librarian-bot commited on
Commit
16cf5da
1 Parent(s): f5390e6

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`cmarkea/distilcamembert-base`](https://huggingface.co/cmarkea/distilcamembert-base) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).

If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!

Files changed (1) hide show
  1. README.md +13 -12
README.md CHANGED
@@ -6,20 +6,21 @@ tags:
6
  - generated_from_trainer
7
  datasets:
8
  - allocine
9
- widget:
10
- - text: "Un film magnifique avec un duo d'acteurs excellent."
11
- - text: "Grosse déception pour ce thriller qui peine à convaincre."
12
  metrics:
13
  - accuracy
14
  - f1
15
  - precision
16
  - recall
 
 
 
 
17
  model-index:
18
  - name: distilcamembert-allocine
19
  results:
20
  - task:
21
- name: Text Classification
22
  type: text-classification
 
23
  dataset:
24
  name: allocine
25
  type: allocine
@@ -27,18 +28,18 @@ model-index:
27
  split: validation
28
  args: allocine
29
  metrics:
30
- - name: Accuracy
31
- type: accuracy
32
  value: 0.9714
33
- - name: F1
34
- type: f1
35
  value: 0.9709909727152854
36
- - name: Precision
37
- type: precision
38
  value: 0.9648256399919372
39
- - name: Recall
40
- type: recall
41
  value: 0.9772356063699469
 
42
  ---
43
 
44
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
6
  - generated_from_trainer
7
  datasets:
8
  - allocine
 
 
 
9
  metrics:
10
  - accuracy
11
  - f1
12
  - precision
13
  - recall
14
+ widget:
15
+ - text: Un film magnifique avec un duo d'acteurs excellent.
16
+ - text: Grosse déception pour ce thriller qui peine à convaincre.
17
+ base_model: cmarkea/distilcamembert-base
18
  model-index:
19
  - name: distilcamembert-allocine
20
  results:
21
  - task:
 
22
  type: text-classification
23
+ name: Text Classification
24
  dataset:
25
  name: allocine
26
  type: allocine
 
28
  split: validation
29
  args: allocine
30
  metrics:
31
+ - type: accuracy
 
32
  value: 0.9714
33
+ name: Accuracy
34
+ - type: f1
35
  value: 0.9709909727152854
36
+ name: F1
37
+ - type: precision
38
  value: 0.9648256399919372
39
+ name: Precision
40
+ - type: recall
41
  value: 0.9772356063699469
42
+ name: Recall
43
  ---
44
 
45
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You