Upload 3 files
Browse files
.gitattributes
CHANGED
@@ -135,3 +135,4 @@ Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0222_testv2.exe filte
|
|
135 |
Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0222_testv3.exe filter=lfs diff=lfs merge=lfs -text
|
136 |
NAIA_0224_testv1.exe filter=lfs diff=lfs merge=lfs -text
|
137 |
Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0226_testv1.exe filter=lfs diff=lfs merge=lfs -text
|
|
|
|
135 |
Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0222_testv3.exe filter=lfs diff=lfs merge=lfs -text
|
136 |
NAIA_0224_testv1.exe filter=lfs diff=lfs merge=lfs -text
|
137 |
Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0226_testv1.exe filter=lfs diff=lfs merge=lfs -text
|
138 |
+
Danbooru[[:space:]]Prompt[[:space:]]Selector/TEST2024/NAIA_0228_testv2.exe filter=lfs diff=lfs merge=lfs -text
|
Danbooru Prompt Selector/TEST2024/NAIA_0228_testv2.exe
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcf08a1a57c417ff09cec03b41545f9200ef30c3ede7f440be8222ce1da09cf1
|
3 |
+
size 854809343
|
Danbooru Prompt Selector/TEST2024/NAIA_0228_testv2.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
Danbooru Prompt Selector/TEST2024/NAIA_search.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import pandas as pd
|
2 |
import re
|
3 |
|
|
|
|
|
4 |
# λͺ¨λ ν€μλλ₯Ό ν¬ν¨νλ νλ§ νν°λ§νλ ν¨μ
|
5 |
def filter_rows_containing_all_keywords(df, keywords):
|
6 |
special_chars = r".^$*+?{}[]\|()"
|
@@ -170,7 +172,7 @@ def search(df, search_request, exclude_request, E=None, N=None, S=None, G=None):
|
|
170 |
ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False, regex=True)]
|
171 |
else:
|
172 |
ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False)]
|
173 |
-
print(keyword, len(matched_rows), len(ndf))
|
174 |
if not ndf.empty:
|
175 |
ndfs.append(ndf.copy())
|
176 |
del(ndf)
|
@@ -184,7 +186,7 @@ def search(df, search_request, exclude_request, E=None, N=None, S=None, G=None):
|
|
184 |
if not matched_rows.empty:
|
185 |
results = pd.concat([results, matched_rows])
|
186 |
del[matched_rows]
|
187 |
-
print(results)
|
188 |
del[[df]]
|
189 |
results = results.drop_duplicates(subset=['general'])
|
190 |
df = results.copy()
|
|
|
1 |
import pandas as pd
|
2 |
import re
|
3 |
|
4 |
+
pd.options.mode.chained_assignment = None
|
5 |
+
|
6 |
# λͺ¨λ ν€μλλ₯Ό ν¬ν¨νλ νλ§ νν°λ§νλ ν¨μ
|
7 |
def filter_rows_containing_all_keywords(df, keywords):
|
8 |
special_chars = r".^$*+?{}[]\|()"
|
|
|
172 |
ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False, regex=True)]
|
173 |
else:
|
174 |
ndf = matched_rows[matched_rows[column].str.contains(keyword, na=False)]
|
175 |
+
#print(keyword, len(matched_rows), len(ndf))
|
176 |
if not ndf.empty:
|
177 |
ndfs.append(ndf.copy())
|
178 |
del(ndf)
|
|
|
186 |
if not matched_rows.empty:
|
187 |
results = pd.concat([results, matched_rows])
|
188 |
del[matched_rows]
|
189 |
+
#print(results)
|
190 |
del[[df]]
|
191 |
results = results.drop_duplicates(subset=['general'])
|
192 |
df = results.copy()
|