Librarian Bot: Add base_model information to model
Browse filesThis pull request aims to enrich the metadata of your model by adding [`cmarkea/distilcamembert-base`](https://huggingface.co/cmarkea/distilcamembert-base) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).
If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!
@@ -6,20 +6,21 @@ tags:
|
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
- allocine
|
9 |
-
widget:
|
10 |
-
- text: "Un film magnifique avec un duo d'acteurs excellent."
|
11 |
-
- text: "Grosse déception pour ce thriller qui peine à convaincre."
|
12 |
metrics:
|
13 |
- accuracy
|
14 |
- f1
|
15 |
- precision
|
16 |
- recall
|
|
|
|
|
|
|
|
|
17 |
model-index:
|
18 |
- name: distilcamembert-allocine
|
19 |
results:
|
20 |
- task:
|
21 |
-
name: Text Classification
|
22 |
type: text-classification
|
|
|
23 |
dataset:
|
24 |
name: allocine
|
25 |
type: allocine
|
@@ -27,18 +28,18 @@ model-index:
|
|
27 |
split: validation
|
28 |
args: allocine
|
29 |
metrics:
|
30 |
-
-
|
31 |
-
type: accuracy
|
32 |
value: 0.9714
|
33 |
-
|
34 |
-
|
35 |
value: 0.9709909727152854
|
36 |
-
|
37 |
-
|
38 |
value: 0.9648256399919372
|
39 |
-
|
40 |
-
|
41 |
value: 0.9772356063699469
|
|
|
42 |
---
|
43 |
|
44 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
- allocine
|
|
|
|
|
|
|
9 |
metrics:
|
10 |
- accuracy
|
11 |
- f1
|
12 |
- precision
|
13 |
- recall
|
14 |
+
widget:
|
15 |
+
- text: Un film magnifique avec un duo d'acteurs excellent.
|
16 |
+
- text: Grosse déception pour ce thriller qui peine à convaincre.
|
17 |
+
base_model: cmarkea/distilcamembert-base
|
18 |
model-index:
|
19 |
- name: distilcamembert-allocine
|
20 |
results:
|
21 |
- task:
|
|
|
22 |
type: text-classification
|
23 |
+
name: Text Classification
|
24 |
dataset:
|
25 |
name: allocine
|
26 |
type: allocine
|
|
|
28 |
split: validation
|
29 |
args: allocine
|
30 |
metrics:
|
31 |
+
- type: accuracy
|
|
|
32 |
value: 0.9714
|
33 |
+
name: Accuracy
|
34 |
+
- type: f1
|
35 |
value: 0.9709909727152854
|
36 |
+
name: F1
|
37 |
+
- type: precision
|
38 |
value: 0.9648256399919372
|
39 |
+
name: Precision
|
40 |
+
- type: recall
|
41 |
value: 0.9772356063699469
|
42 |
+
name: Recall
|
43 |
---
|
44 |
|
45 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|