baptistecolle HF staff commited on
Commit
b56ab5c
·
verified ·
1 Parent(s): dd1e4b1

End of training

Browse files
Files changed (2) hide show
  1. README.md +174 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ base_model: Open-Orca/Mistral-7B-OpenOrca
8
+ model-index:
9
+ - name: voyager-axolotl
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.3.0`
20
+ ```yaml
21
+ base_model: Open-Orca/Mistral-7B-OpenOrca
22
+ model_type: MistralForCausalLM
23
+ tokenizer_type: AutoTokenizer
24
+ is_mistral_derived_model: true
25
+
26
+ load_in_8bit: false
27
+ load_in_4bit: true
28
+ strict: false
29
+
30
+ datasets:
31
+ - path: baptistecolle/mc_training_data
32
+ type: completion
33
+ - path: baptistecolle/mc_training_data_conversations
34
+ type: sharegpt
35
+
36
+ hub_model_id: baptistecolle/voyager-axolotl
37
+
38
+ dataset_prepared_path: last_run_prepared
39
+ val_set_size: 0.1
40
+ output_dir: ./qlora-out
41
+
42
+ adapter: qlora
43
+
44
+ # gpu_memory_limit: 10
45
+ # max_memory: {0: "20GIB"}
46
+
47
+
48
+ sequence_len: 8192
49
+ sample_packing: true
50
+ pad_to_sequence_len: true
51
+
52
+ lora_r: 32
53
+ lora_alpha: 16
54
+ lora_dropout: 0.05
55
+ lora_target_linear: true
56
+ lora_target_modules:
57
+ - gate_proj
58
+ - down_proj
59
+ - up_proj
60
+ - q_proj
61
+ - v_proj
62
+ - k_proj
63
+ - o_proj
64
+ lora_modules_to_save:
65
+ - embed_tokens
66
+ - lm_head
67
+
68
+ wandb_project: axolotl-voyager
69
+
70
+ gradient_accumulation_steps: 1
71
+ micro_batch_size: 1
72
+ num_epochs: 1
73
+ optimizer: adamw_bnb_8bit
74
+ lr_scheduler: cosine
75
+ learning_rate: 0.0002
76
+
77
+ train_on_inputs: false
78
+ group_by_length: false
79
+ bf16: true
80
+ fp16: false
81
+ tf32: false
82
+
83
+ gradient_checkpointing: true
84
+ early_stopping_patience:
85
+ resume_from_checkpoint:
86
+ local_rank:
87
+ logging_steps: 1
88
+ xformers_attention:
89
+ flash_attention: true
90
+
91
+ loss_watchdog_threshold: 5.0
92
+ loss_watchdog_patience: 3
93
+
94
+ warmup_steps: 10
95
+ evals_per_epoch: 4
96
+ eval_table_size:
97
+ eval_table_max_new_tokens: 128
98
+ saves_per_epoch: 1
99
+ debug:
100
+ deepspeed:
101
+ weight_decay: 0.0
102
+ fsdp:
103
+ fsdp_config:
104
+ special_tokens:
105
+ bos_token: "<s>"
106
+ eos_token: "</s>"
107
+ unk_token: "<unk>"
108
+
109
+ ```
110
+
111
+ </details><br>
112
+
113
+ # voyager-axolotl
114
+
115
+ This model is a fine-tuned version of [Open-Orca/Mistral-7B-OpenOrca](https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca) on the None dataset.
116
+ It achieves the following results on the evaluation set:
117
+ - Loss: 1.7640
118
+
119
+ ## Model description
120
+
121
+ More information needed
122
+
123
+ ## Intended uses & limitations
124
+
125
+ More information needed
126
+
127
+ ## Training and evaluation data
128
+
129
+ More information needed
130
+
131
+ ## Training procedure
132
+
133
+
134
+ The following `bitsandbytes` quantization config was used during training:
135
+ - quant_method: bitsandbytes
136
+ - load_in_8bit: False
137
+ - load_in_4bit: True
138
+ - llm_int8_threshold: 6.0
139
+ - llm_int8_skip_modules: None
140
+ - llm_int8_enable_fp32_cpu_offload: False
141
+ - llm_int8_has_fp16_weight: False
142
+ - bnb_4bit_quant_type: nf4
143
+ - bnb_4bit_use_double_quant: True
144
+ - bnb_4bit_compute_dtype: bfloat16
145
+
146
+ ### Training hyperparameters
147
+
148
+ The following hyperparameters were used during training:
149
+ - learning_rate: 0.0002
150
+ - train_batch_size: 1
151
+ - eval_batch_size: 1
152
+ - seed: 42
153
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
154
+ - lr_scheduler_type: cosine
155
+ - lr_scheduler_warmup_steps: 10
156
+ - num_epochs: 1
157
+
158
+ ### Training results
159
+
160
+ | Training Loss | Epoch | Step | Validation Loss |
161
+ |:-------------:|:-----:|:----:|:---------------:|
162
+ | 2.9292 | 0.0 | 1 | 2.9051 |
163
+ | 2.0261 | 0.25 | 94 | 1.9768 |
164
+ | 1.8991 | 0.5 | 188 | 1.8530 |
165
+ | 1.6994 | 0.75 | 282 | 1.7640 |
166
+
167
+
168
+ ### Framework versions
169
+
170
+ - PEFT 0.7.0
171
+ - Transformers 4.37.0.dev0
172
+ - Pytorch 2.0.1+cu118
173
+ - Datasets 2.16.1
174
+ - Tokenizers 0.15.0
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291fb97e3d06de54c44367113a21a93009a42a52e4baa09b5e66056e0351ee48
3
+ size 860027221