
+ "mouldier": "moldier",
1042
+ "mouldiest": "moldiest",
1043
+ "moulding": "molding",
1044
+ "mouldings": "moldings",
1045
+ "moulds": "molds",
1046
+ "mouldy": "moldy",
1047
+ "moult": "molt",
1048
+ "moulted": "molted",
1049
+ "moulting": "molting",
1050
+ "moults": "molts",
1051
+ "moustache": "mustache",
1052
+ "moustached": "mustached",
1053
+ "moustaches": "mustaches",
1054
+ "moustachioed": "mustachioed",
1055
+ "multicoloured": "multicolored",
1056
+ "nationalisation": "nationalization",
1057
+ "nationalisations": "nationalizations",
1058
+ "nationalise": "nationalize",
1059
+ "nationalised": "nationalized",
1060
+ "nationalises": "nationalizes",
1061
+ "nationalising": "nationalizing",
1062
+ "naturalisation": "naturalization",
1063
+ "naturalise": "naturalize",
1064
+ "naturalised": "naturalized",
1065
+ "naturalises": "naturalizes",
1066
+ "naturalising": "naturalizing",
1067
+ "neighbour": "neighbor",
1068
+ "neighbourhood": "neighborhood",
1069
+ "neighbourhoods": "neighborhoods",
1070
+ "neighbouring": "neighboring",
1071
+ "neighbourliness": "neighborliness",
1072
+ "neighbourly": "neighborly",
1073
+ "neighbours": "neighbors",
1074
+ "neutralisation": "neutralization",
1075
+ "neutralise": "neutralize",
1076
+ "neutralised": "neutralized",
1077
+ "neutralises": "neutralizes",
1078
+ "neutralising": "neutralizing",
1079
+ "normalisation": "normalization",
1080
+ "normalise": "normalize",
1081
+ "normalised": "normalized",
1082
+ "normalises": "normalizes",
1083
+ "normalising": "normalizing",
1084
+ "odour": "odor",
1085
+ "odourless": "odorless",
1086
+ "odours": "odors",
1087
+ "oesophagus": "esophagus",
1088
+ "oesophaguses": "esophaguses",
1089
+ "oestrogen": "estrogen",
1090
+ "offence": "offense",
1091
+ "offences": "offenses",
1092
+ "omelette": "omelet",
1093
+ "omelettes": "omelets",
1094
+ "optimise": "optimize",
1095
+ "optimised": "optimized",
1096
+ "optimises": "optimizes",
1097
+ "optimising": "optimizing",
1098
+ "organisation": "organization",
1099
+ "organisational": "organizational",
1100
+ "organisations": "organizations",
1101
+ "organise": "organize",
1102
+ "organised": "organized",
1103
+ "organiser": "organizer",
1104
+ "organisers": "organizers",
1105
+ "organises": "organizes",
1106
+ "organising": "organizing",
1107
+ "orthopaedic": "orthopedic",
1108
+ "orthopaedics": "orthopedics",
1109
+ "ostracise": "ostracize",
1110
+ "ostracised": "ostracized",
1111
+ "ostracises": "ostracizes",
1112
+ "ostracising": "ostracizing",
1113
+ "outmanoeuvre": "outmaneuver",
1114
+ "outmanoeuvred": "outmaneuvered",
1115
+ "outmanoeuvres": "outmaneuvers",
1116
+ "outmanoeuvring": "outmaneuvering",
1117
+ "overemphasise": "overemphasize",
1118
+ "overemphasised": "overemphasized",
1119
+ "overemphasises": "overemphasizes",
1120
+ "overemphasising": "overemphasizing",
1121
+ "oxidisation": "oxidization",
1122
+ "oxidise": "oxidize",
1123
+ "oxidised": "oxidized",
1124
+ "oxidises": "oxidizes",
1125
+ "oxidising": "oxidizing",
1126
+ "paederast": "pederast",
1127
+ "paederasts": "pederasts",
1128
+ "paediatric": "pediatric",
1129
+ "paediatrician": "pediatrician",
1130
+ "paediatricians": "pediatricians",
1131
+ "paediatrics": "pediatrics",
1132
+ "paedophile": "pedophile",
1133
+ "paedophiles": "pedophiles",
1134
+ "paedophilia": "pedophilia",
1135
+ "palaeolithic": "paleolithic",
1136
+ "palaeontologist": "paleontologist",
1137
+ "palaeontologists": "paleontologists",
1138
+ "palaeontology": "paleontology",
1139
+ "panelled": "paneled",
1140
+ "panelling": "paneling",
1141
+ "panellist": "panelist",
1142
+ "panellists": "panelists",
1143
+ "paralyse": "paralyze",
1144
+ "paralysed": "paralyzed",
1145
+ "paralyses": "paralyzes",
1146
+ "paralysing": "paralyzing",
1147
+ "parcelled": "parceled",
1148
+ "parcelling": "parceling",
1149
+ "parlour": "parlor",
1150
+ "parlours": "parlors",
1151
+ "particularise": "particularize",
1152
+ "particularised": "particularized",
1153
+ "particularises": "particularizes",
1154
+ "particularising": "particularizing",
1155
+ "passivisation": "passivization",
1156
+ "passivise": "passivize",
1157
+ "passivised": "passivized",
1158
+ "passivises": "passivizes",
1159
+ "passivising": "passivizing",
1160
+ "pasteurisation": "pasteurization",
1161
+ "pasteurise": "pasteurize",
1162
+ "pasteurised": "pasteurized",
1163
+ "pasteurises": "pasteurizes",
1164
+ "pasteurising": "pasteurizing",
1165
+ "patronise": "patronize",
1166
+ "patronised": "patronized",
1167
+ "patronises": "patronizes",
1168
+ "patronising": "patronizing",
1169
+ "patronisingly": "patronizingly",
1170
+ "pedalled": "pedaled",
1171
+ "pedalling": "pedaling",
1172
+ "pedestrianisation": "pedestrianization",
1173
+ "pedestrianise": "pedestrianize",
1174
+ "pedestrianised": "pedestrianized",
1175
+ "pedestrianises": "pedestrianizes",
1176
+ "pedestrianising": "pedestrianizing",
1177
+ "penalise": "penalize",
1178
+ "penalised": "penalized",
1179
+ "penalises": "penalizes",
1180
+ "penalising": "penalizing",
1181
+ "pencilled": "penciled",
1182
+ "pencilling": "penciling",
1183
+ "personalise": "personalize",
1184
+ "personalised": "personalized",
1185
+ "personalises": "personalizes",
1186
+ "personalising": "personalizing",
1187
+ "pharmacopoeia": "pharmacopeia",
1188
+ "pharmacopoeias": "pharmacopeias",
1189
+ "philosophise": "philosophize",
1190
+ "philosophised": "philosophized",
1191
+ "philosophises": "philosophizes",
1192
+ "philosophising": "philosophizing",
1193
+ "philtre": "filter",
1194
+ "philtres": "filters",
1195
+ "phoney": "phony",
1196
+ "plagiarise": "plagiarize",
1197
+ "plagiarised": "plagiarized",
1198
+ "plagiarises": "plagiarizes",
1199
+ "plagiarising": "plagiarizing",
1200
+ "plough": "plow",
1201
+ "ploughed": "plowed",
1202
+ "ploughing": "plowing",
1203
+ "ploughman": "plowman",
1204
+ "ploughmen": "plowmen",
1205
+ "ploughs": "plows",
1206
+ "ploughshare": "plowshare",
1207
+ "ploughshares": "plowshares",
1208
+ "polarisation": "polarization",
1209
+ "polarise": "polarize",
1210
+ "polarised": "polarized",
1211
+ "polarises": "polarizes",
1212
+ "polarising": "polarizing",
1213
+ "politicisation": "politicization",
1214
+ "politicise": "politicize",
1215
+ "politicised": "politicized",
1216
+ "politicises": "politicizes",
1217
+ "politicising": "politicizing",
1218
+ "popularisation": "popularization",
1219
+ "popularise": "popularize",
1220
+ "popularised": "popularized",
1221
+ "popularises": "popularizes",
1222
+ "popularising": "popularizing",
1223
+ "pouffe": "pouf",
1224
+ "pouffes": "poufs",
1225
+ "practise": "practice",
1226
+ "practised": "practiced",
1227
+ "practises": "practices",
1228
+ "practising": "practicing",
1229
+ "praesidium": "presidium",
1230
+ "praesidiums": "presidiums",
1231
+ "pressurisation": "pressurization",
1232
+ "pressurise": "pressurize",
1233
+ "pressurised": "pressurized",
1234
+ "pressurises": "pressurizes",
1235
+ "pressurising": "pressurizing",
1236
+ "pretence": "pretense",
1237
+ "pretences": "pretenses",
1238
+ "primaeval": "primeval",
1239
+ "prioritisation": "prioritization",
1240
+ "prioritise": "prioritize",
1241
+ "prioritised": "prioritized",
1242
+ "prioritises": "prioritizes",
1243
+ "prioritising": "prioritizing",
1244
+ "privatisation": "privatization",
1245
+ "privatisations": "privatizations",
1246
+ "privatise": "privatize",
1247
+ "privatised": "privatized",
1248
+ "privatises": "privatizes",
1249
+ "privatising": "privatizing",
1250
+ "professionalisation": "professionalization",
1251
+ "professionalise": "professionalize",
1252
+ "professionalised": "professionalized",
1253
+ "professionalises": "professionalizes",
1254
+ "professionalising": "professionalizing",
1255
+ "programme": "program",
1256
+ "programmes": "programs",
1257
+ "prologue": "prolog",
1258
+ "prologues": "prologs",
1259
+ "propagandise": "propagandize",
1260
+ "propagandised": "propagandized",
1261
+ "propagandises": "propagandizes",
1262
+ "propagandising": "propagandizing",
1263
+ "proselytise": "proselytize",
1264
+ "proselytised": "proselytized",
1265
+ "proselytiser": "proselytizer",
1266
+ "proselytisers": "proselytizers",
1267
+ "proselytises": "proselytizes",
1268
+ "proselytising": "proselytizing",
1269
+ "psychoanalyse": "psychoanalyze",
1270
+ "psychoanalysed": "psychoanalyzed",
1271
+ "psychoanalyses": "psychoanalyzes",
1272
+ "psychoanalysing": "psychoanalyzing",
1273
+ "publicise": "publicize",
1274
+ "publicised": "publicized",
1275
+ "publicises": "publicizes",
1276
+ "publicising": "publicizing",
1277
+ "pulverisation": "pulverization",
1278
+ "pulverise": "pulverize",
1279
+ "pulverised": "pulverized",
1280
+ "pulverises": "pulverizes",
1281
+ "pulverising": "pulverizing",
1282
+ "pummelled": "pummel",
1283
+ "pummelling": "pummeled",
1284
+ "pyjama": "pajama",
1285
+ "pyjamas": "pajamas",
1286
+ "pzazz": "pizzazz",
1287
+ "quarrelled": "quarreled",
1288
+ "quarrelling": "quarreling",
1289
+ "radicalise": "radicalize",
1290
+ "radicalised": "radicalized",
1291
+ "radicalises": "radicalizes",
1292
+ "radicalising": "radicalizing",
1293
+ "rancour": "rancor",
1294
+ "randomise": "randomize",
1295
+ "randomised": "randomized",
1296
+ "randomises": "randomizes",
1297
+ "randomising": "randomizing",
1298
+ "rationalisation": "rationalization",
1299
+ "rationalisations": "rationalizations",
1300
+ "rationalise": "rationalize",
1301
+ "rationalised": "rationalized",
1302
+ "rationalises": "rationalizes",
1303
+ "rationalising": "rationalizing",
1304
+ "ravelled": "raveled",
1305
+ "ravelling": "raveling",
1306
+ "realisable": "realizable",
1307
+ "realisation": "realization",
1308
+ "realisations": "realizations",
1309
+ "realise": "realize",
1310
+ "realised": "realized",
1311
+ "realises": "realizes",
1312
+ "realising": "realizing",
1313
+ "recognisable": "recognizable",
1314
+ "recognisably": "recognizably",
1315
+ "recognisance": "recognizance",
1316
+ "recognise": "recognize",
1317
+ "recognised": "recognized",
1318
+ "recognises": "recognizes",
1319
+ "recognising": "recognizing",
1320
+ "reconnoitre": "reconnoiter",
1321
+ "reconnoitred": "reconnoitered",
1322
+ "reconnoitres": "reconnoiters",
1323
+ "reconnoitring": "reconnoitering",
1324
+ "refuelled": "refueled",
1325
+ "refuelling": "refueling",
1326
+ "regularisation": "regularization",
1327
+ "regularise": "regularize",
1328
+ "regularised": "regularized",
1329
+ "regularises": "regularizes",
1330
+ "regularising": "regularizing",
1331
+ "remodelled": "remodeled",
1332
+ "remodelling": "remodeling",
1333
+ "remould": "remold",
1334
+ "remoulded": "remolded",
1335
+ "remoulding": "remolding",
1336
+ "remoulds": "remolds",
1337
+ "reorganisation": "reorganization",
1338
+ "reorganisations": "reorganizations",
1339
+ "reorganise": "reorganize",
1340
+ "reorganised": "reorganized",
1341
+ "reorganises": "reorganizes",
1342
+ "reorganising": "reorganizing",
1343
+ "revelled": "reveled",
1344
+ "reveller": "reveler",
1345
+ "revellers": "revelers",
1346
+ "revelling": "reveling",
1347
+ "revitalise": "revitalize",
1348
+ "revitalised": "revitalized",
1349
+ "revitalises": "revitalizes",
1350
+ "revitalising": "revitalizing",
1351
+ "revolutionise": "revolutionize",
1352
+ "revolutionised": "revolutionized",
1353
+ "revolutionises": "revolutionizes",
1354
+ "revolutionising": "revolutionizing",
1355
+ "rhapsodise": "rhapsodize",
1356
+ "rhapsodised": "rhapsodized",
1357
+ "rhapsodises": "rhapsodizes",
1358
+ "rhapsodising": "rhapsodizing",
1359
+ "rigour": "rigor",
1360
+ "rigours": "rigors",
1361
+ "ritualised": "ritualized",
1362
+ "rivalled": "rivaled",
1363
+ "rivalling": "rivaling",
1364
+ "romanticise": "romanticize",
1365
+ "romanticised": "romanticized",
1366
+ "romanticises": "romanticizes",
1367
+ "romanticising": "romanticizing",
1368
+ "rumour": "rumor",
1369
+ "rumoured": "rumored",
1370
+ "rumours": "rumors",
1371
+ "sabre": "saber",
1372
+ "sabres": "sabers",
1373
+ "saltpetre": "saltpeter",
1374
+ "sanitise": "sanitize",
1375
+ "sanitised": "sanitized",
1376
+ "sanitises": "sanitizes",
1377
+ "sanitising": "sanitizing",
1378
+ "satirise": "satirize",
1379
+ "satirised": "satirized",
1380
+ "satirises": "satirizes",
1381
+ "satirising": "satirizing",
1382
+ "saviour": "savior",
1383
+ "saviours": "saviors",
1384
+ "savour": "savor",
1385
+ "savoured": "savored",
1386
+ "savouries": "savories",
1387
+ "savouring": "savoring",
1388
+ "savours": "savors",
1389
+ "savoury": "savory",
1390
+ "scandalise": "scandalize",
1391
+ "scandalised": "scandalized",
1392
+ "scandalises": "scandalizes",
1393
+ "scandalising": "scandalizing",
1394
+ "sceptic": "skeptic",
1395
+ "sceptical": "skeptical",
1396
+ "sceptically": "skeptically",
1397
+ "scepticism": "skepticism",
1398
+ "sceptics": "skeptics",
1399
+ "sceptre": "scepter",
1400
+ "sceptres": "scepters",
1401
+ "scrutinise": "scrutinize",
1402
+ "scrutinised": "scrutinized",
1403
+ "scrutinises": "scrutinizes",
1404
+ "scrutinising": "scrutinizing",
1405
+ "secularisation": "secularization",
1406
+ "secularise": "secularize",
1407
+ "secularised": "secularized",
1408
+ "secularises": "secularizes",
1409
+ "secularising": "secularizing",
1410
+ "sensationalise": "sensationalize",
1411
+ "sensationalised": "sensationalized",
1412
+ "sensationalises": "sensationalizes",
1413
+ "sensationalising": "sensationalizing",
1414
+ "sensitise": "sensitize",
1415
+ "sensitised": "sensitized",
1416
+ "sensitises": "sensitizes",
1417
+ "sensitising": "sensitizing",
1418
+ "sentimentalise": "sentimentalize",
1419
+ "sentimentalised": "sentimentalized",
1420
+ "sentimentalises": "sentimentalizes",
1421
+ "sentimentalising": "sentimentalizing",
1422
+ "sepulchre": "sepulcher",
1423
+ "sepulchres": "sepulchers",
1424
+ "serialisation": "serialization",
1425
+ "serialisations": "serializations",
1426
+ "serialise": "serialize",
1427
+ "serialised": "serialized",
1428
+ "serialises": "serializes",
1429
+ "serialising": "serializing",
1430
+ "sermonise": "sermonize",
1431
+ "sermonised": "sermonized",
1432
+ "sermonises": "sermonizes",
1433
+ "sermonising": "sermonizing",
1434
+ "sheikh": "sheik",
1435
+ "shovelled": "shoveled",
1436
+ "shovelling": "shoveling",
1437
+ "shrivelled": "shriveled",
1438
+ "shrivelling": "shriveling",
1439
+ "signalise": "signalize",
1440
+ "signalised": "signalized",
1441
+ "signalises": "signalizes",
1442
+ "signalising": "signalizing",
1443
+ "signalled": "signaled",
1444
+ "signalling": "signaling",
1445
+ "smoulder": "smolder",
1446
+ "smouldered": "smoldered",
1447
+ "smouldering": "smoldering",
1448
+ "smoulders": "smolders",
1449
+ "snivelled": "sniveled",
1450
+ "snivelling": "sniveling",
1451
+ "snorkelled": "snorkeled",
1452
+ "snorkelling": "snorkeling",
1453
+ "snowplough": "snowplow",
1454
+ "snowploughs": "snowplow",
1455
+ "socialisation": "socialization",
1456
+ "socialise": "socialize",
1457
+ "socialised": "socialized",
1458
+ "socialises": "socializes",
1459
+ "socialising": "socializing",
1460
+ "sodomise": "sodomize",
1461
+ "sodomised": "sodomized",
1462
+ "sodomises": "sodomizes",
1463
+ "sodomising": "sodomizing",
1464
+ "solemnise": "solemnize",
1465
+ "solemnised": "solemnized",
1466
+ "solemnises": "solemnizes",
1467
+ "solemnising": "solemnizing",
1468
+ "sombre": "somber",
1469
+ "specialisation": "specialization",
1470
+ "specialisations": "specializations",
1471
+ "specialise": "specialize",
1472
+ "specialised": "specialized",
1473
+ "specialises": "specializes",
1474
+ "specialising": "specializing",
1475
+ "spectre": "specter",
1476
+ "spectres": "specters",
1477
+ "spiralled": "spiraled",
1478
+ "spiralling": "spiraling",
1479
+ "splendour": "splendor",
1480
+ "splendours": "splendors",
1481
+ "squirrelled": "squirreled",
1482
+ "squirrelling": "squirreling",
1483
+ "stabilisation": "stabilization",
1484
+ "stabilise": "stabilize",
1485
+ "stabilised": "stabilized",
1486
+ "stabiliser": "stabilizer",
1487
+ "stabilisers": "stabilizers",
1488
+ "stabilises": "stabilizes",
1489
+ "stabilising": "stabilizing",
1490
+ "standardisation": "standardization",
1491
+ "standardise": "standardize",
1492
+ "standardised": "standardized",
1493
+ "standardises": "standardizes",
1494
+ "standardising": "standardizing",
1495
+ "stencilled": "stenciled",
1496
+ "stencilling": "stenciling",
1497
+ "sterilisation": "sterilization",
1498
+ "sterilisations": "sterilizations",
1499
+ "sterilise": "sterilize",
1500
+ "sterilised": "sterilized",
1501
+ "steriliser": "sterilizer",
1502
+ "sterilisers": "sterilizers",
1503
+ "sterilises": "sterilizes",
1504
+ "sterilising": "sterilizing",
1505
+ "stigmatisation": "stigmatization",
1506
+ "stigmatise": "stigmatize",
1507
+ "stigmatised": "stigmatized",
1508
+ "stigmatises": "stigmatizes",
1509
+ "stigmatising": "stigmatizing",
1510
+ "storey": "story",
1511
+ "storeys": "stories",
1512
+ "subsidisation": "subsidization",
1513
+ "subsidise": "subsidize",
1514
+ "subsidised": "subsidized",
1515
+ "subsidiser": "subsidizer",
1516
+ "subsidisers": "subsidizers",
1517
+ "subsidises": "subsidizes",
1518
+ "subsidising": "subsidizing",
1519
+ "succour": "succor",
1520
+ "succoured": "succored",
1521
+ "succouring": "succoring",
1522
+ "succours": "succors",
1523
+ "sulphate": "sulfate",
1524
+ "sulphates": "sulfates",
1525
+ "sulphide": "sulfide",
1526
+ "sulphides": "sulfides",
1527
+ "sulphur": "sulfur",
1528
+ "sulphurous": "sulfurous",
1529
+ "summarise": "summarize",
1530
+ "summarised": "summarized",
1531
+ "summarises": "summarizes",
1532
+ "summarising": "summarizing",
1533
+ "swivelled": "swiveled",
1534
+ "swivelling": "swiveling",
1535
+ "symbolise": "symbolize",
1536
+ "symbolised": "symbolized",
1537
+ "symbolises": "symbolizes",
1538
+ "symbolising": "symbolizing",
1539
+ "sympathise": "sympathize",
1540
+ "sympathised": "sympathized",
1541
+ "sympathiser": "sympathizer",
1542
+ "sympathisers": "sympathizers",
1543
+ "sympathises": "sympathizes",
1544
+ "sympathising": "sympathizing",
1545
+ "synchronisation": "synchronization",
1546
+ "synchronise": "synchronize",
1547
+ "synchronised": "synchronized",
1548
+ "synchronises": "synchronizes",
1549
+ "synchronising": "synchronizing",
1550
+ "synthesise": "synthesize",
1551
+ "synthesised": "synthesized",
1552
+ "synthesiser": "synthesizer",
1553
+ "synthesisers": "synthesizers",
1554
+ "synthesises": "synthesizes",
1555
+ "synthesising": "synthesizing",
1556
+ "syphon": "siphon",
1557
+ "syphoned": "siphoned",
1558
+ "syphoning": "siphoning",
1559
+ "syphons": "siphons",
1560
+ "systematisation": "systematization",
1561
+ "systematise": "systematize",
1562
+ "systematised": "systematized",
1563
+ "systematises": "systematizes",
1564
+ "systematising": "systematizing",
1565
+ "tantalise": "tantalize",
1566
+ "tantalised": "tantalized",
1567
+ "tantalises": "tantalizes",
1568
+ "tantalising": "tantalizing",
1569
+ "tantalisingly": "tantalizingly",
1570
+ "tasselled": "tasseled",
1571
+ "technicolour": "technicolor",
1572
+ "temporise": "temporize",
1573
+ "temporised": "temporized",
1574
+ "temporises": "temporizes",
1575
+ "temporising": "temporizing",
1576
+ "tenderise": "tenderize",
1577
+ "tenderised": "tenderized",
1578
+ "tenderises": "tenderizes",
1579
+ "tenderising": "tenderizing",
1580
+ "terrorise": "terrorize",
1581
+ "terrorised": "terrorized",
1582
+ "terrorises": "terrorizes",
1583
+ "terrorising": "terrorizing",
1584
+ "theatre": "theater",
1585
+ "theatregoer": "theatergoer",
1586
+ "theatregoers": "theatergoers",
1587
+ "theatres": "theaters",
1588
+ "theorise": "theorize",
1589
+ "theorised": "theorized",
1590
+ "theorises": "theorizes",
1591
+ "theorising": "theorizing",
1592
+ "tonne": "ton",
1593
+ "tonnes": "tons",
1594
+ "towelled": "toweled",
1595
+ "towelling": "toweling",
1596
+ "toxaemia": "toxemia",
1597
+ "tranquillise": "tranquilize",
1598
+ "tranquillised": "tranquilized",
1599
+ "tranquilliser": "tranquilizer",
1600
+ "tranquillisers": "tranquilizers",
1601
+ "tranquillises": "tranquilizes",
1602
+ "tranquillising": "tranquilizing",
1603
+ "tranquillity": "tranquility",
1604
+ "tranquillize": "tranquilize",
1605
+ "tranquillized": "tranquilized",
1606
+ "tranquillizer": "tranquilizer",
1607
+ "tranquillizers": "tranquilizers",
1608
+ "tranquillizes": "tranquilizes",
1609
+ "tranquillizing": "tranquilizing",
1610
+ "tranquilly": "tranquility",
1611
+ "transistorised": "transistorized",
1612
+ "traumatise": "traumatize",
1613
+ "traumatised": "traumatized",
1614
+ "traumatises": "traumatizes",
1615
+ "traumatising": "traumatizing",
1616
+ "travelled": "traveled",
1617
+ "traveller": "traveler",
1618
+ "travellers": "travelers",
1619
+ "travelling": "traveling",
1620
+ "travelog": "travelogue",
1621
+ "travelogs": "travelogues",
1622
+ "trialled": "trialed",
1623
+ "trialling": "trialing",
1624
+ "tricolour": "tricolor",
1625
+ "tricolours": "tricolors",
1626
+ "trivialise": "trivialize",
1627
+ "trivialised": "trivialized",
1628
+ "trivialises": "trivializes",
1629
+ "trivialising": "trivializing",
1630
+ "tumour": "tumor",
1631
+ "tumours": "tumors",
1632
+ "tunnelled": "tunneled",
1633
+ "tunnelling": "tunneling",
1634
+ "tyrannise": "tyrannize",
1635
+ "tyrannised": "tyrannized",
1636
+ "tyrannises": "tyrannizes",
1637
+ "tyrannising": "tyrannizing",
1638
+ "tyre": "tire",
1639
+ "tyres": "tires",
1640
+ "unauthorised": "unauthorized",
1641
+ "uncivilised": "uncivilized",
1642
+ "underutilised": "underutilized",
1643
+ "unequalled": "unequaled",
1644
+ "unfavourable": "unfavorable",
1645
+ "unfavourably": "unfavorably",
1646
+ "unionisation": "unionization",
1647
+ "unionise": "unionize",
1648
+ "unionised": "unionized",
1649
+ "unionises": "unionizes",
1650
+ "unionising": "unionizing",
1651
+ "unorganised": "unorganized",
1652
+ "unravelled": "unraveled",
1653
+ "unravelling": "unraveling",
1654
+ "unrecognisable": "unrecognizable",
1655
+ "unrecognised": "unrecognized",
1656
+ "unrivalled": "unrivaled",
1657
+ "unsavoury": "unsavory",
1658
+ "untrammelled": "untrammeled",
1659
+ "urbanisation": "urbanization",
1660
+ "urbanise": "urbanize",
1661
+ "urbanised": "urbanized",
1662
+ "urbanises": "urbanizes",
1663
+ "urbanising": "urbanizing",
1664
+ "utilisable": "utilizable",
1665
+ "utilisation": "utilization",
1666
+ "utilise": "utilize",
1667
+ "utilised": "utilized",
1668
+ "utilises": "utilizes",
1669
+ "utilising": "utilizing",
1670
+ "valour": "valor",
1671
+ "vandalise": "vandalize",
1672
+ "vandalised": "vandalized",
1673
+ "vandalises": "vandalizes",
1674
+ "vandalising": "vandalizing",
1675
+ "vaporisation": "vaporization",
1676
+ "vaporise": "vaporize",
1677
+ "vaporised": "vaporized",
1678
+ "vaporises": "vaporizes",
1679
+ "vaporising": "vaporizing",
1680
+ "vapour": "vapor",
1681
+ "vapours": "vapors",
1682
+ "verbalise": "verbalize",
1683
+ "verbalised": "verbalized",
1684
+ "verbalises": "verbalizes",
1685
+ "verbalising": "verbalizing",
1686
+ "victimisation": "victimization",
1687
+ "victimise": "victimize",
1688
+ "victimised": "victimized",
1689
+ "victimises": "victimizes",
1690
+ "victimising": "victimizing",
1691
+ "videodisc": "videodisk",
1692
+ "videodiscs": "videodisks",
1693
+ "vigour": "vigor",
1694
+ "visualisation": "visualization",
1695
+ "visualisations": "visualizations",
1696
+ "visualise": "visualize",
1697
+ "visualised": "visualized",
1698
+ "visualises": "visualizes",
1699
+ "visualising": "visualizing",
1700
+ "vocalisation": "vocalization",
1701
+ "vocalisations": "vocalizations",
1702
+ "vocalise": "vocalize",
1703
+ "vocalised": "vocalized",
1704
+ "vocalises": "vocalizes",
1705
+ "vocalising": "vocalizing",
1706
+ "vulcanised": "vulcanized",
1707
+ "vulgarisation": "vulgarization",
1708
+ "vulgarise": "vulgarize",
1709
+ "vulgarised": "vulgarized",
1710
+ "vulgarises": "vulgarizes",
1711
+ "vulgarising": "vulgarizing",
1712
+ "waggon": "wagon",
1713
+ "waggons": "wagons",
1714
+ "watercolour": "watercolor",
1715
+ "watercolours": "watercolors",
1716
+ "weaselled": "weaseled",
1717
+ "weaselling": "weaseling",
1718
+ "westernisation": "westernization",
1719
+ "westernise": "westernize",
1720
+ "westernised": "westernized",
1721
+ "westernises": "westernizes",
1722
+ "westernising": "westernizing",
1723
+ "womanise": "womanize",
1724
+ "womanised": "womanized",
1725
+ "womaniser": "womanizer",
1726
+ "womanisers": "womanizers",
1727
+ "womanises": "womanizes",
1728
+ "womanising": "womanizing",
1729
+ "woollen": "woolen",
1730
+ "woollens": "woolens",
1731
+ "woollies": "woolies",
1732
+ "woolly": "wooly",
1733
+ "worshipped": "worshiped",
1734
+ "worshipper": "worshiper",
1735
+ "worshipping": "worshiping",
1736
+ "yodelled": "yodeled",
1737
+ "yodelling": "yodeling",
1738
+ "yoghourt": "yogurt",
1739
+ "yoghourts": "yogurts",
1740
+ "yoghurt": "yogurt",
1741
+ "yoghurts": "yogurts"
1742
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eeaaf64a13d9921605c895799fc0d94dc30c2f1bab5add1dbb0567f465836a64
3
+ size 1934172035
preprocessor_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 30,
3
+ "feature_extractor_type": "WhisperFeatureExtractor",
4
+ "feature_size": 80,
5
+ "hop_length": 160,
6
+ "n_fft": 400,
7
+ "n_samples": 480000,
8
+ "nb_max_frames": 3000,
9
+ "padding_side": "right",
10
+ "padding_value": 0.0,
11
+ "processor_class": "WhisperProcessor",
12
+ "return_attention_mask": false,
13
+ "sampling_rate": 16000
14
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fac9567f2c5bb0b0a0bd1c0c838cc1249178d399e38f72fa238bbbd6d8c3e543
3
+ size 967106492
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac5b23761e9a1800be1964122cae69ba165873de3da307580986b0833e3ddbe8
3
+ size 14585
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8af30c30f64c8f2e70729a67001c250c757563a44e31af66570ea79e3e106f47
3
+ size 623
special_tokens_map.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|endoftext|>",
4
+ "<|startoftranscript|>",
5
+ "<|en|>",
6
+ "<|zh|>",
7
+ "<|de|>",
8
+ "<|es|>",
9
+ "<|ru|>",
10
+ "<|ko|>",
11
+ "<|fr|>",
12
+ "<|ja|>",
13
+ "<|pt|>",
14
+ "<|tr|>",
15
+ "<|pl|>",
16
+ "<|ca|>",
17
+ "<|nl|>",
18
+ "<|ar|>",
19
+ "<|sv|>",
20
+ "<|it|>",
21
+ "<|id|>",
22
+ "<|hi|>",
23
+ "<|fi|>",
24
+ "<|vi|>",
25
+ "<|he|>",
26
+ "<|uk|>",
27
+ "<|el|>",
28
+ "<|ms|>",
29
+ "<|cs|>",
30
+ "<|ro|>",
31
+ "<|da|>",
32
+ "<|hu|>",
33
+ "<|ta|>",
34
+ "<|no|>",
35
+ "<|th|>",
36
+ "<|ur|>",
37
+ "<|hr|>",
38
+ "<|bg|>",
39
+ "<|lt|>",
40
+ "<|la|>",
41
+ "<|mi|>",
42
+ "<|ml|>",
43
+ "<|cy|>",
44
+ "<|sk|>",
45
+ "<|te|>",
46
+ "<|fa|>",
47
+ "<|lv|>",
48
+ "<|bn|>",
49
+ "<|sr|>",
50
+ "<|az|>",
51
+ "<|sl|>",
52
+ "<|kn|>",
53
+ "<|et|>",
54
+ "<|mk|>",
55
+ "<|br|>",
56
+ "<|eu|>",
57
+ "<|is|>",
58
+ "<|hy|>",
59
+ "<|ne|>",
60
+ "<|mn|>",
61
+ "<|bs|>",
62
+ "<|kk|>",
63
+ "<|sq|>",
64
+ "<|sw|>",
65
+ "<|gl|>",
66
+ "<|mr|>",
67
+ "<|pa|>",
68
+ "<|si|>",
69
+ "<|km|>",
70
+ "<|sn|>",
71
+ "<|yo|>",
72
+ "<|so|>",
73
+ "<|af|>",
74
+ "<|oc|>",
75
+ "<|ka|>",
76
+ "<|be|>",
77
+ "<|tg|>",
78
+ "<|sd|>",
79
+ "<|gu|>",
80
+ "<|am|>",
81
+ "<|yi|>",
82
+ "<|lo|>",
83
+ "<|uz|>",
84
+ "<|fo|>",
85
+ "<|ht|>",
86
+ "<|ps|>",
87
+ "<|tk|>",
88
+ "<|nn|>",
89
+ "<|mt|>",
90
+ "<|sa|>",
91
+ "<|lb|>",
92
+ "<|my|>",
93
+ "<|bo|>",
94
+ "<|tl|>",
95
+ "<|mg|>",
96
+ "<|as|>",
97
+ "<|tt|>",
98
+ "<|haw|>",
99
+ "<|ln|>",
100
+ "<|ha|>",
101
+ "<|ba|>",
102
+ "<|jw|>",
103
+ "<|su|>",
104
+ "<|translate|>",
105
+ "<|transcribe|>",
106
+ "<|startoflm|>",
107
+ "<|startofprev|>",
108
+ "<|nocaptions|>",
109
+ "<|notimestamps|>"
110
+ ],
111
+ "bos_token": {
112
+ "content": "<|endoftext|>",
113
+ "lstrip": false,
114
+ "normalized": true,
115
+ "rstrip": false,
116
+ "single_word": false
117
+ },
118
+ "eos_token": {
119
+ "content": "<|endoftext|>",
120
+ "lstrip": false,
121
+ "normalized": true,
122
+ "rstrip": false,
123
+ "single_word": false
124
+ },
125
+ "pad_token": "<|endoftext|>",
126
+ "unk_token": {
127
+ "content": "<|endoftext|>",
128
+ "lstrip": false,
129
+ "normalized": true,
130
+ "rstrip": false,
131
+ "single_word": false
132
+ }
133
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": true,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|endoftext|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "errors": "replace",
22
+ "model_max_length": 1024,
23
+ "pad_token": null,
24
+ "processor_class": "WhisperProcessor",
25
+ "return_attention_mask": false,
26
+ "tokenizer_class": "WhisperTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<|endoftext|>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
trainer_state.json ADDED
@@ -0,0 +1,2734 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 4.553788152662294,
3
+ "best_model_checkpoint": "./whisper-small-bn/checkpoint-10500",
4
+ "epoch": 7.394366197183099,
5
+ "global_step": 10500,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.02,
12
+ "learning_rate": 4.4e-07,
13
+ "loss": 2.2809,
14
+ "step": 25
15
+ },
16
+ {
17
+ "epoch": 0.04,
18
+ "learning_rate": 9.400000000000001e-07,
19
+ "loss": 1.9625,
20
+ "step": 50
21
+ },
22
+ {
23
+ "epoch": 0.05,
24
+ "learning_rate": 1.44e-06,
25
+ "loss": 1.6144,
26
+ "step": 75
27
+ },
28
+ {
29
+ "epoch": 0.07,
30
+ "learning_rate": 1.94e-06,
31
+ "loss": 1.3227,
32
+ "step": 100
33
+ },
34
+ {
35
+ "epoch": 0.07,
36
+ "eval_loss": 1.1500293016433716,
37
+ "eval_runtime": 2037.5373,
38
+ "eval_samples_per_second": 4.1,
39
+ "eval_steps_per_second": 0.158,
40
+ "eval_wer": 137.282445901978,
41
+ "step": 100
42
+ },
43
+ {
44
+ "epoch": 0.09,
45
+ "learning_rate": 2.42e-06,
46
+ "loss": 1.01,
47
+ "step": 125
48
+ },
49
+ {
50
+ "epoch": 0.11,
51
+ "learning_rate": 2.92e-06,
52
+ "loss": 0.7649,
53
+ "step": 150
54
+ },
55
+ {
56
+ "epoch": 0.12,
57
+ "learning_rate": 3.4200000000000007e-06,
58
+ "loss": 0.6116,
59
+ "step": 175
60
+ },
61
+ {
62
+ "epoch": 0.14,
63
+ "learning_rate": 3.920000000000001e-06,
64
+ "loss": 0.5121,
65
+ "step": 200
66
+ },
67
+ {
68
+ "epoch": 0.16,
69
+ "learning_rate": 4.42e-06,
70
+ "loss": 0.4597,
71
+ "step": 225
72
+ },
73
+ {
74
+ "epoch": 0.18,
75
+ "learning_rate": 4.92e-06,
76
+ "loss": 0.4203,
77
+ "step": 250
78
+ },
79
+ {
80
+ "epoch": 0.19,
81
+ "learning_rate": 5.420000000000001e-06,
82
+ "loss": 0.3841,
83
+ "step": 275
84
+ },
85
+ {
86
+ "epoch": 0.21,
87
+ "learning_rate": 5.92e-06,
88
+ "loss": 0.3487,
89
+ "step": 300
90
+ },
91
+ {
92
+ "epoch": 0.23,
93
+ "learning_rate": 6.42e-06,
94
+ "loss": 0.335,
95
+ "step": 325
96
+ },
97
+ {
98
+ "epoch": 0.25,
99
+ "learning_rate": 6.92e-06,
100
+ "loss": 0.3026,
101
+ "step": 350
102
+ },
103
+ {
104
+ "epoch": 0.26,
105
+ "learning_rate": 7.420000000000001e-06,
106
+ "loss": 0.2715,
107
+ "step": 375
108
+ },
109
+ {
110
+ "epoch": 0.28,
111
+ "learning_rate": 7.92e-06,
112
+ "loss": 0.249,
113
+ "step": 400
114
+ },
115
+ {
116
+ "epoch": 0.3,
117
+ "learning_rate": 8.42e-06,
118
+ "loss": 0.2304,
119
+ "step": 425
120
+ },
121
+ {
122
+ "epoch": 0.32,
123
+ "learning_rate": 8.920000000000001e-06,
124
+ "loss": 0.226,
125
+ "step": 450
126
+ },
127
+ {
128
+ "epoch": 0.33,
129
+ "learning_rate": 9.42e-06,
130
+ "loss": 0.2109,
131
+ "step": 475
132
+ },
133
+ {
134
+ "epoch": 0.35,
135
+ "learning_rate": 9.920000000000002e-06,
136
+ "loss": 0.1999,
137
+ "step": 500
138
+ },
139
+ {
140
+ "epoch": 0.35,
141
+ "eval_loss": 0.19399891793727875,
142
+ "eval_runtime": 1956.9022,
143
+ "eval_samples_per_second": 4.268,
144
+ "eval_steps_per_second": 0.165,
145
+ "eval_wer": 55.3426638434127,
146
+ "step": 500
147
+ },
148
+ {
149
+ "epoch": 0.37,
150
+ "learning_rate": 9.972e-06,
151
+ "loss": 0.2024,
152
+ "step": 525
153
+ },
154
+ {
155
+ "epoch": 0.39,
156
+ "learning_rate": 9.938666666666667e-06,
157
+ "loss": 0.192,
158
+ "step": 550
159
+ },
160
+ {
161
+ "epoch": 0.4,
162
+ "learning_rate": 9.905333333333335e-06,
163
+ "loss": 0.1941,
164
+ "step": 575
165
+ },
166
+ {
167
+ "epoch": 0.42,
168
+ "learning_rate": 9.872e-06,
169
+ "loss": 0.1861,
170
+ "step": 600
171
+ },
172
+ {
173
+ "epoch": 0.44,
174
+ "learning_rate": 9.838666666666668e-06,
175
+ "loss": 0.1775,
176
+ "step": 625
177
+ },
178
+ {
179
+ "epoch": 0.46,
180
+ "learning_rate": 9.805333333333334e-06,
181
+ "loss": 0.1657,
182
+ "step": 650
183
+ },
184
+ {
185
+ "epoch": 0.48,
186
+ "learning_rate": 9.772e-06,
187
+ "loss": 0.1749,
188
+ "step": 675
189
+ },
190
+ {
191
+ "epoch": 0.49,
192
+ "learning_rate": 9.738666666666667e-06,
193
+ "loss": 0.1753,
194
+ "step": 700
195
+ },
196
+ {
197
+ "epoch": 0.51,
198
+ "learning_rate": 9.705333333333335e-06,
199
+ "loss": 0.1616,
200
+ "step": 725
201
+ },
202
+ {
203
+ "epoch": 0.53,
204
+ "learning_rate": 9.672e-06,
205
+ "loss": 0.1557,
206
+ "step": 750
207
+ },
208
+ {
209
+ "epoch": 0.55,
210
+ "learning_rate": 9.638666666666668e-06,
211
+ "loss": 0.1522,
212
+ "step": 775
213
+ },
214
+ {
215
+ "epoch": 0.56,
216
+ "learning_rate": 9.605333333333334e-06,
217
+ "loss": 0.1603,
218
+ "step": 800
219
+ },
220
+ {
221
+ "epoch": 0.58,
222
+ "learning_rate": 9.572000000000001e-06,
223
+ "loss": 0.1502,
224
+ "step": 825
225
+ },
226
+ {
227
+ "epoch": 0.6,
228
+ "learning_rate": 9.538666666666667e-06,
229
+ "loss": 0.1504,
230
+ "step": 850
231
+ },
232
+ {
233
+ "epoch": 0.62,
234
+ "learning_rate": 9.505333333333334e-06,
235
+ "loss": 0.1465,
236
+ "step": 875
237
+ },
238
+ {
239
+ "epoch": 0.63,
240
+ "learning_rate": 9.472000000000002e-06,
241
+ "loss": 0.1391,
242
+ "step": 900
243
+ },
244
+ {
245
+ "epoch": 0.65,
246
+ "learning_rate": 9.438666666666667e-06,
247
+ "loss": 0.1473,
248
+ "step": 925
249
+ },
250
+ {
251
+ "epoch": 0.67,
252
+ "learning_rate": 9.405333333333335e-06,
253
+ "loss": 0.1388,
254
+ "step": 950
255
+ },
256
+ {
257
+ "epoch": 0.69,
258
+ "learning_rate": 9.372000000000001e-06,
259
+ "loss": 0.1336,
260
+ "step": 975
261
+ },
262
+ {
263
+ "epoch": 0.7,
264
+ "learning_rate": 9.338666666666667e-06,
265
+ "loss": 0.1287,
266
+ "step": 1000
267
+ },
268
+ {
269
+ "epoch": 0.7,
270
+ "eval_loss": 0.11898311972618103,
271
+ "eval_runtime": 1959.3769,
272
+ "eval_samples_per_second": 4.263,
273
+ "eval_steps_per_second": 0.164,
274
+ "eval_wer": 39.01642307493673,
275
+ "step": 1000
276
+ },
277
+ {
278
+ "epoch": 0.72,
279
+ "learning_rate": 9.305333333333334e-06,
280
+ "loss": 0.1297,
281
+ "step": 1025
282
+ },
283
+ {
284
+ "epoch": 0.74,
285
+ "learning_rate": 9.272e-06,
286
+ "loss": 0.1341,
287
+ "step": 1050
288
+ },
289
+ {
290
+ "epoch": 0.76,
291
+ "learning_rate": 9.238666666666667e-06,
292
+ "loss": 0.1352,
293
+ "step": 1075
294
+ },
295
+ {
296
+ "epoch": 0.77,
297
+ "learning_rate": 9.205333333333333e-06,
298
+ "loss": 0.1254,
299
+ "step": 1100
300
+ },
301
+ {
302
+ "epoch": 0.79,
303
+ "learning_rate": 9.172000000000001e-06,
304
+ "loss": 0.1299,
305
+ "step": 1125
306
+ },
307
+ {
308
+ "epoch": 0.81,
309
+ "learning_rate": 9.138666666666668e-06,
310
+ "loss": 0.1244,
311
+ "step": 1150
312
+ },
313
+ {
314
+ "epoch": 0.83,
315
+ "learning_rate": 9.105333333333334e-06,
316
+ "loss": 0.1219,
317
+ "step": 1175
318
+ },
319
+ {
320
+ "epoch": 0.85,
321
+ "learning_rate": 9.072e-06,
322
+ "loss": 0.1212,
323
+ "step": 1200
324
+ },
325
+ {
326
+ "epoch": 0.86,
327
+ "learning_rate": 9.038666666666667e-06,
328
+ "loss": 0.1298,
329
+ "step": 1225
330
+ },
331
+ {
332
+ "epoch": 0.88,
333
+ "learning_rate": 9.005333333333333e-06,
334
+ "loss": 0.1173,
335
+ "step": 1250
336
+ },
337
+ {
338
+ "epoch": 0.9,
339
+ "learning_rate": 8.972000000000002e-06,
340
+ "loss": 0.1204,
341
+ "step": 1275
342
+ },
343
+ {
344
+ "epoch": 0.92,
345
+ "learning_rate": 8.938666666666668e-06,
346
+ "loss": 0.1134,
347
+ "step": 1300
348
+ },
349
+ {
350
+ "epoch": 0.93,
351
+ "learning_rate": 8.905333333333334e-06,
352
+ "loss": 0.1187,
353
+ "step": 1325
354
+ },
355
+ {
356
+ "epoch": 0.95,
357
+ "learning_rate": 8.872e-06,
358
+ "loss": 0.1147,
359
+ "step": 1350
360
+ },
361
+ {
362
+ "epoch": 0.97,
363
+ "learning_rate": 8.838666666666667e-06,
364
+ "loss": 0.1188,
365
+ "step": 1375
366
+ },
367
+ {
368
+ "epoch": 0.99,
369
+ "learning_rate": 8.805333333333334e-06,
370
+ "loss": 0.115,
371
+ "step": 1400
372
+ },
373
+ {
374
+ "epoch": 1.0,
375
+ "learning_rate": 8.772e-06,
376
+ "loss": 0.1004,
377
+ "step": 1425
378
+ },
379
+ {
380
+ "epoch": 1.02,
381
+ "learning_rate": 8.738666666666668e-06,
382
+ "loss": 0.0908,
383
+ "step": 1450
384
+ },
385
+ {
386
+ "epoch": 1.04,
387
+ "learning_rate": 8.705333333333335e-06,
388
+ "loss": 0.092,
389
+ "step": 1475
390
+ },
391
+ {
392
+ "epoch": 1.06,
393
+ "learning_rate": 8.672000000000001e-06,
394
+ "loss": 0.0933,
395
+ "step": 1500
396
+ },
397
+ {
398
+ "epoch": 1.06,
399
+ "eval_loss": 0.08748023957014084,
400
+ "eval_runtime": 1959.783,
401
+ "eval_samples_per_second": 4.262,
402
+ "eval_steps_per_second": 0.164,
403
+ "eval_wer": 31.997882559520736,
404
+ "step": 1500
405
+ },
406
+ {
407
+ "epoch": 1.07,
408
+ "learning_rate": 8.638666666666667e-06,
409
+ "loss": 0.0882,
410
+ "step": 1525
411
+ },
412
+ {
413
+ "epoch": 1.09,
414
+ "learning_rate": 8.605333333333334e-06,
415
+ "loss": 0.092,
416
+ "step": 1550
417
+ },
418
+ {
419
+ "epoch": 1.11,
420
+ "learning_rate": 8.572e-06,
421
+ "loss": 0.0924,
422
+ "step": 1575
423
+ },
424
+ {
425
+ "epoch": 1.13,
426
+ "learning_rate": 8.538666666666667e-06,
427
+ "loss": 0.0879,
428
+ "step": 1600
429
+ },
430
+ {
431
+ "epoch": 1.14,
432
+ "learning_rate": 8.505333333333335e-06,
433
+ "loss": 0.0883,
434
+ "step": 1625
435
+ },
436
+ {
437
+ "epoch": 1.16,
438
+ "learning_rate": 8.472e-06,
439
+ "loss": 0.082,
440
+ "step": 1650
441
+ },
442
+ {
443
+ "epoch": 1.18,
444
+ "learning_rate": 8.438666666666668e-06,
445
+ "loss": 0.0868,
446
+ "step": 1675
447
+ },
448
+ {
449
+ "epoch": 1.2,
450
+ "learning_rate": 8.405333333333334e-06,
451
+ "loss": 0.0846,
452
+ "step": 1700
453
+ },
454
+ {
455
+ "epoch": 1.21,
456
+ "learning_rate": 8.372e-06,
457
+ "loss": 0.088,
458
+ "step": 1725
459
+ },
460
+ {
461
+ "epoch": 1.23,
462
+ "learning_rate": 8.338666666666667e-06,
463
+ "loss": 0.0878,
464
+ "step": 1750
465
+ },
466
+ {
467
+ "epoch": 1.25,
468
+ "learning_rate": 8.305333333333333e-06,
469
+ "loss": 0.087,
470
+ "step": 1775
471
+ },
472
+ {
473
+ "epoch": 1.27,
474
+ "learning_rate": 8.272000000000001e-06,
475
+ "loss": 0.0844,
476
+ "step": 1800
477
+ },
478
+ {
479
+ "epoch": 1.29,
480
+ "learning_rate": 8.238666666666668e-06,
481
+ "loss": 0.0843,
482
+ "step": 1825
483
+ },
484
+ {
485
+ "epoch": 1.3,
486
+ "learning_rate": 8.205333333333334e-06,
487
+ "loss": 0.0865,
488
+ "step": 1850
489
+ },
490
+ {
491
+ "epoch": 1.32,
492
+ "learning_rate": 8.172e-06,
493
+ "loss": 0.0832,
494
+ "step": 1875
495
+ },
496
+ {
497
+ "epoch": 1.34,
498
+ "learning_rate": 8.138666666666667e-06,
499
+ "loss": 0.0818,
500
+ "step": 1900
501
+ },
502
+ {
503
+ "epoch": 1.36,
504
+ "learning_rate": 8.105333333333334e-06,
505
+ "loss": 0.0825,
506
+ "step": 1925
507
+ },
508
+ {
509
+ "epoch": 1.37,
510
+ "learning_rate": 8.072000000000002e-06,
511
+ "loss": 0.0793,
512
+ "step": 1950
513
+ },
514
+ {
515
+ "epoch": 1.39,
516
+ "learning_rate": 8.038666666666666e-06,
517
+ "loss": 0.0849,
518
+ "step": 1975
519
+ },
520
+ {
521
+ "epoch": 1.41,
522
+ "learning_rate": 8.005333333333335e-06,
523
+ "loss": 0.0821,
524
+ "step": 2000
525
+ },
526
+ {
527
+ "epoch": 1.41,
528
+ "eval_loss": 0.07098352909088135,
529
+ "eval_runtime": 1953.3268,
530
+ "eval_samples_per_second": 4.276,
531
+ "eval_steps_per_second": 0.165,
532
+ "eval_wer": 26.67975003873367,
533
+ "step": 2000
534
+ },
535
+ {
536
+ "epoch": 1.43,
537
+ "learning_rate": 7.972000000000001e-06,
538
+ "loss": 0.0831,
539
+ "step": 2025
540
+ },
541
+ {
542
+ "epoch": 1.44,
543
+ "learning_rate": 7.938666666666667e-06,
544
+ "loss": 0.08,
545
+ "step": 2050
546
+ },
547
+ {
548
+ "epoch": 1.46,
549
+ "learning_rate": 7.905333333333334e-06,
550
+ "loss": 0.0857,
551
+ "step": 2075
552
+ },
553
+ {
554
+ "epoch": 1.48,
555
+ "learning_rate": 7.872e-06,
556
+ "loss": 0.0738,
557
+ "step": 2100
558
+ },
559
+ {
560
+ "epoch": 1.5,
561
+ "learning_rate": 7.838666666666668e-06,
562
+ "loss": 0.0796,
563
+ "step": 2125
564
+ },
565
+ {
566
+ "epoch": 1.51,
567
+ "learning_rate": 7.805333333333333e-06,
568
+ "loss": 0.0787,
569
+ "step": 2150
570
+ },
571
+ {
572
+ "epoch": 1.53,
573
+ "learning_rate": 7.772000000000001e-06,
574
+ "loss": 0.0815,
575
+ "step": 2175
576
+ },
577
+ {
578
+ "epoch": 1.55,
579
+ "learning_rate": 7.738666666666668e-06,
580
+ "loss": 0.076,
581
+ "step": 2200
582
+ },
583
+ {
584
+ "epoch": 1.57,
585
+ "learning_rate": 7.705333333333334e-06,
586
+ "loss": 0.0756,
587
+ "step": 2225
588
+ },
589
+ {
590
+ "epoch": 1.58,
591
+ "learning_rate": 7.672e-06,
592
+ "loss": 0.0772,
593
+ "step": 2250
594
+ },
595
+ {
596
+ "epoch": 1.6,
597
+ "learning_rate": 7.638666666666667e-06,
598
+ "loss": 0.0817,
599
+ "step": 2275
600
+ },
601
+ {
602
+ "epoch": 1.62,
603
+ "learning_rate": 7.605333333333333e-06,
604
+ "loss": 0.0819,
605
+ "step": 2300
606
+ },
607
+ {
608
+ "epoch": 1.64,
609
+ "learning_rate": 7.5720000000000005e-06,
610
+ "loss": 0.0795,
611
+ "step": 2325
612
+ },
613
+ {
614
+ "epoch": 1.65,
615
+ "learning_rate": 7.538666666666668e-06,
616
+ "loss": 0.0792,
617
+ "step": 2350
618
+ },
619
+ {
620
+ "epoch": 1.67,
621
+ "learning_rate": 7.505333333333334e-06,
622
+ "loss": 0.0777,
623
+ "step": 2375
624
+ },
625
+ {
626
+ "epoch": 1.69,
627
+ "learning_rate": 7.472000000000001e-06,
628
+ "loss": 0.0741,
629
+ "step": 2400
630
+ },
631
+ {
632
+ "epoch": 1.71,
633
+ "learning_rate": 7.438666666666667e-06,
634
+ "loss": 0.0802,
635
+ "step": 2425
636
+ },
637
+ {
638
+ "epoch": 1.73,
639
+ "learning_rate": 7.405333333333334e-06,
640
+ "loss": 0.0747,
641
+ "step": 2450
642
+ },
643
+ {
644
+ "epoch": 1.74,
645
+ "learning_rate": 7.372e-06,
646
+ "loss": 0.075,
647
+ "step": 2475
648
+ },
649
+ {
650
+ "epoch": 1.76,
651
+ "learning_rate": 7.338666666666667e-06,
652
+ "loss": 0.076,
653
+ "step": 2500
654
+ },
655
+ {
656
+ "epoch": 1.76,
657
+ "eval_loss": 0.0574946254491806,
658
+ "eval_runtime": 1962.8355,
659
+ "eval_samples_per_second": 4.256,
660
+ "eval_steps_per_second": 0.164,
661
+ "eval_wer": 23.72437122346744,
662
+ "step": 2500
663
+ },
664
+ {
665
+ "epoch": 1.78,
666
+ "learning_rate": 7.3053333333333344e-06,
667
+ "loss": 0.0771,
668
+ "step": 2525
669
+ },
670
+ {
671
+ "epoch": 1.8,
672
+ "learning_rate": 7.272e-06,
673
+ "loss": 0.0742,
674
+ "step": 2550
675
+ },
676
+ {
677
+ "epoch": 1.81,
678
+ "learning_rate": 7.238666666666667e-06,
679
+ "loss": 0.0743,
680
+ "step": 2575
681
+ },
682
+ {
683
+ "epoch": 1.83,
684
+ "learning_rate": 7.2053333333333345e-06,
685
+ "loss": 0.0714,
686
+ "step": 2600
687
+ },
688
+ {
689
+ "epoch": 1.85,
690
+ "learning_rate": 7.172e-06,
691
+ "loss": 0.0797,
692
+ "step": 2625
693
+ },
694
+ {
695
+ "epoch": 1.87,
696
+ "learning_rate": 7.138666666666667e-06,
697
+ "loss": 0.07,
698
+ "step": 2650
699
+ },
700
+ {
701
+ "epoch": 1.88,
702
+ "learning_rate": 7.105333333333334e-06,
703
+ "loss": 0.0738,
704
+ "step": 2675
705
+ },
706
+ {
707
+ "epoch": 1.9,
708
+ "learning_rate": 7.072000000000001e-06,
709
+ "loss": 0.0736,
710
+ "step": 2700
711
+ },
712
+ {
713
+ "epoch": 1.92,
714
+ "learning_rate": 7.038666666666667e-06,
715
+ "loss": 0.0759,
716
+ "step": 2725
717
+ },
718
+ {
719
+ "epoch": 1.94,
720
+ "learning_rate": 7.005333333333334e-06,
721
+ "loss": 0.0749,
722
+ "step": 2750
723
+ },
724
+ {
725
+ "epoch": 1.95,
726
+ "learning_rate": 6.972000000000001e-06,
727
+ "loss": 0.0676,
728
+ "step": 2775
729
+ },
730
+ {
731
+ "epoch": 1.97,
732
+ "learning_rate": 6.938666666666667e-06,
733
+ "loss": 0.0777,
734
+ "step": 2800
735
+ },
736
+ {
737
+ "epoch": 1.99,
738
+ "learning_rate": 6.905333333333334e-06,
739
+ "loss": 0.0747,
740
+ "step": 2825
741
+ },
742
+ {
743
+ "epoch": 2.01,
744
+ "learning_rate": 6.872000000000001e-06,
745
+ "loss": 0.0613,
746
+ "step": 2850
747
+ },
748
+ {
749
+ "epoch": 2.02,
750
+ "learning_rate": 6.838666666666667e-06,
751
+ "loss": 0.0471,
752
+ "step": 2875
753
+ },
754
+ {
755
+ "epoch": 2.04,
756
+ "learning_rate": 6.805333333333334e-06,
757
+ "loss": 0.0501,
758
+ "step": 2900
759
+ },
760
+ {
761
+ "epoch": 2.06,
762
+ "learning_rate": 6.7720000000000006e-06,
763
+ "loss": 0.0439,
764
+ "step": 2925
765
+ },
766
+ {
767
+ "epoch": 2.08,
768
+ "learning_rate": 6.738666666666667e-06,
769
+ "loss": 0.0481,
770
+ "step": 2950
771
+ },
772
+ {
773
+ "epoch": 2.1,
774
+ "learning_rate": 6.705333333333333e-06,
775
+ "loss": 0.0457,
776
+ "step": 2975
777
+ },
778
+ {
779
+ "epoch": 2.11,
780
+ "learning_rate": 6.672000000000001e-06,
781
+ "loss": 0.0495,
782
+ "step": 3000
783
+ },
784
+ {
785
+ "epoch": 2.11,
786
+ "eval_loss": 0.046221692115068436,
787
+ "eval_runtime": 1956.6287,
788
+ "eval_samples_per_second": 4.269,
789
+ "eval_steps_per_second": 0.165,
790
+ "eval_wer": 20.20993647678562,
791
+ "step": 3000
792
+ },
793
+ {
794
+ "epoch": 2.13,
795
+ "learning_rate": 6.638666666666668e-06,
796
+ "loss": 0.0494,
797
+ "step": 3025
798
+ },
799
+ {
800
+ "epoch": 2.15,
801
+ "learning_rate": 6.6053333333333335e-06,
802
+ "loss": 0.0453,
803
+ "step": 3050
804
+ },
805
+ {
806
+ "epoch": 2.17,
807
+ "learning_rate": 6.572000000000001e-06,
808
+ "loss": 0.0474,
809
+ "step": 3075
810
+ },
811
+ {
812
+ "epoch": 2.18,
813
+ "learning_rate": 6.538666666666667e-06,
814
+ "loss": 0.051,
815
+ "step": 3100
816
+ },
817
+ {
818
+ "epoch": 2.2,
819
+ "learning_rate": 6.505333333333334e-06,
820
+ "loss": 0.0483,
821
+ "step": 3125
822
+ },
823
+ {
824
+ "epoch": 2.22,
825
+ "learning_rate": 6.472000000000001e-06,
826
+ "loss": 0.0496,
827
+ "step": 3150
828
+ },
829
+ {
830
+ "epoch": 2.24,
831
+ "learning_rate": 6.438666666666667e-06,
832
+ "loss": 0.0497,
833
+ "step": 3175
834
+ },
835
+ {
836
+ "epoch": 2.25,
837
+ "learning_rate": 6.405333333333334e-06,
838
+ "loss": 0.0474,
839
+ "step": 3200
840
+ },
841
+ {
842
+ "epoch": 2.27,
843
+ "learning_rate": 6.372e-06,
844
+ "loss": 0.0456,
845
+ "step": 3225
846
+ },
847
+ {
848
+ "epoch": 2.29,
849
+ "learning_rate": 6.338666666666667e-06,
850
+ "loss": 0.0475,
851
+ "step": 3250
852
+ },
853
+ {
854
+ "epoch": 2.31,
855
+ "learning_rate": 6.305333333333333e-06,
856
+ "loss": 0.0468,
857
+ "step": 3275
858
+ },
859
+ {
860
+ "epoch": 2.32,
861
+ "learning_rate": 6.272e-06,
862
+ "loss": 0.0463,
863
+ "step": 3300
864
+ },
865
+ {
866
+ "epoch": 2.34,
867
+ "learning_rate": 6.2386666666666675e-06,
868
+ "loss": 0.0483,
869
+ "step": 3325
870
+ },
871
+ {
872
+ "epoch": 2.36,
873
+ "learning_rate": 6.205333333333334e-06,
874
+ "loss": 0.0465,
875
+ "step": 3350
876
+ },
877
+ {
878
+ "epoch": 2.38,
879
+ "learning_rate": 6.172e-06,
880
+ "loss": 0.0476,
881
+ "step": 3375
882
+ },
883
+ {
884
+ "epoch": 2.39,
885
+ "learning_rate": 6.138666666666668e-06,
886
+ "loss": 0.0484,
887
+ "step": 3400
888
+ },
889
+ {
890
+ "epoch": 2.41,
891
+ "learning_rate": 6.105333333333334e-06,
892
+ "loss": 0.0503,
893
+ "step": 3425
894
+ },
895
+ {
896
+ "epoch": 2.43,
897
+ "learning_rate": 6.0720000000000005e-06,
898
+ "loss": 0.0476,
899
+ "step": 3450
900
+ },
901
+ {
902
+ "epoch": 2.45,
903
+ "learning_rate": 6.038666666666667e-06,
904
+ "loss": 0.0483,
905
+ "step": 3475
906
+ },
907
+ {
908
+ "epoch": 2.46,
909
+ "learning_rate": 6.005333333333334e-06,
910
+ "loss": 0.0491,
911
+ "step": 3500
912
+ },
913
+ {
914
+ "epoch": 2.46,
915
+ "eval_loss": 0.039665933698415756,
916
+ "eval_runtime": 1966.4708,
917
+ "eval_samples_per_second": 4.248,
918
+ "eval_steps_per_second": 0.164,
919
+ "eval_wer": 17.99695295150545,
920
+ "step": 3500
921
+ },
922
+ {
923
+ "epoch": 2.48,
924
+ "learning_rate": 5.972e-06,
925
+ "loss": 0.0441,
926
+ "step": 3525
927
+ },
928
+ {
929
+ "epoch": 2.5,
930
+ "learning_rate": 5.938666666666667e-06,
931
+ "loss": 0.0545,
932
+ "step": 3550
933
+ },
934
+ {
935
+ "epoch": 2.52,
936
+ "learning_rate": 5.905333333333334e-06,
937
+ "loss": 0.0485,
938
+ "step": 3575
939
+ },
940
+ {
941
+ "epoch": 2.54,
942
+ "learning_rate": 5.872000000000001e-06,
943
+ "loss": 0.046,
944
+ "step": 3600
945
+ },
946
+ {
947
+ "epoch": 2.55,
948
+ "learning_rate": 5.838666666666667e-06,
949
+ "loss": 0.0477,
950
+ "step": 3625
951
+ },
952
+ {
953
+ "epoch": 2.57,
954
+ "learning_rate": 5.8053333333333335e-06,
955
+ "loss": 0.0477,
956
+ "step": 3650
957
+ },
958
+ {
959
+ "epoch": 2.59,
960
+ "learning_rate": 5.772000000000001e-06,
961
+ "loss": 0.0472,
962
+ "step": 3675
963
+ },
964
+ {
965
+ "epoch": 2.61,
966
+ "learning_rate": 5.738666666666667e-06,
967
+ "loss": 0.0498,
968
+ "step": 3700
969
+ },
970
+ {
971
+ "epoch": 2.62,
972
+ "learning_rate": 5.705333333333334e-06,
973
+ "loss": 0.0453,
974
+ "step": 3725
975
+ },
976
+ {
977
+ "epoch": 2.64,
978
+ "learning_rate": 5.672000000000001e-06,
979
+ "loss": 0.0478,
980
+ "step": 3750
981
+ },
982
+ {
983
+ "epoch": 2.66,
984
+ "learning_rate": 5.6386666666666665e-06,
985
+ "loss": 0.046,
986
+ "step": 3775
987
+ },
988
+ {
989
+ "epoch": 2.68,
990
+ "learning_rate": 5.605333333333334e-06,
991
+ "loss": 0.0468,
992
+ "step": 3800
993
+ },
994
+ {
995
+ "epoch": 2.69,
996
+ "learning_rate": 5.572000000000001e-06,
997
+ "loss": 0.0447,
998
+ "step": 3825
999
+ },
1000
+ {
1001
+ "epoch": 2.71,
1002
+ "learning_rate": 5.538666666666667e-06,
1003
+ "loss": 0.0475,
1004
+ "step": 3850
1005
+ },
1006
+ {
1007
+ "epoch": 2.73,
1008
+ "learning_rate": 5.505333333333334e-06,
1009
+ "loss": 0.044,
1010
+ "step": 3875
1011
+ },
1012
+ {
1013
+ "epoch": 2.75,
1014
+ "learning_rate": 5.472e-06,
1015
+ "loss": 0.0464,
1016
+ "step": 3900
1017
+ },
1018
+ {
1019
+ "epoch": 2.76,
1020
+ "learning_rate": 5.4386666666666676e-06,
1021
+ "loss": 0.047,
1022
+ "step": 3925
1023
+ },
1024
+ {
1025
+ "epoch": 2.78,
1026
+ "learning_rate": 5.405333333333333e-06,
1027
+ "loss": 0.0452,
1028
+ "step": 3950
1029
+ },
1030
+ {
1031
+ "epoch": 2.8,
1032
+ "learning_rate": 5.372e-06,
1033
+ "loss": 0.0459,
1034
+ "step": 3975
1035
+ },
1036
+ {
1037
+ "epoch": 2.82,
1038
+ "learning_rate": 5.338666666666668e-06,
1039
+ "loss": 0.0444,
1040
+ "step": 4000
1041
+ },
1042
+ {
1043
+ "epoch": 2.82,
1044
+ "eval_loss": 0.03288471698760986,
1045
+ "eval_runtime": 1971.3076,
1046
+ "eval_samples_per_second": 4.237,
1047
+ "eval_steps_per_second": 0.163,
1048
+ "eval_wer": 15.693590869183494,
1049
+ "step": 4000
1050
+ },
1051
+ {
1052
+ "epoch": 2.83,
1053
+ "learning_rate": 5.305333333333333e-06,
1054
+ "loss": 0.0456,
1055
+ "step": 4025
1056
+ },
1057
+ {
1058
+ "epoch": 2.85,
1059
+ "learning_rate": 5.2720000000000005e-06,
1060
+ "loss": 0.0498,
1061
+ "step": 4050
1062
+ },
1063
+ {
1064
+ "epoch": 2.87,
1065
+ "learning_rate": 5.238666666666668e-06,
1066
+ "loss": 0.0498,
1067
+ "step": 4075
1068
+ },
1069
+ {
1070
+ "epoch": 2.89,
1071
+ "learning_rate": 5.205333333333333e-06,
1072
+ "loss": 0.0435,
1073
+ "step": 4100
1074
+ },
1075
+ {
1076
+ "epoch": 2.9,
1077
+ "learning_rate": 5.172000000000001e-06,
1078
+ "loss": 0.0445,
1079
+ "step": 4125
1080
+ },
1081
+ {
1082
+ "epoch": 2.92,
1083
+ "learning_rate": 5.138666666666667e-06,
1084
+ "loss": 0.0461,
1085
+ "step": 4150
1086
+ },
1087
+ {
1088
+ "epoch": 2.94,
1089
+ "learning_rate": 5.1053333333333335e-06,
1090
+ "loss": 0.0448,
1091
+ "step": 4175
1092
+ },
1093
+ {
1094
+ "epoch": 2.96,
1095
+ "learning_rate": 5.072e-06,
1096
+ "loss": 0.047,
1097
+ "step": 4200
1098
+ },
1099
+ {
1100
+ "epoch": 2.98,
1101
+ "learning_rate": 5.038666666666667e-06,
1102
+ "loss": 0.0441,
1103
+ "step": 4225
1104
+ },
1105
+ {
1106
+ "epoch": 2.99,
1107
+ "learning_rate": 5.0053333333333344e-06,
1108
+ "loss": 0.0481,
1109
+ "step": 4250
1110
+ },
1111
+ {
1112
+ "epoch": 3.01,
1113
+ "learning_rate": 4.972e-06,
1114
+ "loss": 0.0354,
1115
+ "step": 4275
1116
+ },
1117
+ {
1118
+ "epoch": 3.03,
1119
+ "learning_rate": 4.938666666666667e-06,
1120
+ "loss": 0.026,
1121
+ "step": 4300
1122
+ },
1123
+ {
1124
+ "epoch": 3.05,
1125
+ "learning_rate": 4.905333333333334e-06,
1126
+ "loss": 0.0278,
1127
+ "step": 4325
1128
+ },
1129
+ {
1130
+ "epoch": 3.06,
1131
+ "learning_rate": 4.872000000000001e-06,
1132
+ "loss": 0.0285,
1133
+ "step": 4350
1134
+ },
1135
+ {
1136
+ "epoch": 3.08,
1137
+ "learning_rate": 4.838666666666667e-06,
1138
+ "loss": 0.0267,
1139
+ "step": 4375
1140
+ },
1141
+ {
1142
+ "epoch": 3.1,
1143
+ "learning_rate": 4.805333333333334e-06,
1144
+ "loss": 0.0275,
1145
+ "step": 4400
1146
+ },
1147
+ {
1148
+ "epoch": 3.12,
1149
+ "learning_rate": 4.772e-06,
1150
+ "loss": 0.0283,
1151
+ "step": 4425
1152
+ },
1153
+ {
1154
+ "epoch": 3.13,
1155
+ "learning_rate": 4.738666666666667e-06,
1156
+ "loss": 0.0274,
1157
+ "step": 4450
1158
+ },
1159
+ {
1160
+ "epoch": 3.15,
1161
+ "learning_rate": 4.705333333333334e-06,
1162
+ "loss": 0.0292,
1163
+ "step": 4475
1164
+ },
1165
+ {
1166
+ "epoch": 3.17,
1167
+ "learning_rate": 4.672e-06,
1168
+ "loss": 0.0296,
1169
+ "step": 4500
1170
+ },
1171
+ {
1172
+ "epoch": 3.17,
1173
+ "eval_loss": 0.026217961683869362,
1174
+ "eval_runtime": 1973.7952,
1175
+ "eval_samples_per_second": 4.232,
1176
+ "eval_steps_per_second": 0.163,
1177
+ "eval_wer": 13.856323916748437,
1178
+ "step": 4500
1179
+ },
1180
+ {
1181
+ "epoch": 3.19,
1182
+ "learning_rate": 4.638666666666667e-06,
1183
+ "loss": 0.027,
1184
+ "step": 4525
1185
+ },
1186
+ {
1187
+ "epoch": 3.2,
1188
+ "learning_rate": 4.605333333333334e-06,
1189
+ "loss": 0.0288,
1190
+ "step": 4550
1191
+ },
1192
+ {
1193
+ "epoch": 3.22,
1194
+ "learning_rate": 4.5720000000000004e-06,
1195
+ "loss": 0.0279,
1196
+ "step": 4575
1197
+ },
1198
+ {
1199
+ "epoch": 3.24,
1200
+ "learning_rate": 4.538666666666667e-06,
1201
+ "loss": 0.0289,
1202
+ "step": 4600
1203
+ },
1204
+ {
1205
+ "epoch": 3.26,
1206
+ "learning_rate": 4.505333333333334e-06,
1207
+ "loss": 0.0277,
1208
+ "step": 4625
1209
+ },
1210
+ {
1211
+ "epoch": 3.27,
1212
+ "learning_rate": 4.4720000000000006e-06,
1213
+ "loss": 0.0263,
1214
+ "step": 4650
1215
+ },
1216
+ {
1217
+ "epoch": 3.29,
1218
+ "learning_rate": 4.438666666666667e-06,
1219
+ "loss": 0.0287,
1220
+ "step": 4675
1221
+ },
1222
+ {
1223
+ "epoch": 3.31,
1224
+ "learning_rate": 4.406666666666667e-06,
1225
+ "loss": 0.0285,
1226
+ "step": 4700
1227
+ },
1228
+ {
1229
+ "epoch": 3.33,
1230
+ "learning_rate": 4.3733333333333335e-06,
1231
+ "loss": 0.028,
1232
+ "step": 4725
1233
+ },
1234
+ {
1235
+ "epoch": 3.35,
1236
+ "learning_rate": 4.34e-06,
1237
+ "loss": 0.0275,
1238
+ "step": 4750
1239
+ },
1240
+ {
1241
+ "epoch": 3.36,
1242
+ "learning_rate": 4.306666666666666e-06,
1243
+ "loss": 0.0291,
1244
+ "step": 4775
1245
+ },
1246
+ {
1247
+ "epoch": 3.38,
1248
+ "learning_rate": 4.273333333333334e-06,
1249
+ "loss": 0.0271,
1250
+ "step": 4800
1251
+ },
1252
+ {
1253
+ "epoch": 3.4,
1254
+ "learning_rate": 4.24e-06,
1255
+ "loss": 0.0297,
1256
+ "step": 4825
1257
+ },
1258
+ {
1259
+ "epoch": 3.42,
1260
+ "learning_rate": 4.206666666666667e-06,
1261
+ "loss": 0.0274,
1262
+ "step": 4850
1263
+ },
1264
+ {
1265
+ "epoch": 3.43,
1266
+ "learning_rate": 4.173333333333334e-06,
1267
+ "loss": 0.0294,
1268
+ "step": 4875
1269
+ },
1270
+ {
1271
+ "epoch": 3.45,
1272
+ "learning_rate": 4.14e-06,
1273
+ "loss": 0.0265,
1274
+ "step": 4900
1275
+ },
1276
+ {
1277
+ "epoch": 3.47,
1278
+ "learning_rate": 4.1066666666666674e-06,
1279
+ "loss": 0.0275,
1280
+ "step": 4925
1281
+ },
1282
+ {
1283
+ "epoch": 3.49,
1284
+ "learning_rate": 4.073333333333334e-06,
1285
+ "loss": 0.0305,
1286
+ "step": 4950
1287
+ },
1288
+ {
1289
+ "epoch": 3.5,
1290
+ "learning_rate": 4.04e-06,
1291
+ "loss": 0.0267,
1292
+ "step": 4975
1293
+ },
1294
+ {
1295
+ "epoch": 3.52,
1296
+ "learning_rate": 4.006666666666667e-06,
1297
+ "loss": 0.0274,
1298
+ "step": 5000
1299
+ },
1300
+ {
1301
+ "epoch": 3.52,
1302
+ "eval_loss": 0.022246357053518295,
1303
+ "eval_runtime": 1968.7982,
1304
+ "eval_samples_per_second": 4.243,
1305
+ "eval_steps_per_second": 0.164,
1306
+ "eval_wer": 12.130093477250426,
1307
+ "step": 5000
1308
+ },
1309
+ {
1310
+ "epoch": 3.54,
1311
+ "learning_rate": 3.973333333333333e-06,
1312
+ "loss": 0.0294,
1313
+ "step": 5025
1314
+ },
1315
+ {
1316
+ "epoch": 3.56,
1317
+ "learning_rate": 3.94e-06,
1318
+ "loss": 0.0276,
1319
+ "step": 5050
1320
+ },
1321
+ {
1322
+ "epoch": 3.57,
1323
+ "learning_rate": 3.906666666666667e-06,
1324
+ "loss": 0.0278,
1325
+ "step": 5075
1326
+ },
1327
+ {
1328
+ "epoch": 3.59,
1329
+ "learning_rate": 3.873333333333333e-06,
1330
+ "loss": 0.0291,
1331
+ "step": 5100
1332
+ },
1333
+ {
1334
+ "epoch": 3.61,
1335
+ "learning_rate": 3.8400000000000005e-06,
1336
+ "loss": 0.0259,
1337
+ "step": 5125
1338
+ },
1339
+ {
1340
+ "epoch": 3.63,
1341
+ "learning_rate": 3.806666666666667e-06,
1342
+ "loss": 0.0275,
1343
+ "step": 5150
1344
+ },
1345
+ {
1346
+ "epoch": 3.64,
1347
+ "learning_rate": 3.7733333333333338e-06,
1348
+ "loss": 0.0258,
1349
+ "step": 5175
1350
+ },
1351
+ {
1352
+ "epoch": 3.66,
1353
+ "learning_rate": 3.74e-06,
1354
+ "loss": 0.0278,
1355
+ "step": 5200
1356
+ },
1357
+ {
1358
+ "epoch": 3.68,
1359
+ "learning_rate": 3.7066666666666666e-06,
1360
+ "loss": 0.0291,
1361
+ "step": 5225
1362
+ },
1363
+ {
1364
+ "epoch": 3.7,
1365
+ "learning_rate": 3.673333333333334e-06,
1366
+ "loss": 0.0268,
1367
+ "step": 5250
1368
+ },
1369
+ {
1370
+ "epoch": 3.71,
1371
+ "learning_rate": 3.6400000000000003e-06,
1372
+ "loss": 0.0289,
1373
+ "step": 5275
1374
+ },
1375
+ {
1376
+ "epoch": 3.73,
1377
+ "learning_rate": 3.606666666666667e-06,
1378
+ "loss": 0.0284,
1379
+ "step": 5300
1380
+ },
1381
+ {
1382
+ "epoch": 3.75,
1383
+ "learning_rate": 3.5733333333333336e-06,
1384
+ "loss": 0.0279,
1385
+ "step": 5325
1386
+ },
1387
+ {
1388
+ "epoch": 3.77,
1389
+ "learning_rate": 3.54e-06,
1390
+ "loss": 0.027,
1391
+ "step": 5350
1392
+ },
1393
+ {
1394
+ "epoch": 3.79,
1395
+ "learning_rate": 3.5066666666666673e-06,
1396
+ "loss": 0.0273,
1397
+ "step": 5375
1398
+ },
1399
+ {
1400
+ "epoch": 3.8,
1401
+ "learning_rate": 3.4733333333333337e-06,
1402
+ "loss": 0.0267,
1403
+ "step": 5400
1404
+ },
1405
+ {
1406
+ "epoch": 3.82,
1407
+ "learning_rate": 3.44e-06,
1408
+ "loss": 0.0267,
1409
+ "step": 5425
1410
+ },
1411
+ {
1412
+ "epoch": 3.84,
1413
+ "learning_rate": 3.406666666666667e-06,
1414
+ "loss": 0.0282,
1415
+ "step": 5450
1416
+ },
1417
+ {
1418
+ "epoch": 3.86,
1419
+ "learning_rate": 3.3733333333333334e-06,
1420
+ "loss": 0.026,
1421
+ "step": 5475
1422
+ },
1423
+ {
1424
+ "epoch": 3.87,
1425
+ "learning_rate": 3.3400000000000006e-06,
1426
+ "loss": 0.0281,
1427
+ "step": 5500
1428
+ },
1429
+ {
1430
+ "epoch": 3.87,
1431
+ "eval_loss": 0.01831311732530594,
1432
+ "eval_runtime": 1954.9972,
1433
+ "eval_samples_per_second": 4.273,
1434
+ "eval_steps_per_second": 0.165,
1435
+ "eval_wer": 10.26442183545938,
1436
+ "step": 5500
1437
+ },
1438
+ {
1439
+ "epoch": 3.89,
1440
+ "learning_rate": 3.306666666666667e-06,
1441
+ "loss": 0.0291,
1442
+ "step": 5525
1443
+ },
1444
+ {
1445
+ "epoch": 3.91,
1446
+ "learning_rate": 3.2733333333333335e-06,
1447
+ "loss": 0.0296,
1448
+ "step": 5550
1449
+ },
1450
+ {
1451
+ "epoch": 3.93,
1452
+ "learning_rate": 3.2400000000000003e-06,
1453
+ "loss": 0.0294,
1454
+ "step": 5575
1455
+ },
1456
+ {
1457
+ "epoch": 3.94,
1458
+ "learning_rate": 3.2066666666666667e-06,
1459
+ "loss": 0.0275,
1460
+ "step": 5600
1461
+ },
1462
+ {
1463
+ "epoch": 3.96,
1464
+ "learning_rate": 3.173333333333334e-06,
1465
+ "loss": 0.0272,
1466
+ "step": 5625
1467
+ },
1468
+ {
1469
+ "epoch": 3.98,
1470
+ "learning_rate": 3.1400000000000004e-06,
1471
+ "loss": 0.0283,
1472
+ "step": 5650
1473
+ },
1474
+ {
1475
+ "epoch": 4.0,
1476
+ "learning_rate": 3.106666666666667e-06,
1477
+ "loss": 0.0278,
1478
+ "step": 5675
1479
+ },
1480
+ {
1481
+ "epoch": 4.01,
1482
+ "learning_rate": 3.0733333333333337e-06,
1483
+ "loss": 0.0191,
1484
+ "step": 5700
1485
+ },
1486
+ {
1487
+ "epoch": 4.03,
1488
+ "learning_rate": 3.04e-06,
1489
+ "loss": 0.0164,
1490
+ "step": 5725
1491
+ },
1492
+ {
1493
+ "epoch": 4.05,
1494
+ "learning_rate": 3.0066666666666674e-06,
1495
+ "loss": 0.0163,
1496
+ "step": 5750
1497
+ },
1498
+ {
1499
+ "epoch": 4.07,
1500
+ "learning_rate": 2.973333333333334e-06,
1501
+ "loss": 0.015,
1502
+ "step": 5775
1503
+ },
1504
+ {
1505
+ "epoch": 4.08,
1506
+ "learning_rate": 2.9400000000000002e-06,
1507
+ "loss": 0.015,
1508
+ "step": 5800
1509
+ },
1510
+ {
1511
+ "epoch": 4.1,
1512
+ "learning_rate": 2.906666666666667e-06,
1513
+ "loss": 0.0161,
1514
+ "step": 5825
1515
+ },
1516
+ {
1517
+ "epoch": 4.12,
1518
+ "learning_rate": 2.8733333333333335e-06,
1519
+ "loss": 0.0158,
1520
+ "step": 5850
1521
+ },
1522
+ {
1523
+ "epoch": 4.14,
1524
+ "learning_rate": 2.84e-06,
1525
+ "loss": 0.0141,
1526
+ "step": 5875
1527
+ },
1528
+ {
1529
+ "epoch": 4.15,
1530
+ "learning_rate": 2.806666666666667e-06,
1531
+ "loss": 0.0172,
1532
+ "step": 5900
1533
+ },
1534
+ {
1535
+ "epoch": 4.17,
1536
+ "learning_rate": 2.7733333333333336e-06,
1537
+ "loss": 0.0164,
1538
+ "step": 5925
1539
+ },
1540
+ {
1541
+ "epoch": 4.19,
1542
+ "learning_rate": 2.7400000000000004e-06,
1543
+ "loss": 0.0156,
1544
+ "step": 5950
1545
+ },
1546
+ {
1547
+ "epoch": 4.21,
1548
+ "learning_rate": 2.706666666666667e-06,
1549
+ "loss": 0.0169,
1550
+ "step": 5975
1551
+ },
1552
+ {
1553
+ "epoch": 4.23,
1554
+ "learning_rate": 2.6733333333333333e-06,
1555
+ "loss": 0.016,
1556
+ "step": 6000
1557
+ },
1558
+ {
1559
+ "epoch": 4.23,
1560
+ "eval_loss": 0.014556609094142914,
1561
+ "eval_runtime": 1947.5389,
1562
+ "eval_samples_per_second": 4.289,
1563
+ "eval_steps_per_second": 0.165,
1564
+ "eval_wer": 9.061095904560243,
1565
+ "step": 6000
1566
+ },
1567
+ {
1568
+ "epoch": 4.24,
1569
+ "learning_rate": 2.64e-06,
1570
+ "loss": 0.0161,
1571
+ "step": 6025
1572
+ },
1573
+ {
1574
+ "epoch": 4.26,
1575
+ "learning_rate": 2.606666666666667e-06,
1576
+ "loss": 0.0165,
1577
+ "step": 6050
1578
+ },
1579
+ {
1580
+ "epoch": 4.28,
1581
+ "learning_rate": 2.573333333333334e-06,
1582
+ "loss": 0.0155,
1583
+ "step": 6075
1584
+ },
1585
+ {
1586
+ "epoch": 4.3,
1587
+ "learning_rate": 2.5400000000000002e-06,
1588
+ "loss": 0.0152,
1589
+ "step": 6100
1590
+ },
1591
+ {
1592
+ "epoch": 4.31,
1593
+ "learning_rate": 2.5066666666666667e-06,
1594
+ "loss": 0.0155,
1595
+ "step": 6125
1596
+ },
1597
+ {
1598
+ "epoch": 4.33,
1599
+ "learning_rate": 2.4733333333333335e-06,
1600
+ "loss": 0.0157,
1601
+ "step": 6150
1602
+ },
1603
+ {
1604
+ "epoch": 4.35,
1605
+ "learning_rate": 2.4400000000000004e-06,
1606
+ "loss": 0.0149,
1607
+ "step": 6175
1608
+ },
1609
+ {
1610
+ "epoch": 4.37,
1611
+ "learning_rate": 2.4066666666666668e-06,
1612
+ "loss": 0.0148,
1613
+ "step": 6200
1614
+ },
1615
+ {
1616
+ "epoch": 4.38,
1617
+ "learning_rate": 2.3733333333333336e-06,
1618
+ "loss": 0.0155,
1619
+ "step": 6225
1620
+ },
1621
+ {
1622
+ "epoch": 4.4,
1623
+ "learning_rate": 2.3400000000000005e-06,
1624
+ "loss": 0.0171,
1625
+ "step": 6250
1626
+ },
1627
+ {
1628
+ "epoch": 4.42,
1629
+ "learning_rate": 2.306666666666667e-06,
1630
+ "loss": 0.016,
1631
+ "step": 6275
1632
+ },
1633
+ {
1634
+ "epoch": 4.44,
1635
+ "learning_rate": 2.2733333333333333e-06,
1636
+ "loss": 0.0149,
1637
+ "step": 6300
1638
+ },
1639
+ {
1640
+ "epoch": 4.45,
1641
+ "learning_rate": 2.24e-06,
1642
+ "loss": 0.0162,
1643
+ "step": 6325
1644
+ },
1645
+ {
1646
+ "epoch": 4.47,
1647
+ "learning_rate": 2.206666666666667e-06,
1648
+ "loss": 0.0167,
1649
+ "step": 6350
1650
+ },
1651
+ {
1652
+ "epoch": 4.49,
1653
+ "learning_rate": 2.1733333333333334e-06,
1654
+ "loss": 0.0151,
1655
+ "step": 6375
1656
+ },
1657
+ {
1658
+ "epoch": 4.51,
1659
+ "learning_rate": 2.1400000000000003e-06,
1660
+ "loss": 0.0152,
1661
+ "step": 6400
1662
+ },
1663
+ {
1664
+ "epoch": 4.52,
1665
+ "learning_rate": 2.1066666666666667e-06,
1666
+ "loss": 0.016,
1667
+ "step": 6425
1668
+ },
1669
+ {
1670
+ "epoch": 4.54,
1671
+ "learning_rate": 2.0733333333333335e-06,
1672
+ "loss": 0.0156,
1673
+ "step": 6450
1674
+ },
1675
+ {
1676
+ "epoch": 4.56,
1677
+ "learning_rate": 2.04e-06,
1678
+ "loss": 0.0163,
1679
+ "step": 6475
1680
+ },
1681
+ {
1682
+ "epoch": 4.58,
1683
+ "learning_rate": 2.006666666666667e-06,
1684
+ "loss": 0.0168,
1685
+ "step": 6500
1686
+ },
1687
+ {
1688
+ "epoch": 4.58,
1689
+ "eval_loss": 0.012251428328454494,
1690
+ "eval_runtime": 1948.6322,
1691
+ "eval_samples_per_second": 4.287,
1692
+ "eval_steps_per_second": 0.165,
1693
+ "eval_wer": 8.077260755048288,
1694
+ "step": 6500
1695
+ },
1696
+ {
1697
+ "epoch": 4.6,
1698
+ "learning_rate": 1.9733333333333336e-06,
1699
+ "loss": 0.0163,
1700
+ "step": 6525
1701
+ },
1702
+ {
1703
+ "epoch": 4.61,
1704
+ "learning_rate": 1.94e-06,
1705
+ "loss": 0.0173,
1706
+ "step": 6550
1707
+ },
1708
+ {
1709
+ "epoch": 4.63,
1710
+ "learning_rate": 1.906666666666667e-06,
1711
+ "loss": 0.0175,
1712
+ "step": 6575
1713
+ },
1714
+ {
1715
+ "epoch": 4.65,
1716
+ "learning_rate": 1.8733333333333333e-06,
1717
+ "loss": 0.0163,
1718
+ "step": 6600
1719
+ },
1720
+ {
1721
+ "epoch": 4.67,
1722
+ "learning_rate": 1.8400000000000002e-06,
1723
+ "loss": 0.015,
1724
+ "step": 6625
1725
+ },
1726
+ {
1727
+ "epoch": 4.68,
1728
+ "learning_rate": 1.8066666666666668e-06,
1729
+ "loss": 0.0158,
1730
+ "step": 6650
1731
+ },
1732
+ {
1733
+ "epoch": 4.7,
1734
+ "learning_rate": 1.7733333333333336e-06,
1735
+ "loss": 0.0148,
1736
+ "step": 6675
1737
+ },
1738
+ {
1739
+ "epoch": 4.72,
1740
+ "learning_rate": 1.74e-06,
1741
+ "loss": 0.0145,
1742
+ "step": 6700
1743
+ },
1744
+ {
1745
+ "epoch": 4.74,
1746
+ "learning_rate": 1.7066666666666667e-06,
1747
+ "loss": 0.0188,
1748
+ "step": 6725
1749
+ },
1750
+ {
1751
+ "epoch": 4.75,
1752
+ "learning_rate": 1.6733333333333335e-06,
1753
+ "loss": 0.0151,
1754
+ "step": 6750
1755
+ },
1756
+ {
1757
+ "epoch": 4.77,
1758
+ "learning_rate": 1.6400000000000002e-06,
1759
+ "loss": 0.0148,
1760
+ "step": 6775
1761
+ },
1762
+ {
1763
+ "epoch": 4.79,
1764
+ "learning_rate": 1.606666666666667e-06,
1765
+ "loss": 0.015,
1766
+ "step": 6800
1767
+ },
1768
+ {
1769
+ "epoch": 4.81,
1770
+ "learning_rate": 1.5733333333333334e-06,
1771
+ "loss": 0.0159,
1772
+ "step": 6825
1773
+ },
1774
+ {
1775
+ "epoch": 4.82,
1776
+ "learning_rate": 1.54e-06,
1777
+ "loss": 0.015,
1778
+ "step": 6850
1779
+ },
1780
+ {
1781
+ "epoch": 4.84,
1782
+ "learning_rate": 1.506666666666667e-06,
1783
+ "loss": 0.0139,
1784
+ "step": 6875
1785
+ },
1786
+ {
1787
+ "epoch": 4.86,
1788
+ "learning_rate": 1.4733333333333336e-06,
1789
+ "loss": 0.0149,
1790
+ "step": 6900
1791
+ },
1792
+ {
1793
+ "epoch": 4.88,
1794
+ "learning_rate": 1.44e-06,
1795
+ "loss": 0.0155,
1796
+ "step": 6925
1797
+ },
1798
+ {
1799
+ "epoch": 4.89,
1800
+ "learning_rate": 1.4066666666666668e-06,
1801
+ "loss": 0.0144,
1802
+ "step": 6950
1803
+ },
1804
+ {
1805
+ "epoch": 4.91,
1806
+ "learning_rate": 1.3733333333333335e-06,
1807
+ "loss": 0.0165,
1808
+ "step": 6975
1809
+ },
1810
+ {
1811
+ "epoch": 4.93,
1812
+ "learning_rate": 1.34e-06,
1813
+ "loss": 0.0167,
1814
+ "step": 7000
1815
+ },
1816
+ {
1817
+ "epoch": 4.93,
1818
+ "eval_loss": 0.010243043303489685,
1819
+ "eval_runtime": 1950.5572,
1820
+ "eval_samples_per_second": 4.282,
1821
+ "eval_steps_per_second": 0.165,
1822
+ "eval_wer": 6.937199814078397,
1823
+ "step": 7000
1824
+ },
1825
+ {
1826
+ "epoch": 4.95,
1827
+ "learning_rate": 1.3066666666666667e-06,
1828
+ "loss": 0.0141,
1829
+ "step": 7025
1830
+ },
1831
+ {
1832
+ "epoch": 4.96,
1833
+ "learning_rate": 1.2733333333333334e-06,
1834
+ "loss": 0.0138,
1835
+ "step": 7050
1836
+ },
1837
+ {
1838
+ "epoch": 4.98,
1839
+ "learning_rate": 1.2400000000000002e-06,
1840
+ "loss": 0.0161,
1841
+ "step": 7075
1842
+ },
1843
+ {
1844
+ "epoch": 5.0,
1845
+ "learning_rate": 1.2066666666666668e-06,
1846
+ "loss": 0.0147,
1847
+ "step": 7100
1848
+ },
1849
+ {
1850
+ "epoch": 5.02,
1851
+ "learning_rate": 1.1733333333333335e-06,
1852
+ "loss": 0.0103,
1853
+ "step": 7125
1854
+ },
1855
+ {
1856
+ "epoch": 5.04,
1857
+ "learning_rate": 1.14e-06,
1858
+ "loss": 0.0096,
1859
+ "step": 7150
1860
+ },
1861
+ {
1862
+ "epoch": 5.05,
1863
+ "learning_rate": 1.1066666666666667e-06,
1864
+ "loss": 0.0094,
1865
+ "step": 7175
1866
+ },
1867
+ {
1868
+ "epoch": 5.07,
1869
+ "learning_rate": 1.0733333333333334e-06,
1870
+ "loss": 0.0091,
1871
+ "step": 7200
1872
+ },
1873
+ {
1874
+ "epoch": 5.09,
1875
+ "learning_rate": 1.04e-06,
1876
+ "loss": 0.0085,
1877
+ "step": 7225
1878
+ },
1879
+ {
1880
+ "epoch": 5.11,
1881
+ "learning_rate": 1.0066666666666668e-06,
1882
+ "loss": 0.0096,
1883
+ "step": 7250
1884
+ },
1885
+ {
1886
+ "epoch": 5.12,
1887
+ "learning_rate": 9.733333333333333e-07,
1888
+ "loss": 0.0093,
1889
+ "step": 7275
1890
+ },
1891
+ {
1892
+ "epoch": 5.14,
1893
+ "learning_rate": 9.400000000000001e-07,
1894
+ "loss": 0.0094,
1895
+ "step": 7300
1896
+ },
1897
+ {
1898
+ "epoch": 5.16,
1899
+ "learning_rate": 9.066666666666668e-07,
1900
+ "loss": 0.0086,
1901
+ "step": 7325
1902
+ },
1903
+ {
1904
+ "epoch": 5.18,
1905
+ "learning_rate": 8.733333333333334e-07,
1906
+ "loss": 0.0102,
1907
+ "step": 7350
1908
+ },
1909
+ {
1910
+ "epoch": 5.19,
1911
+ "learning_rate": 8.400000000000001e-07,
1912
+ "loss": 0.0089,
1913
+ "step": 7375
1914
+ },
1915
+ {
1916
+ "epoch": 5.21,
1917
+ "learning_rate": 8.066666666666667e-07,
1918
+ "loss": 0.0096,
1919
+ "step": 7400
1920
+ },
1921
+ {
1922
+ "epoch": 5.23,
1923
+ "learning_rate": 7.733333333333335e-07,
1924
+ "loss": 0.0092,
1925
+ "step": 7425
1926
+ },
1927
+ {
1928
+ "epoch": 5.25,
1929
+ "learning_rate": 7.4e-07,
1930
+ "loss": 0.0089,
1931
+ "step": 7450
1932
+ },
1933
+ {
1934
+ "epoch": 5.26,
1935
+ "learning_rate": 7.066666666666667e-07,
1936
+ "loss": 0.0087,
1937
+ "step": 7475
1938
+ },
1939
+ {
1940
+ "epoch": 5.28,
1941
+ "learning_rate": 6.733333333333334e-07,
1942
+ "loss": 0.0087,
1943
+ "step": 7500
1944
+ },
1945
+ {
1946
+ "epoch": 5.28,
1947
+ "eval_loss": 0.008639490231871605,
1948
+ "eval_runtime": 1937.6307,
1949
+ "eval_samples_per_second": 4.311,
1950
+ "eval_steps_per_second": 0.166,
1951
+ "eval_wer": 6.5782678303981825,
1952
+ "step": 7500
1953
+ },
1954
+ {
1955
+ "epoch": 5.3,
1956
+ "learning_rate": 6.4e-07,
1957
+ "loss": 0.0091,
1958
+ "step": 7525
1959
+ },
1960
+ {
1961
+ "epoch": 5.32,
1962
+ "learning_rate": 6.066666666666668e-07,
1963
+ "loss": 0.0083,
1964
+ "step": 7550
1965
+ },
1966
+ {
1967
+ "epoch": 5.33,
1968
+ "learning_rate": 5.733333333333334e-07,
1969
+ "loss": 0.0087,
1970
+ "step": 7575
1971
+ },
1972
+ {
1973
+ "epoch": 5.35,
1974
+ "learning_rate": 5.4e-07,
1975
+ "loss": 0.0088,
1976
+ "step": 7600
1977
+ },
1978
+ {
1979
+ "epoch": 5.37,
1980
+ "learning_rate": 5.066666666666667e-07,
1981
+ "loss": 0.0095,
1982
+ "step": 7625
1983
+ },
1984
+ {
1985
+ "epoch": 5.39,
1986
+ "learning_rate": 4.7333333333333334e-07,
1987
+ "loss": 0.0091,
1988
+ "step": 7650
1989
+ },
1990
+ {
1991
+ "epoch": 5.4,
1992
+ "learning_rate": 4.4e-07,
1993
+ "loss": 0.009,
1994
+ "step": 7675
1995
+ },
1996
+ {
1997
+ "epoch": 5.42,
1998
+ "learning_rate": 4.0666666666666666e-07,
1999
+ "loss": 0.0094,
2000
+ "step": 7700
2001
+ },
2002
+ {
2003
+ "epoch": 5.44,
2004
+ "learning_rate": 3.733333333333334e-07,
2005
+ "loss": 0.0089,
2006
+ "step": 7725
2007
+ },
2008
+ {
2009
+ "epoch": 5.46,
2010
+ "learning_rate": 3.4000000000000003e-07,
2011
+ "loss": 0.0092,
2012
+ "step": 7750
2013
+ },
2014
+ {
2015
+ "epoch": 5.48,
2016
+ "learning_rate": 3.0666666666666666e-07,
2017
+ "loss": 0.0086,
2018
+ "step": 7775
2019
+ },
2020
+ {
2021
+ "epoch": 5.49,
2022
+ "learning_rate": 2.7333333333333335e-07,
2023
+ "loss": 0.0091,
2024
+ "step": 7800
2025
+ },
2026
+ {
2027
+ "epoch": 5.51,
2028
+ "learning_rate": 2.4000000000000003e-07,
2029
+ "loss": 0.0085,
2030
+ "step": 7825
2031
+ },
2032
+ {
2033
+ "epoch": 5.53,
2034
+ "learning_rate": 2.066666666666667e-07,
2035
+ "loss": 0.0084,
2036
+ "step": 7850
2037
+ },
2038
+ {
2039
+ "epoch": 5.55,
2040
+ "learning_rate": 1.7333333333333335e-07,
2041
+ "loss": 0.0085,
2042
+ "step": 7875
2043
+ },
2044
+ {
2045
+ "epoch": 5.56,
2046
+ "learning_rate": 1.4e-07,
2047
+ "loss": 0.0087,
2048
+ "step": 7900
2049
+ },
2050
+ {
2051
+ "epoch": 5.58,
2052
+ "learning_rate": 1.0666666666666667e-07,
2053
+ "loss": 0.0076,
2054
+ "step": 7925
2055
+ },
2056
+ {
2057
+ "epoch": 5.6,
2058
+ "learning_rate": 7.333333333333334e-08,
2059
+ "loss": 0.009,
2060
+ "step": 7950
2061
+ },
2062
+ {
2063
+ "epoch": 5.62,
2064
+ "learning_rate": 4e-08,
2065
+ "loss": 0.0081,
2066
+ "step": 7975
2067
+ },
2068
+ {
2069
+ "epoch": 5.63,
2070
+ "learning_rate": 6.666666666666667e-09,
2071
+ "loss": 0.0084,
2072
+ "step": 8000
2073
+ },
2074
+ {
2075
+ "epoch": 5.63,
2076
+ "eval_loss": 0.008073968812823296,
2077
+ "eval_runtime": 1936.8107,
2078
+ "eval_samples_per_second": 4.313,
2079
+ "eval_steps_per_second": 0.166,
2080
+ "eval_wer": 6.383308371636627,
2081
+ "step": 8000
2082
+ },
2083
+ {
2084
+ "epoch": 5.65,
2085
+ "learning_rate": 3.4608695652173916e-06,
2086
+ "loss": 0.0096,
2087
+ "step": 8025
2088
+ },
2089
+ {
2090
+ "epoch": 5.67,
2091
+ "learning_rate": 3.4391304347826088e-06,
2092
+ "loss": 0.0101,
2093
+ "step": 8050
2094
+ },
2095
+ {
2096
+ "epoch": 5.69,
2097
+ "learning_rate": 3.4173913043478263e-06,
2098
+ "loss": 0.0118,
2099
+ "step": 8075
2100
+ },
2101
+ {
2102
+ "epoch": 5.7,
2103
+ "learning_rate": 3.395652173913044e-06,
2104
+ "loss": 0.0126,
2105
+ "step": 8100
2106
+ },
2107
+ {
2108
+ "epoch": 5.72,
2109
+ "learning_rate": 3.3739130434782615e-06,
2110
+ "loss": 0.0107,
2111
+ "step": 8125
2112
+ },
2113
+ {
2114
+ "epoch": 5.74,
2115
+ "learning_rate": 3.352173913043478e-06,
2116
+ "loss": 0.0122,
2117
+ "step": 8150
2118
+ },
2119
+ {
2120
+ "epoch": 5.76,
2121
+ "learning_rate": 3.3304347826086958e-06,
2122
+ "loss": 0.0118,
2123
+ "step": 8175
2124
+ },
2125
+ {
2126
+ "epoch": 5.77,
2127
+ "learning_rate": 3.3086956521739133e-06,
2128
+ "loss": 0.0106,
2129
+ "step": 8200
2130
+ },
2131
+ {
2132
+ "epoch": 5.79,
2133
+ "learning_rate": 3.286956521739131e-06,
2134
+ "loss": 0.0109,
2135
+ "step": 8225
2136
+ },
2137
+ {
2138
+ "epoch": 5.81,
2139
+ "learning_rate": 3.2652173913043484e-06,
2140
+ "loss": 0.0113,
2141
+ "step": 8250
2142
+ },
2143
+ {
2144
+ "epoch": 5.83,
2145
+ "learning_rate": 3.243478260869565e-06,
2146
+ "loss": 0.0119,
2147
+ "step": 8275
2148
+ },
2149
+ {
2150
+ "epoch": 5.85,
2151
+ "learning_rate": 3.2217391304347827e-06,
2152
+ "loss": 0.011,
2153
+ "step": 8300
2154
+ },
2155
+ {
2156
+ "epoch": 5.86,
2157
+ "learning_rate": 3.2000000000000003e-06,
2158
+ "loss": 0.0129,
2159
+ "step": 8325
2160
+ },
2161
+ {
2162
+ "epoch": 5.88,
2163
+ "learning_rate": 3.178260869565218e-06,
2164
+ "loss": 0.0111,
2165
+ "step": 8350
2166
+ },
2167
+ {
2168
+ "epoch": 5.9,
2169
+ "learning_rate": 3.156521739130435e-06,
2170
+ "loss": 0.013,
2171
+ "step": 8375
2172
+ },
2173
+ {
2174
+ "epoch": 5.92,
2175
+ "learning_rate": 3.134782608695652e-06,
2176
+ "loss": 0.0119,
2177
+ "step": 8400
2178
+ },
2179
+ {
2180
+ "epoch": 5.93,
2181
+ "learning_rate": 3.1130434782608697e-06,
2182
+ "loss": 0.0117,
2183
+ "step": 8425
2184
+ },
2185
+ {
2186
+ "epoch": 5.95,
2187
+ "learning_rate": 3.0913043478260872e-06,
2188
+ "loss": 0.0119,
2189
+ "step": 8450
2190
+ },
2191
+ {
2192
+ "epoch": 5.97,
2193
+ "learning_rate": 3.069565217391305e-06,
2194
+ "loss": 0.012,
2195
+ "step": 8475
2196
+ },
2197
+ {
2198
+ "epoch": 5.99,
2199
+ "learning_rate": 3.047826086956522e-06,
2200
+ "loss": 0.0126,
2201
+ "step": 8500
2202
+ },
2203
+ {
2204
+ "epoch": 5.99,
2205
+ "eval_loss": 0.009112391620874405,
2206
+ "eval_runtime": 1974.3829,
2207
+ "eval_samples_per_second": 4.231,
2208
+ "eval_steps_per_second": 0.163,
2209
+ "eval_wer": 6.952693280999846,
2210
+ "step": 8500
2211
+ },
2212
+ {
2213
+ "epoch": 6.0,
2214
+ "learning_rate": 3.0260869565217395e-06,
2215
+ "loss": 0.0124,
2216
+ "step": 8525
2217
+ },
2218
+ {
2219
+ "epoch": 6.02,
2220
+ "learning_rate": 3.0043478260869566e-06,
2221
+ "loss": 0.0085,
2222
+ "step": 8550
2223
+ },
2224
+ {
2225
+ "epoch": 6.04,
2226
+ "learning_rate": 2.982608695652174e-06,
2227
+ "loss": 0.0087,
2228
+ "step": 8575
2229
+ },
2230
+ {
2231
+ "epoch": 6.06,
2232
+ "learning_rate": 2.9608695652173913e-06,
2233
+ "loss": 0.0088,
2234
+ "step": 8600
2235
+ },
2236
+ {
2237
+ "epoch": 6.07,
2238
+ "learning_rate": 2.939130434782609e-06,
2239
+ "loss": 0.0086,
2240
+ "step": 8625
2241
+ },
2242
+ {
2243
+ "epoch": 6.09,
2244
+ "learning_rate": 2.9173913043478265e-06,
2245
+ "loss": 0.0088,
2246
+ "step": 8650
2247
+ },
2248
+ {
2249
+ "epoch": 6.11,
2250
+ "learning_rate": 2.895652173913044e-06,
2251
+ "loss": 0.011,
2252
+ "step": 8675
2253
+ },
2254
+ {
2255
+ "epoch": 6.13,
2256
+ "learning_rate": 2.8739130434782608e-06,
2257
+ "loss": 0.0096,
2258
+ "step": 8700
2259
+ },
2260
+ {
2261
+ "epoch": 6.14,
2262
+ "learning_rate": 2.8521739130434783e-06,
2263
+ "loss": 0.0091,
2264
+ "step": 8725
2265
+ },
2266
+ {
2267
+ "epoch": 6.16,
2268
+ "learning_rate": 2.830434782608696e-06,
2269
+ "loss": 0.0082,
2270
+ "step": 8750
2271
+ },
2272
+ {
2273
+ "epoch": 6.18,
2274
+ "learning_rate": 2.8086956521739134e-06,
2275
+ "loss": 0.0099,
2276
+ "step": 8775
2277
+ },
2278
+ {
2279
+ "epoch": 6.2,
2280
+ "learning_rate": 2.786956521739131e-06,
2281
+ "loss": 0.0077,
2282
+ "step": 8800
2283
+ },
2284
+ {
2285
+ "epoch": 6.21,
2286
+ "learning_rate": 2.7652173913043477e-06,
2287
+ "loss": 0.0093,
2288
+ "step": 8825
2289
+ },
2290
+ {
2291
+ "epoch": 6.23,
2292
+ "learning_rate": 2.7434782608695653e-06,
2293
+ "loss": 0.0086,
2294
+ "step": 8850
2295
+ },
2296
+ {
2297
+ "epoch": 6.25,
2298
+ "learning_rate": 2.721739130434783e-06,
2299
+ "loss": 0.0085,
2300
+ "step": 8875
2301
+ },
2302
+ {
2303
+ "epoch": 6.27,
2304
+ "learning_rate": 2.7000000000000004e-06,
2305
+ "loss": 0.0097,
2306
+ "step": 8900
2307
+ },
2308
+ {
2309
+ "epoch": 6.29,
2310
+ "learning_rate": 2.6782608695652175e-06,
2311
+ "loss": 0.0084,
2312
+ "step": 8925
2313
+ },
2314
+ {
2315
+ "epoch": 6.3,
2316
+ "learning_rate": 2.6565217391304347e-06,
2317
+ "loss": 0.0083,
2318
+ "step": 8950
2319
+ },
2320
+ {
2321
+ "epoch": 6.32,
2322
+ "learning_rate": 2.6347826086956522e-06,
2323
+ "loss": 0.0078,
2324
+ "step": 8975
2325
+ },
2326
+ {
2327
+ "epoch": 6.34,
2328
+ "learning_rate": 2.61304347826087e-06,
2329
+ "loss": 0.009,
2330
+ "step": 9000
2331
+ },
2332
+ {
2333
+ "epoch": 6.34,
2334
+ "eval_loss": 0.008017000742256641,
2335
+ "eval_runtime": 1955.4608,
2336
+ "eval_samples_per_second": 4.272,
2337
+ "eval_steps_per_second": 0.165,
2338
+ "eval_wer": 7.559520735423229,
2339
+ "step": 9000
2340
+ },
2341
+ {
2342
+ "epoch": 6.36,
2343
+ "learning_rate": 2.5913043478260874e-06,
2344
+ "loss": 0.0084,
2345
+ "step": 9025
2346
+ },
2347
+ {
2348
+ "epoch": 6.37,
2349
+ "learning_rate": 2.5695652173913045e-06,
2350
+ "loss": 0.0091,
2351
+ "step": 9050
2352
+ },
2353
+ {
2354
+ "epoch": 6.39,
2355
+ "learning_rate": 2.547826086956522e-06,
2356
+ "loss": 0.0089,
2357
+ "step": 9075
2358
+ },
2359
+ {
2360
+ "epoch": 6.41,
2361
+ "learning_rate": 2.5260869565217392e-06,
2362
+ "loss": 0.0087,
2363
+ "step": 9100
2364
+ },
2365
+ {
2366
+ "epoch": 6.43,
2367
+ "learning_rate": 2.5043478260869568e-06,
2368
+ "loss": 0.0078,
2369
+ "step": 9125
2370
+ },
2371
+ {
2372
+ "epoch": 6.44,
2373
+ "learning_rate": 2.4826086956521743e-06,
2374
+ "loss": 0.0087,
2375
+ "step": 9150
2376
+ },
2377
+ {
2378
+ "epoch": 6.46,
2379
+ "learning_rate": 2.4608695652173915e-06,
2380
+ "loss": 0.0081,
2381
+ "step": 9175
2382
+ },
2383
+ {
2384
+ "epoch": 6.48,
2385
+ "learning_rate": 2.439130434782609e-06,
2386
+ "loss": 0.0082,
2387
+ "step": 9200
2388
+ },
2389
+ {
2390
+ "epoch": 6.5,
2391
+ "learning_rate": 2.417391304347826e-06,
2392
+ "loss": 0.0091,
2393
+ "step": 9225
2394
+ },
2395
+ {
2396
+ "epoch": 6.51,
2397
+ "learning_rate": 2.3956521739130437e-06,
2398
+ "loss": 0.0092,
2399
+ "step": 9250
2400
+ },
2401
+ {
2402
+ "epoch": 6.53,
2403
+ "learning_rate": 2.3739130434782613e-06,
2404
+ "loss": 0.0086,
2405
+ "step": 9275
2406
+ },
2407
+ {
2408
+ "epoch": 6.55,
2409
+ "learning_rate": 2.3521739130434784e-06,
2410
+ "loss": 0.0078,
2411
+ "step": 9300
2412
+ },
2413
+ {
2414
+ "epoch": 6.57,
2415
+ "learning_rate": 2.330434782608696e-06,
2416
+ "loss": 0.0086,
2417
+ "step": 9325
2418
+ },
2419
+ {
2420
+ "epoch": 6.58,
2421
+ "learning_rate": 2.308695652173913e-06,
2422
+ "loss": 0.0083,
2423
+ "step": 9350
2424
+ },
2425
+ {
2426
+ "epoch": 6.6,
2427
+ "learning_rate": 2.2869565217391307e-06,
2428
+ "loss": 0.0068,
2429
+ "step": 9375
2430
+ },
2431
+ {
2432
+ "epoch": 6.62,
2433
+ "learning_rate": 2.265217391304348e-06,
2434
+ "loss": 0.0087,
2435
+ "step": 9400
2436
+ },
2437
+ {
2438
+ "epoch": 6.64,
2439
+ "learning_rate": 2.2434782608695654e-06,
2440
+ "loss": 0.0094,
2441
+ "step": 9425
2442
+ },
2443
+ {
2444
+ "epoch": 6.65,
2445
+ "learning_rate": 2.2217391304347825e-06,
2446
+ "loss": 0.0091,
2447
+ "step": 9450
2448
+ },
2449
+ {
2450
+ "epoch": 6.67,
2451
+ "learning_rate": 2.2e-06,
2452
+ "loss": 0.0093,
2453
+ "step": 9475
2454
+ },
2455
+ {
2456
+ "epoch": 6.69,
2457
+ "learning_rate": 2.1782608695652177e-06,
2458
+ "loss": 0.0095,
2459
+ "step": 9500
2460
+ },
2461
+ {
2462
+ "epoch": 6.69,
2463
+ "eval_loss": 0.006202294025570154,
2464
+ "eval_runtime": 1982.5495,
2465
+ "eval_samples_per_second": 4.213,
2466
+ "eval_steps_per_second": 0.162,
2467
+ "eval_wer": 5.864277229768114,
2468
+ "step": 9500
2469
+ },
2470
+ {
2471
+ "epoch": 6.71,
2472
+ "learning_rate": 2.156521739130435e-06,
2473
+ "loss": 0.0087,
2474
+ "step": 9525
2475
+ },
2476
+ {
2477
+ "epoch": 6.73,
2478
+ "learning_rate": 2.1347826086956524e-06,
2479
+ "loss": 0.008,
2480
+ "step": 9550
2481
+ },
2482
+ {
2483
+ "epoch": 6.74,
2484
+ "learning_rate": 2.1130434782608695e-06,
2485
+ "loss": 0.0079,
2486
+ "step": 9575
2487
+ },
2488
+ {
2489
+ "epoch": 6.76,
2490
+ "learning_rate": 2.091304347826087e-06,
2491
+ "loss": 0.0081,
2492
+ "step": 9600
2493
+ },
2494
+ {
2495
+ "epoch": 6.78,
2496
+ "learning_rate": 2.0695652173913046e-06,
2497
+ "loss": 0.008,
2498
+ "step": 9625
2499
+ },
2500
+ {
2501
+ "epoch": 6.8,
2502
+ "learning_rate": 2.0478260869565218e-06,
2503
+ "loss": 0.0093,
2504
+ "step": 9650
2505
+ },
2506
+ {
2507
+ "epoch": 6.81,
2508
+ "learning_rate": 2.0260869565217393e-06,
2509
+ "loss": 0.0072,
2510
+ "step": 9675
2511
+ },
2512
+ {
2513
+ "epoch": 6.83,
2514
+ "learning_rate": 2.004347826086957e-06,
2515
+ "loss": 0.0076,
2516
+ "step": 9700
2517
+ },
2518
+ {
2519
+ "epoch": 6.85,
2520
+ "learning_rate": 1.982608695652174e-06,
2521
+ "loss": 0.01,
2522
+ "step": 9725
2523
+ },
2524
+ {
2525
+ "epoch": 6.87,
2526
+ "learning_rate": 1.9608695652173916e-06,
2527
+ "loss": 0.0093,
2528
+ "step": 9750
2529
+ },
2530
+ {
2531
+ "epoch": 6.88,
2532
+ "learning_rate": 1.939130434782609e-06,
2533
+ "loss": 0.008,
2534
+ "step": 9775
2535
+ },
2536
+ {
2537
+ "epoch": 6.9,
2538
+ "learning_rate": 1.9173913043478263e-06,
2539
+ "loss": 0.0089,
2540
+ "step": 9800
2541
+ },
2542
+ {
2543
+ "epoch": 6.92,
2544
+ "learning_rate": 1.8956521739130437e-06,
2545
+ "loss": 0.0097,
2546
+ "step": 9825
2547
+ },
2548
+ {
2549
+ "epoch": 6.94,
2550
+ "learning_rate": 1.873913043478261e-06,
2551
+ "loss": 0.0078,
2552
+ "step": 9850
2553
+ },
2554
+ {
2555
+ "epoch": 6.95,
2556
+ "learning_rate": 1.8521739130434786e-06,
2557
+ "loss": 0.0089,
2558
+ "step": 9875
2559
+ },
2560
+ {
2561
+ "epoch": 6.97,
2562
+ "learning_rate": 1.8304347826086957e-06,
2563
+ "loss": 0.0077,
2564
+ "step": 9900
2565
+ },
2566
+ {
2567
+ "epoch": 6.99,
2568
+ "learning_rate": 1.8086956521739133e-06,
2569
+ "loss": 0.0073,
2570
+ "step": 9925
2571
+ },
2572
+ {
2573
+ "epoch": 7.01,
2574
+ "learning_rate": 1.7869565217391304e-06,
2575
+ "loss": 0.0081,
2576
+ "step": 9950
2577
+ },
2578
+ {
2579
+ "epoch": 7.02,
2580
+ "learning_rate": 1.765217391304348e-06,
2581
+ "loss": 0.0047,
2582
+ "step": 9975
2583
+ },
2584
+ {
2585
+ "epoch": 7.04,
2586
+ "learning_rate": 1.7434782608695653e-06,
2587
+ "loss": 0.0047,
2588
+ "step": 10000
2589
+ },
2590
+ {
2591
+ "epoch": 7.04,
2592
+ "eval_loss": 0.004503228701651096,
2593
+ "eval_runtime": 1966.4947,
2594
+ "eval_samples_per_second": 4.248,
2595
+ "eval_steps_per_second": 0.164,
2596
+ "eval_wer": 5.127046428755875,
2597
+ "step": 10000
2598
+ },
2599
+ {
2600
+ "epoch": 7.06,
2601
+ "learning_rate": 1.7217391304347827e-06,
2602
+ "loss": 0.0042,
2603
+ "step": 10025
2604
+ },
2605
+ {
2606
+ "epoch": 7.08,
2607
+ "learning_rate": 1.7000000000000002e-06,
2608
+ "loss": 0.0038,
2609
+ "step": 10050
2610
+ },
2611
+ {
2612
+ "epoch": 7.1,
2613
+ "learning_rate": 1.6782608695652176e-06,
2614
+ "loss": 0.0048,
2615
+ "step": 10075
2616
+ },
2617
+ {
2618
+ "epoch": 7.11,
2619
+ "learning_rate": 1.656521739130435e-06,
2620
+ "loss": 0.0041,
2621
+ "step": 10100
2622
+ },
2623
+ {
2624
+ "epoch": 7.13,
2625
+ "learning_rate": 1.6347826086956523e-06,
2626
+ "loss": 0.0046,
2627
+ "step": 10125
2628
+ },
2629
+ {
2630
+ "epoch": 7.15,
2631
+ "learning_rate": 1.6130434782608699e-06,
2632
+ "loss": 0.0035,
2633
+ "step": 10150
2634
+ },
2635
+ {
2636
+ "epoch": 7.17,
2637
+ "learning_rate": 1.591304347826087e-06,
2638
+ "loss": 0.0042,
2639
+ "step": 10175
2640
+ },
2641
+ {
2642
+ "epoch": 7.18,
2643
+ "learning_rate": 1.5695652173913046e-06,
2644
+ "loss": 0.0041,
2645
+ "step": 10200
2646
+ },
2647
+ {
2648
+ "epoch": 7.2,
2649
+ "learning_rate": 1.5478260869565217e-06,
2650
+ "loss": 0.0043,
2651
+ "step": 10225
2652
+ },
2653
+ {
2654
+ "epoch": 7.22,
2655
+ "learning_rate": 1.5260869565217393e-06,
2656
+ "loss": 0.0045,
2657
+ "step": 10250
2658
+ },
2659
+ {
2660
+ "epoch": 7.24,
2661
+ "learning_rate": 1.5043478260869566e-06,
2662
+ "loss": 0.0044,
2663
+ "step": 10275
2664
+ },
2665
+ {
2666
+ "epoch": 7.25,
2667
+ "learning_rate": 1.482608695652174e-06,
2668
+ "loss": 0.0037,
2669
+ "step": 10300
2670
+ },
2671
+ {
2672
+ "epoch": 7.27,
2673
+ "learning_rate": 1.4608695652173915e-06,
2674
+ "loss": 0.0035,
2675
+ "step": 10325
2676
+ },
2677
+ {
2678
+ "epoch": 7.29,
2679
+ "learning_rate": 1.4391304347826089e-06,
2680
+ "loss": 0.0045,
2681
+ "step": 10350
2682
+ },
2683
+ {
2684
+ "epoch": 7.31,
2685
+ "learning_rate": 1.4173913043478262e-06,
2686
+ "loss": 0.0042,
2687
+ "step": 10375
2688
+ },
2689
+ {
2690
+ "epoch": 7.32,
2691
+ "learning_rate": 1.3956521739130436e-06,
2692
+ "loss": 0.0042,
2693
+ "step": 10400
2694
+ },
2695
+ {
2696
+ "epoch": 7.34,
2697
+ "learning_rate": 1.3739130434782611e-06,
2698
+ "loss": 0.004,
2699
+ "step": 10425
2700
+ },
2701
+ {
2702
+ "epoch": 7.36,
2703
+ "learning_rate": 1.3521739130434783e-06,
2704
+ "loss": 0.0058,
2705
+ "step": 10450
2706
+ },
2707
+ {
2708
+ "epoch": 7.38,
2709
+ "learning_rate": 1.3304347826086958e-06,
2710
+ "loss": 0.004,
2711
+ "step": 10475
2712
+ },
2713
+ {
2714
+ "epoch": 7.39,
2715
+ "learning_rate": 1.308695652173913e-06,
2716
+ "loss": 0.0044,
2717
+ "step": 10500
2718
+ },
2719
+ {
2720
+ "epoch": 7.39,
2721
+ "eval_loss": 0.0038078916259109974,
2722
+ "eval_runtime": 1965.041,
2723
+ "eval_samples_per_second": 4.251,
2724
+ "eval_steps_per_second": 0.164,
2725
+ "eval_wer": 4.553788152662294,
2726
+ "step": 10500
2727
+ }
2728
+ ],
2729
+ "max_steps": 12000,
2730
+ "num_train_epochs": 9,
2731
+ "total_flos": 7.874947262472192e+19,
2732
+ "trial_name": null,
2733
+ "trial_params": null
2734
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13f118af5d3b076d4d23a13d701e001dad37ccadb84e923cbc3347e1ab8e4dfa
3
+ size 4079
vocab.json ADDED
The diff for this file is too large to render. See raw diff