Martijn Bartelds
commited on
Commit
·
9c82e23
1
Parent(s):
eb64913
Update files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1.log +1152 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/config.yaml +383 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/batch_keys +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/feats_lengths_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/feats_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/sids_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/speech_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/stats_keys +2 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/text_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/batch_keys +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/feats_lengths_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/feats_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/sids_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/speech_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/stats_keys +2 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/text_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10.log +1152 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/config.yaml +383 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/batch_keys +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/feats_lengths_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/feats_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/sids_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/speech_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/stats_keys +2 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/text_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/batch_keys +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/feats_lengths_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/feats_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/sids_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/speech_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/stats_keys +2 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/text_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11.log +1152 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/config.yaml +383 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/batch_keys +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/feats_lengths_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/feats_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/sids_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/speech_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/stats_keys +2 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/text_shape +249 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/batch_keys +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/feats_lengths_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/feats_stats.npz +3 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/sids_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/speech_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/stats_keys +2 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/text_shape +5 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12.log +1152 -0
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12/config.yaml +383 -0
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1.log
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.gan_tts_train --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.1.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.1.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
2 |
+
# Started at Fri Dec 1 15:58:34 UTC 2023
|
3 |
+
#
|
4 |
+
/data2/p280965/tts/espnet/tools/venv/bin/python3 /data2/p280965/tts/espnet/espnet2/bin/gan_tts_train.py --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.1.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.1.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
5 |
+
[wieling-3-a100] 2023-12-01 15:58:40,398 (gan_tts:293) INFO: Vocabulary size: 46
|
6 |
+
[wieling-3-a100] 2023-12-01 15:58:40,545 (encoder:174) INFO: encoder self-attention layer type = relative self-attention
|
7 |
+
/data2/p280965/tts/espnet/tools/venv/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
|
8 |
+
warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
|
9 |
+
/data2/p280965/tts/espnet/espnet2/gan_tts/vits/monotonic_align/__init__.py:19: UserWarning: Cython version is not available. Fallback to 'EXPERIMETAL' numba version. If you want to use the cython version, please build it as follows: `cd espnet2/gan_tts/vits/monotonic_align; python setup.py build_ext --inplace`
|
10 |
+
warnings.warn(
|
11 |
+
[wieling-3-a100] 2023-12-01 15:58:41,774 (abs_task:1268) INFO: pytorch.version=2.1.0+cu121, cuda.available=True, cudnn.version=8902, cudnn.benchmark=False, cudnn.deterministic=False
|
12 |
+
[wieling-3-a100] 2023-12-01 15:58:41,789 (abs_task:1269) INFO: Model structure:
|
13 |
+
ESPnetGANTTSModel(
|
14 |
+
(feats_extract): LogMelFbank(
|
15 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
16 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=80, fmax=7600, htk=False)
|
17 |
+
)
|
18 |
+
(tts): VITS(
|
19 |
+
(generator): VITSGenerator(
|
20 |
+
(text_encoder): TextEncoder(
|
21 |
+
(emb): Embedding(46, 192)
|
22 |
+
(encoder): Encoder(
|
23 |
+
(embed): Sequential(
|
24 |
+
(0): RelPositionalEncoding(
|
25 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(encoders): MultiSequential(
|
29 |
+
(0): EncoderLayer(
|
30 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
31 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
32 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
33 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
34 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
37 |
+
)
|
38 |
+
(feed_forward): MultiLayeredConv1d(
|
39 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
40 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
41 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
42 |
+
)
|
43 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
44 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
45 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
46 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
47 |
+
)
|
48 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
50 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
51 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
52 |
+
)
|
53 |
+
(1): EncoderLayer(
|
54 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
55 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
56 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
57 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
58 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
61 |
+
)
|
62 |
+
(feed_forward): MultiLayeredConv1d(
|
63 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
64 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
65 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
66 |
+
)
|
67 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
68 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
69 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
70 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
74 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
75 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
76 |
+
)
|
77 |
+
(2): EncoderLayer(
|
78 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
79 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
80 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
81 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
82 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
85 |
+
)
|
86 |
+
(feed_forward): MultiLayeredConv1d(
|
87 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
88 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
92 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
93 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
98 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
99 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
100 |
+
)
|
101 |
+
(3): EncoderLayer(
|
102 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
103 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
104 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
105 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
106 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
109 |
+
)
|
110 |
+
(feed_forward): MultiLayeredConv1d(
|
111 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
112 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
113 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
114 |
+
)
|
115 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
116 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
117 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
118 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
119 |
+
)
|
120 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
122 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
123 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
124 |
+
)
|
125 |
+
(4): EncoderLayer(
|
126 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
127 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
128 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
129 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
130 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
133 |
+
)
|
134 |
+
(feed_forward): MultiLayeredConv1d(
|
135 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
136 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
137 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
138 |
+
)
|
139 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
140 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
141 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
142 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
143 |
+
)
|
144 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
146 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
147 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
148 |
+
)
|
149 |
+
(5): EncoderLayer(
|
150 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
151 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
152 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
153 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
154 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
157 |
+
)
|
158 |
+
(feed_forward): MultiLayeredConv1d(
|
159 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
160 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
161 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
162 |
+
)
|
163 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
164 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
165 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
166 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
167 |
+
)
|
168 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
171 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
172 |
+
)
|
173 |
+
)
|
174 |
+
(after_norm): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
175 |
+
)
|
176 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
177 |
+
)
|
178 |
+
(decoder): HiFiGANGenerator(
|
179 |
+
(input_conv): Conv1d(192, 512, kernel_size=(7,), stride=(1,), padding=(3,))
|
180 |
+
(upsamples): ModuleList(
|
181 |
+
(0): Sequential(
|
182 |
+
(0): LeakyReLU(negative_slope=0.1)
|
183 |
+
(1): ConvTranspose1d(512, 256, kernel_size=(16,), stride=(8,), padding=(4,))
|
184 |
+
)
|
185 |
+
(1): Sequential(
|
186 |
+
(0): LeakyReLU(negative_slope=0.1)
|
187 |
+
(1): ConvTranspose1d(256, 128, kernel_size=(16,), stride=(8,), padding=(4,))
|
188 |
+
)
|
189 |
+
(2): Sequential(
|
190 |
+
(0): LeakyReLU(negative_slope=0.1)
|
191 |
+
(1): ConvTranspose1d(128, 64, kernel_size=(4,), stride=(2,), padding=(1,))
|
192 |
+
)
|
193 |
+
(3): Sequential(
|
194 |
+
(0): LeakyReLU(negative_slope=0.1)
|
195 |
+
(1): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(2,), padding=(1,))
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(blocks): ModuleList(
|
199 |
+
(0): ResidualBlock(
|
200 |
+
(convs1): ModuleList(
|
201 |
+
(0): Sequential(
|
202 |
+
(0): LeakyReLU(negative_slope=0.1)
|
203 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
204 |
+
)
|
205 |
+
(1): Sequential(
|
206 |
+
(0): LeakyReLU(negative_slope=0.1)
|
207 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
208 |
+
)
|
209 |
+
(2): Sequential(
|
210 |
+
(0): LeakyReLU(negative_slope=0.1)
|
211 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(convs2): ModuleList(
|
215 |
+
(0-2): 3 x Sequential(
|
216 |
+
(0): LeakyReLU(negative_slope=0.1)
|
217 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
218 |
+
)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(1): ResidualBlock(
|
222 |
+
(convs1): ModuleList(
|
223 |
+
(0): Sequential(
|
224 |
+
(0): LeakyReLU(negative_slope=0.1)
|
225 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
226 |
+
)
|
227 |
+
(1): Sequential(
|
228 |
+
(0): LeakyReLU(negative_slope=0.1)
|
229 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
230 |
+
)
|
231 |
+
(2): Sequential(
|
232 |
+
(0): LeakyReLU(negative_slope=0.1)
|
233 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
234 |
+
)
|
235 |
+
)
|
236 |
+
(convs2): ModuleList(
|
237 |
+
(0-2): 3 x Sequential(
|
238 |
+
(0): LeakyReLU(negative_slope=0.1)
|
239 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
240 |
+
)
|
241 |
+
)
|
242 |
+
)
|
243 |
+
(2): ResidualBlock(
|
244 |
+
(convs1): ModuleList(
|
245 |
+
(0): Sequential(
|
246 |
+
(0): LeakyReLU(negative_slope=0.1)
|
247 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
248 |
+
)
|
249 |
+
(1): Sequential(
|
250 |
+
(0): LeakyReLU(negative_slope=0.1)
|
251 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
252 |
+
)
|
253 |
+
(2): Sequential(
|
254 |
+
(0): LeakyReLU(negative_slope=0.1)
|
255 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(convs2): ModuleList(
|
259 |
+
(0-2): 3 x Sequential(
|
260 |
+
(0): LeakyReLU(negative_slope=0.1)
|
261 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
262 |
+
)
|
263 |
+
)
|
264 |
+
)
|
265 |
+
(3): ResidualBlock(
|
266 |
+
(convs1): ModuleList(
|
267 |
+
(0): Sequential(
|
268 |
+
(0): LeakyReLU(negative_slope=0.1)
|
269 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
270 |
+
)
|
271 |
+
(1): Sequential(
|
272 |
+
(0): LeakyReLU(negative_slope=0.1)
|
273 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
274 |
+
)
|
275 |
+
(2): Sequential(
|
276 |
+
(0): LeakyReLU(negative_slope=0.1)
|
277 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
278 |
+
)
|
279 |
+
)
|
280 |
+
(convs2): ModuleList(
|
281 |
+
(0-2): 3 x Sequential(
|
282 |
+
(0): LeakyReLU(negative_slope=0.1)
|
283 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
284 |
+
)
|
285 |
+
)
|
286 |
+
)
|
287 |
+
(4): ResidualBlock(
|
288 |
+
(convs1): ModuleList(
|
289 |
+
(0): Sequential(
|
290 |
+
(0): LeakyReLU(negative_slope=0.1)
|
291 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
292 |
+
)
|
293 |
+
(1): Sequential(
|
294 |
+
(0): LeakyReLU(negative_slope=0.1)
|
295 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
296 |
+
)
|
297 |
+
(2): Sequential(
|
298 |
+
(0): LeakyReLU(negative_slope=0.1)
|
299 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
300 |
+
)
|
301 |
+
)
|
302 |
+
(convs2): ModuleList(
|
303 |
+
(0-2): 3 x Sequential(
|
304 |
+
(0): LeakyReLU(negative_slope=0.1)
|
305 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
306 |
+
)
|
307 |
+
)
|
308 |
+
)
|
309 |
+
(5): ResidualBlock(
|
310 |
+
(convs1): ModuleList(
|
311 |
+
(0): Sequential(
|
312 |
+
(0): LeakyReLU(negative_slope=0.1)
|
313 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
314 |
+
)
|
315 |
+
(1): Sequential(
|
316 |
+
(0): LeakyReLU(negative_slope=0.1)
|
317 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
318 |
+
)
|
319 |
+
(2): Sequential(
|
320 |
+
(0): LeakyReLU(negative_slope=0.1)
|
321 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
322 |
+
)
|
323 |
+
)
|
324 |
+
(convs2): ModuleList(
|
325 |
+
(0-2): 3 x Sequential(
|
326 |
+
(0): LeakyReLU(negative_slope=0.1)
|
327 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
328 |
+
)
|
329 |
+
)
|
330 |
+
)
|
331 |
+
(6): ResidualBlock(
|
332 |
+
(convs1): ModuleList(
|
333 |
+
(0): Sequential(
|
334 |
+
(0): LeakyReLU(negative_slope=0.1)
|
335 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
336 |
+
)
|
337 |
+
(1): Sequential(
|
338 |
+
(0): LeakyReLU(negative_slope=0.1)
|
339 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
340 |
+
)
|
341 |
+
(2): Sequential(
|
342 |
+
(0): LeakyReLU(negative_slope=0.1)
|
343 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
344 |
+
)
|
345 |
+
)
|
346 |
+
(convs2): ModuleList(
|
347 |
+
(0-2): 3 x Sequential(
|
348 |
+
(0): LeakyReLU(negative_slope=0.1)
|
349 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
350 |
+
)
|
351 |
+
)
|
352 |
+
)
|
353 |
+
(7): ResidualBlock(
|
354 |
+
(convs1): ModuleList(
|
355 |
+
(0): Sequential(
|
356 |
+
(0): LeakyReLU(negative_slope=0.1)
|
357 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
358 |
+
)
|
359 |
+
(1): Sequential(
|
360 |
+
(0): LeakyReLU(negative_slope=0.1)
|
361 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
362 |
+
)
|
363 |
+
(2): Sequential(
|
364 |
+
(0): LeakyReLU(negative_slope=0.1)
|
365 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
366 |
+
)
|
367 |
+
)
|
368 |
+
(convs2): ModuleList(
|
369 |
+
(0-2): 3 x Sequential(
|
370 |
+
(0): LeakyReLU(negative_slope=0.1)
|
371 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
372 |
+
)
|
373 |
+
)
|
374 |
+
)
|
375 |
+
(8): ResidualBlock(
|
376 |
+
(convs1): ModuleList(
|
377 |
+
(0): Sequential(
|
378 |
+
(0): LeakyReLU(negative_slope=0.1)
|
379 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
380 |
+
)
|
381 |
+
(1): Sequential(
|
382 |
+
(0): LeakyReLU(negative_slope=0.1)
|
383 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
384 |
+
)
|
385 |
+
(2): Sequential(
|
386 |
+
(0): LeakyReLU(negative_slope=0.1)
|
387 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
388 |
+
)
|
389 |
+
)
|
390 |
+
(convs2): ModuleList(
|
391 |
+
(0-2): 3 x Sequential(
|
392 |
+
(0): LeakyReLU(negative_slope=0.1)
|
393 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
394 |
+
)
|
395 |
+
)
|
396 |
+
)
|
397 |
+
(9): ResidualBlock(
|
398 |
+
(convs1): ModuleList(
|
399 |
+
(0): Sequential(
|
400 |
+
(0): LeakyReLU(negative_slope=0.1)
|
401 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
402 |
+
)
|
403 |
+
(1): Sequential(
|
404 |
+
(0): LeakyReLU(negative_slope=0.1)
|
405 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
406 |
+
)
|
407 |
+
(2): Sequential(
|
408 |
+
(0): LeakyReLU(negative_slope=0.1)
|
409 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
410 |
+
)
|
411 |
+
)
|
412 |
+
(convs2): ModuleList(
|
413 |
+
(0-2): 3 x Sequential(
|
414 |
+
(0): LeakyReLU(negative_slope=0.1)
|
415 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
416 |
+
)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(10): ResidualBlock(
|
420 |
+
(convs1): ModuleList(
|
421 |
+
(0): Sequential(
|
422 |
+
(0): LeakyReLU(negative_slope=0.1)
|
423 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
424 |
+
)
|
425 |
+
(1): Sequential(
|
426 |
+
(0): LeakyReLU(negative_slope=0.1)
|
427 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
428 |
+
)
|
429 |
+
(2): Sequential(
|
430 |
+
(0): LeakyReLU(negative_slope=0.1)
|
431 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(convs2): ModuleList(
|
435 |
+
(0-2): 3 x Sequential(
|
436 |
+
(0): LeakyReLU(negative_slope=0.1)
|
437 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
438 |
+
)
|
439 |
+
)
|
440 |
+
)
|
441 |
+
(11): ResidualBlock(
|
442 |
+
(convs1): ModuleList(
|
443 |
+
(0): Sequential(
|
444 |
+
(0): LeakyReLU(negative_slope=0.1)
|
445 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
446 |
+
)
|
447 |
+
(1): Sequential(
|
448 |
+
(0): LeakyReLU(negative_slope=0.1)
|
449 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
450 |
+
)
|
451 |
+
(2): Sequential(
|
452 |
+
(0): LeakyReLU(negative_slope=0.1)
|
453 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
454 |
+
)
|
455 |
+
)
|
456 |
+
(convs2): ModuleList(
|
457 |
+
(0-2): 3 x Sequential(
|
458 |
+
(0): LeakyReLU(negative_slope=0.1)
|
459 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
460 |
+
)
|
461 |
+
)
|
462 |
+
)
|
463 |
+
)
|
464 |
+
(output_conv): Sequential(
|
465 |
+
(0): LeakyReLU(negative_slope=0.01)
|
466 |
+
(1): Conv1d(32, 1, kernel_size=(7,), stride=(1,), padding=(3,))
|
467 |
+
(2): Tanh()
|
468 |
+
)
|
469 |
+
(global_conv): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
470 |
+
)
|
471 |
+
(posterior_encoder): PosteriorEncoder(
|
472 |
+
(input_conv): Conv1d(80, 192, kernel_size=(1,), stride=(1,))
|
473 |
+
(encoder): WaveNet(
|
474 |
+
(conv_layers): ModuleList(
|
475 |
+
(0-15): 16 x ResidualBlock(
|
476 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
477 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
478 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
479 |
+
)
|
480 |
+
)
|
481 |
+
)
|
482 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
483 |
+
)
|
484 |
+
(flow): ResidualAffineCouplingBlock(
|
485 |
+
(flows): ModuleList(
|
486 |
+
(0): ResidualAffineCouplingLayer(
|
487 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
488 |
+
(encoder): WaveNet(
|
489 |
+
(conv_layers): ModuleList(
|
490 |
+
(0-3): 4 x ResidualBlock(
|
491 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
492 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
493 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
494 |
+
)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
498 |
+
)
|
499 |
+
(1): FlipFlow()
|
500 |
+
(2): ResidualAffineCouplingLayer(
|
501 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
502 |
+
(encoder): WaveNet(
|
503 |
+
(conv_layers): ModuleList(
|
504 |
+
(0-3): 4 x ResidualBlock(
|
505 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
506 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
507 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
508 |
+
)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
512 |
+
)
|
513 |
+
(3): FlipFlow()
|
514 |
+
(4): ResidualAffineCouplingLayer(
|
515 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
516 |
+
(encoder): WaveNet(
|
517 |
+
(conv_layers): ModuleList(
|
518 |
+
(0-3): 4 x ResidualBlock(
|
519 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
520 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
521 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
522 |
+
)
|
523 |
+
)
|
524 |
+
)
|
525 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
526 |
+
)
|
527 |
+
(5): FlipFlow()
|
528 |
+
(6): ResidualAffineCouplingLayer(
|
529 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
530 |
+
(encoder): WaveNet(
|
531 |
+
(conv_layers): ModuleList(
|
532 |
+
(0-3): 4 x ResidualBlock(
|
533 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
534 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
535 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
536 |
+
)
|
537 |
+
)
|
538 |
+
)
|
539 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
540 |
+
)
|
541 |
+
(7): FlipFlow()
|
542 |
+
)
|
543 |
+
)
|
544 |
+
(duration_predictor): StochasticDurationPredictor(
|
545 |
+
(pre): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
546 |
+
(dds): DilatedDepthSeparableConv(
|
547 |
+
(convs): ModuleList(
|
548 |
+
(0): Sequential(
|
549 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
550 |
+
(1): Transpose()
|
551 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
552 |
+
(3): Transpose()
|
553 |
+
(4): GELU(approximate='none')
|
554 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
555 |
+
(6): Transpose()
|
556 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
557 |
+
(8): Transpose()
|
558 |
+
(9): GELU(approximate='none')
|
559 |
+
(10): Dropout(p=0.5, inplace=False)
|
560 |
+
)
|
561 |
+
(1): Sequential(
|
562 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
563 |
+
(1): Transpose()
|
564 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
565 |
+
(3): Transpose()
|
566 |
+
(4): GELU(approximate='none')
|
567 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
568 |
+
(6): Transpose()
|
569 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
570 |
+
(8): Transpose()
|
571 |
+
(9): GELU(approximate='none')
|
572 |
+
(10): Dropout(p=0.5, inplace=False)
|
573 |
+
)
|
574 |
+
(2): Sequential(
|
575 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
576 |
+
(1): Transpose()
|
577 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
578 |
+
(3): Transpose()
|
579 |
+
(4): GELU(approximate='none')
|
580 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
581 |
+
(6): Transpose()
|
582 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
583 |
+
(8): Transpose()
|
584 |
+
(9): GELU(approximate='none')
|
585 |
+
(10): Dropout(p=0.5, inplace=False)
|
586 |
+
)
|
587 |
+
)
|
588 |
+
)
|
589 |
+
(proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
590 |
+
(log_flow): LogFlow()
|
591 |
+
(flows): ModuleList(
|
592 |
+
(0): ElementwiseAffineFlow()
|
593 |
+
(1): ConvFlow(
|
594 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
595 |
+
(dds_conv): DilatedDepthSeparableConv(
|
596 |
+
(convs): ModuleList(
|
597 |
+
(0): Sequential(
|
598 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
599 |
+
(1): Transpose()
|
600 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
601 |
+
(3): Transpose()
|
602 |
+
(4): GELU(approximate='none')
|
603 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
604 |
+
(6): Transpose()
|
605 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
606 |
+
(8): Transpose()
|
607 |
+
(9): GELU(approximate='none')
|
608 |
+
(10): Dropout(p=0.0, inplace=False)
|
609 |
+
)
|
610 |
+
(1): Sequential(
|
611 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
612 |
+
(1): Transpose()
|
613 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
614 |
+
(3): Transpose()
|
615 |
+
(4): GELU(approximate='none')
|
616 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
617 |
+
(6): Transpose()
|
618 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
619 |
+
(8): Transpose()
|
620 |
+
(9): GELU(approximate='none')
|
621 |
+
(10): Dropout(p=0.0, inplace=False)
|
622 |
+
)
|
623 |
+
(2): Sequential(
|
624 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
625 |
+
(1): Transpose()
|
626 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
627 |
+
(3): Transpose()
|
628 |
+
(4): GELU(approximate='none')
|
629 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
630 |
+
(6): Transpose()
|
631 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
632 |
+
(8): Transpose()
|
633 |
+
(9): GELU(approximate='none')
|
634 |
+
(10): Dropout(p=0.0, inplace=False)
|
635 |
+
)
|
636 |
+
)
|
637 |
+
)
|
638 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
639 |
+
)
|
640 |
+
(2): FlipFlow()
|
641 |
+
(3): ConvFlow(
|
642 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
643 |
+
(dds_conv): DilatedDepthSeparableConv(
|
644 |
+
(convs): ModuleList(
|
645 |
+
(0): Sequential(
|
646 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
647 |
+
(1): Transpose()
|
648 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
649 |
+
(3): Transpose()
|
650 |
+
(4): GELU(approximate='none')
|
651 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
652 |
+
(6): Transpose()
|
653 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
654 |
+
(8): Transpose()
|
655 |
+
(9): GELU(approximate='none')
|
656 |
+
(10): Dropout(p=0.0, inplace=False)
|
657 |
+
)
|
658 |
+
(1): Sequential(
|
659 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
660 |
+
(1): Transpose()
|
661 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
662 |
+
(3): Transpose()
|
663 |
+
(4): GELU(approximate='none')
|
664 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
665 |
+
(6): Transpose()
|
666 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
667 |
+
(8): Transpose()
|
668 |
+
(9): GELU(approximate='none')
|
669 |
+
(10): Dropout(p=0.0, inplace=False)
|
670 |
+
)
|
671 |
+
(2): Sequential(
|
672 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
673 |
+
(1): Transpose()
|
674 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
675 |
+
(3): Transpose()
|
676 |
+
(4): GELU(approximate='none')
|
677 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
678 |
+
(6): Transpose()
|
679 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
680 |
+
(8): Transpose()
|
681 |
+
(9): GELU(approximate='none')
|
682 |
+
(10): Dropout(p=0.0, inplace=False)
|
683 |
+
)
|
684 |
+
)
|
685 |
+
)
|
686 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
687 |
+
)
|
688 |
+
(4): FlipFlow()
|
689 |
+
(5): ConvFlow(
|
690 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
691 |
+
(dds_conv): DilatedDepthSeparableConv(
|
692 |
+
(convs): ModuleList(
|
693 |
+
(0): Sequential(
|
694 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
695 |
+
(1): Transpose()
|
696 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
697 |
+
(3): Transpose()
|
698 |
+
(4): GELU(approximate='none')
|
699 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
700 |
+
(6): Transpose()
|
701 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
702 |
+
(8): Transpose()
|
703 |
+
(9): GELU(approximate='none')
|
704 |
+
(10): Dropout(p=0.0, inplace=False)
|
705 |
+
)
|
706 |
+
(1): Sequential(
|
707 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
708 |
+
(1): Transpose()
|
709 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
710 |
+
(3): Transpose()
|
711 |
+
(4): GELU(approximate='none')
|
712 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
713 |
+
(6): Transpose()
|
714 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
715 |
+
(8): Transpose()
|
716 |
+
(9): GELU(approximate='none')
|
717 |
+
(10): Dropout(p=0.0, inplace=False)
|
718 |
+
)
|
719 |
+
(2): Sequential(
|
720 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
721 |
+
(1): Transpose()
|
722 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
723 |
+
(3): Transpose()
|
724 |
+
(4): GELU(approximate='none')
|
725 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
726 |
+
(6): Transpose()
|
727 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
728 |
+
(8): Transpose()
|
729 |
+
(9): GELU(approximate='none')
|
730 |
+
(10): Dropout(p=0.0, inplace=False)
|
731 |
+
)
|
732 |
+
)
|
733 |
+
)
|
734 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
735 |
+
)
|
736 |
+
(6): FlipFlow()
|
737 |
+
(7): ConvFlow(
|
738 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
739 |
+
(dds_conv): DilatedDepthSeparableConv(
|
740 |
+
(convs): ModuleList(
|
741 |
+
(0): Sequential(
|
742 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
743 |
+
(1): Transpose()
|
744 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
745 |
+
(3): Transpose()
|
746 |
+
(4): GELU(approximate='none')
|
747 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
748 |
+
(6): Transpose()
|
749 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
750 |
+
(8): Transpose()
|
751 |
+
(9): GELU(approximate='none')
|
752 |
+
(10): Dropout(p=0.0, inplace=False)
|
753 |
+
)
|
754 |
+
(1): Sequential(
|
755 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
756 |
+
(1): Transpose()
|
757 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
758 |
+
(3): Transpose()
|
759 |
+
(4): GELU(approximate='none')
|
760 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
761 |
+
(6): Transpose()
|
762 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
763 |
+
(8): Transpose()
|
764 |
+
(9): GELU(approximate='none')
|
765 |
+
(10): Dropout(p=0.0, inplace=False)
|
766 |
+
)
|
767 |
+
(2): Sequential(
|
768 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
769 |
+
(1): Transpose()
|
770 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
771 |
+
(3): Transpose()
|
772 |
+
(4): GELU(approximate='none')
|
773 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
774 |
+
(6): Transpose()
|
775 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
776 |
+
(8): Transpose()
|
777 |
+
(9): GELU(approximate='none')
|
778 |
+
(10): Dropout(p=0.0, inplace=False)
|
779 |
+
)
|
780 |
+
)
|
781 |
+
)
|
782 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
783 |
+
)
|
784 |
+
(8): FlipFlow()
|
785 |
+
)
|
786 |
+
(post_pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
787 |
+
(post_dds): DilatedDepthSeparableConv(
|
788 |
+
(convs): ModuleList(
|
789 |
+
(0): Sequential(
|
790 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
791 |
+
(1): Transpose()
|
792 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
793 |
+
(3): Transpose()
|
794 |
+
(4): GELU(approximate='none')
|
795 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
796 |
+
(6): Transpose()
|
797 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
798 |
+
(8): Transpose()
|
799 |
+
(9): GELU(approximate='none')
|
800 |
+
(10): Dropout(p=0.5, inplace=False)
|
801 |
+
)
|
802 |
+
(1): Sequential(
|
803 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
804 |
+
(1): Transpose()
|
805 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
806 |
+
(3): Transpose()
|
807 |
+
(4): GELU(approximate='none')
|
808 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
809 |
+
(6): Transpose()
|
810 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
811 |
+
(8): Transpose()
|
812 |
+
(9): GELU(approximate='none')
|
813 |
+
(10): Dropout(p=0.5, inplace=False)
|
814 |
+
)
|
815 |
+
(2): Sequential(
|
816 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
817 |
+
(1): Transpose()
|
818 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
819 |
+
(3): Transpose()
|
820 |
+
(4): GELU(approximate='none')
|
821 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
822 |
+
(6): Transpose()
|
823 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
824 |
+
(8): Transpose()
|
825 |
+
(9): GELU(approximate='none')
|
826 |
+
(10): Dropout(p=0.5, inplace=False)
|
827 |
+
)
|
828 |
+
)
|
829 |
+
)
|
830 |
+
(post_proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
831 |
+
(post_flows): ModuleList(
|
832 |
+
(0): ElementwiseAffineFlow()
|
833 |
+
(1): ConvFlow(
|
834 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
835 |
+
(dds_conv): DilatedDepthSeparableConv(
|
836 |
+
(convs): ModuleList(
|
837 |
+
(0): Sequential(
|
838 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
839 |
+
(1): Transpose()
|
840 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
841 |
+
(3): Transpose()
|
842 |
+
(4): GELU(approximate='none')
|
843 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
844 |
+
(6): Transpose()
|
845 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
846 |
+
(8): Transpose()
|
847 |
+
(9): GELU(approximate='none')
|
848 |
+
(10): Dropout(p=0.0, inplace=False)
|
849 |
+
)
|
850 |
+
(1): Sequential(
|
851 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
852 |
+
(1): Transpose()
|
853 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
854 |
+
(3): Transpose()
|
855 |
+
(4): GELU(approximate='none')
|
856 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
857 |
+
(6): Transpose()
|
858 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
859 |
+
(8): Transpose()
|
860 |
+
(9): GELU(approximate='none')
|
861 |
+
(10): Dropout(p=0.0, inplace=False)
|
862 |
+
)
|
863 |
+
(2): Sequential(
|
864 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
865 |
+
(1): Transpose()
|
866 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
867 |
+
(3): Transpose()
|
868 |
+
(4): GELU(approximate='none')
|
869 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
870 |
+
(6): Transpose()
|
871 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
872 |
+
(8): Transpose()
|
873 |
+
(9): GELU(approximate='none')
|
874 |
+
(10): Dropout(p=0.0, inplace=False)
|
875 |
+
)
|
876 |
+
)
|
877 |
+
)
|
878 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
879 |
+
)
|
880 |
+
(2): FlipFlow()
|
881 |
+
(3): ConvFlow(
|
882 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
883 |
+
(dds_conv): DilatedDepthSeparableConv(
|
884 |
+
(convs): ModuleList(
|
885 |
+
(0): Sequential(
|
886 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
887 |
+
(1): Transpose()
|
888 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
889 |
+
(3): Transpose()
|
890 |
+
(4): GELU(approximate='none')
|
891 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
892 |
+
(6): Transpose()
|
893 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
894 |
+
(8): Transpose()
|
895 |
+
(9): GELU(approximate='none')
|
896 |
+
(10): Dropout(p=0.0, inplace=False)
|
897 |
+
)
|
898 |
+
(1): Sequential(
|
899 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
900 |
+
(1): Transpose()
|
901 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
902 |
+
(3): Transpose()
|
903 |
+
(4): GELU(approximate='none')
|
904 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
905 |
+
(6): Transpose()
|
906 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
907 |
+
(8): Transpose()
|
908 |
+
(9): GELU(approximate='none')
|
909 |
+
(10): Dropout(p=0.0, inplace=False)
|
910 |
+
)
|
911 |
+
(2): Sequential(
|
912 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
913 |
+
(1): Transpose()
|
914 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
915 |
+
(3): Transpose()
|
916 |
+
(4): GELU(approximate='none')
|
917 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
918 |
+
(6): Transpose()
|
919 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
920 |
+
(8): Transpose()
|
921 |
+
(9): GELU(approximate='none')
|
922 |
+
(10): Dropout(p=0.0, inplace=False)
|
923 |
+
)
|
924 |
+
)
|
925 |
+
)
|
926 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
927 |
+
)
|
928 |
+
(4): FlipFlow()
|
929 |
+
(5): ConvFlow(
|
930 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
931 |
+
(dds_conv): DilatedDepthSeparableConv(
|
932 |
+
(convs): ModuleList(
|
933 |
+
(0): Sequential(
|
934 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
935 |
+
(1): Transpose()
|
936 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
937 |
+
(3): Transpose()
|
938 |
+
(4): GELU(approximate='none')
|
939 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
940 |
+
(6): Transpose()
|
941 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
942 |
+
(8): Transpose()
|
943 |
+
(9): GELU(approximate='none')
|
944 |
+
(10): Dropout(p=0.0, inplace=False)
|
945 |
+
)
|
946 |
+
(1): Sequential(
|
947 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
948 |
+
(1): Transpose()
|
949 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
950 |
+
(3): Transpose()
|
951 |
+
(4): GELU(approximate='none')
|
952 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
953 |
+
(6): Transpose()
|
954 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
955 |
+
(8): Transpose()
|
956 |
+
(9): GELU(approximate='none')
|
957 |
+
(10): Dropout(p=0.0, inplace=False)
|
958 |
+
)
|
959 |
+
(2): Sequential(
|
960 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
961 |
+
(1): Transpose()
|
962 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
963 |
+
(3): Transpose()
|
964 |
+
(4): GELU(approximate='none')
|
965 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
966 |
+
(6): Transpose()
|
967 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
968 |
+
(8): Transpose()
|
969 |
+
(9): GELU(approximate='none')
|
970 |
+
(10): Dropout(p=0.0, inplace=False)
|
971 |
+
)
|
972 |
+
)
|
973 |
+
)
|
974 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
975 |
+
)
|
976 |
+
(6): FlipFlow()
|
977 |
+
(7): ConvFlow(
|
978 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
979 |
+
(dds_conv): DilatedDepthSeparableConv(
|
980 |
+
(convs): ModuleList(
|
981 |
+
(0): Sequential(
|
982 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
983 |
+
(1): Transpose()
|
984 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
985 |
+
(3): Transpose()
|
986 |
+
(4): GELU(approximate='none')
|
987 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
988 |
+
(6): Transpose()
|
989 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
990 |
+
(8): Transpose()
|
991 |
+
(9): GELU(approximate='none')
|
992 |
+
(10): Dropout(p=0.0, inplace=False)
|
993 |
+
)
|
994 |
+
(1): Sequential(
|
995 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
996 |
+
(1): Transpose()
|
997 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
998 |
+
(3): Transpose()
|
999 |
+
(4): GELU(approximate='none')
|
1000 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1001 |
+
(6): Transpose()
|
1002 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1003 |
+
(8): Transpose()
|
1004 |
+
(9): GELU(approximate='none')
|
1005 |
+
(10): Dropout(p=0.0, inplace=False)
|
1006 |
+
)
|
1007 |
+
(2): Sequential(
|
1008 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
1009 |
+
(1): Transpose()
|
1010 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1011 |
+
(3): Transpose()
|
1012 |
+
(4): GELU(approximate='none')
|
1013 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1014 |
+
(6): Transpose()
|
1015 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1016 |
+
(8): Transpose()
|
1017 |
+
(9): GELU(approximate='none')
|
1018 |
+
(10): Dropout(p=0.0, inplace=False)
|
1019 |
+
)
|
1020 |
+
)
|
1021 |
+
)
|
1022 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
1023 |
+
)
|
1024 |
+
(8): FlipFlow()
|
1025 |
+
)
|
1026 |
+
(global_conv): Conv1d(256, 192, kernel_size=(1,), stride=(1,))
|
1027 |
+
)
|
1028 |
+
(global_emb): Embedding(4, 256)
|
1029 |
+
)
|
1030 |
+
(discriminator): HiFiGANMultiScaleMultiPeriodDiscriminator(
|
1031 |
+
(msd): HiFiGANMultiScaleDiscriminator(
|
1032 |
+
(discriminators): ModuleList(
|
1033 |
+
(0): HiFiGANScaleDiscriminator(
|
1034 |
+
(layers): ModuleList(
|
1035 |
+
(0): Sequential(
|
1036 |
+
(0): Conv1d(1, 128, kernel_size=(15,), stride=(1,), padding=(7,))
|
1037 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1038 |
+
)
|
1039 |
+
(1): Sequential(
|
1040 |
+
(0): Conv1d(128, 128, kernel_size=(41,), stride=(2,), padding=(20,), groups=4)
|
1041 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1042 |
+
)
|
1043 |
+
(2): Sequential(
|
1044 |
+
(0): Conv1d(128, 256, kernel_size=(41,), stride=(2,), padding=(20,), groups=16)
|
1045 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1046 |
+
)
|
1047 |
+
(3): Sequential(
|
1048 |
+
(0): Conv1d(256, 512, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1049 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1050 |
+
)
|
1051 |
+
(4): Sequential(
|
1052 |
+
(0): Conv1d(512, 1024, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1053 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1054 |
+
)
|
1055 |
+
(5): Sequential(
|
1056 |
+
(0): Conv1d(1024, 1024, kernel_size=(41,), stride=(1,), padding=(20,), groups=16)
|
1057 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1058 |
+
)
|
1059 |
+
(6): Sequential(
|
1060 |
+
(0): Conv1d(1024, 1024, kernel_size=(5,), stride=(1,), padding=(2,))
|
1061 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1062 |
+
)
|
1063 |
+
(7): Conv1d(1024, 1, kernel_size=(3,), stride=(1,), padding=(1,))
|
1064 |
+
)
|
1065 |
+
)
|
1066 |
+
)
|
1067 |
+
)
|
1068 |
+
(mpd): HiFiGANMultiPeriodDiscriminator(
|
1069 |
+
(discriminators): ModuleList(
|
1070 |
+
(0-4): 5 x HiFiGANPeriodDiscriminator(
|
1071 |
+
(convs): ModuleList(
|
1072 |
+
(0): Sequential(
|
1073 |
+
(0): Conv2d(1, 32, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1074 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1075 |
+
)
|
1076 |
+
(1): Sequential(
|
1077 |
+
(0): Conv2d(32, 128, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1078 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1079 |
+
)
|
1080 |
+
(2): Sequential(
|
1081 |
+
(0): Conv2d(128, 512, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1082 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1083 |
+
)
|
1084 |
+
(3): Sequential(
|
1085 |
+
(0): Conv2d(512, 1024, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1086 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1087 |
+
)
|
1088 |
+
(4): Sequential(
|
1089 |
+
(0): Conv2d(1024, 1024, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))
|
1090 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1091 |
+
)
|
1092 |
+
)
|
1093 |
+
(output_conv): Conv2d(1024, 1, kernel_size=(2, 1), stride=(1, 1), padding=(1, 0))
|
1094 |
+
)
|
1095 |
+
)
|
1096 |
+
)
|
1097 |
+
)
|
1098 |
+
(generator_adv_loss): GeneratorAdversarialLoss()
|
1099 |
+
(discriminator_adv_loss): DiscriminatorAdversarialLoss()
|
1100 |
+
(feat_match_loss): FeatureMatchLoss()
|
1101 |
+
(mel_loss): MelSpectrogramLoss(
|
1102 |
+
(wav_to_mel): LogMelFbank(
|
1103 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
1104 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=0, fmax=11025.0, htk=False)
|
1105 |
+
)
|
1106 |
+
)
|
1107 |
+
(kl_loss): KLDivergenceLoss()
|
1108 |
+
)
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
Model summary:
|
1112 |
+
Class Name: ESPnetGANTTSModel
|
1113 |
+
Total Number of model parameters: 96.24 M
|
1114 |
+
Number of trainable parameters: 96.24 M (100.0%)
|
1115 |
+
Size: 384.96 MB
|
1116 |
+
Type: torch.float32
|
1117 |
+
[wieling-3-a100] 2023-12-01 15:58:41,789 (abs_task:1272) INFO: Optimizer:
|
1118 |
+
AdamW (
|
1119 |
+
Parameter Group 0
|
1120 |
+
amsgrad: False
|
1121 |
+
betas: [0.8, 0.99]
|
1122 |
+
capturable: False
|
1123 |
+
differentiable: False
|
1124 |
+
eps: 1e-09
|
1125 |
+
foreach: None
|
1126 |
+
fused: None
|
1127 |
+
initial_lr: 0.0003
|
1128 |
+
lr: 0.0003
|
1129 |
+
maximize: False
|
1130 |
+
weight_decay: 0.0
|
1131 |
+
)
|
1132 |
+
[wieling-3-a100] 2023-12-01 15:58:41,789 (abs_task:1273) INFO: Scheduler: <torch.optim.lr_scheduler.ExponentialLR object at 0x7ff08e5c38b0>
|
1133 |
+
[wieling-3-a100] 2023-12-01 15:58:41,790 (abs_task:1272) INFO: Optimizer2:
|
1134 |
+
AdamW (
|
1135 |
+
Parameter Group 0
|
1136 |
+
amsgrad: False
|
1137 |
+
betas: [0.8, 0.99]
|
1138 |
+
capturable: False
|
1139 |
+
differentiable: False
|
1140 |
+
eps: 1e-09
|
1141 |
+
foreach: None
|
1142 |
+
fused: None
|
1143 |
+
initial_lr: 0.0003
|
1144 |
+
lr: 0.0003
|
1145 |
+
maximize: False
|
1146 |
+
weight_decay: 0.0
|
1147 |
+
)
|
1148 |
+
[wieling-3-a100] 2023-12-01 15:58:41,790 (abs_task:1273) INFO: Scheduler2: <torch.optim.lr_scheduler.ExponentialLR object at 0x7ff08e5c3850>
|
1149 |
+
[wieling-3-a100] 2023-12-01 15:58:41,790 (abs_task:1282) INFO: Saving the configuration in exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/config.yaml
|
1150 |
+
[wieling-3-a100] 2023-12-01 15:58:41,807 (abs_task:1293) INFO: Namespace(config='conf/train_vits.yaml', print_config=False, log_level='INFO', drop_last_iter=False, dry_run=False, iterator_type='sequence', valid_iterator_type=None, output_dir='exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1', ngpu=0, seed=67823, num_workers=4, num_att_plot=3, dist_backend='nccl', dist_init_method='env://', dist_world_size=None, dist_rank=None, local_rank=None, dist_master_addr=None, dist_master_port=None, dist_launcher=None, multiprocessing_distributed=False, unused_parameters=True, sharded_ddp=False, cudnn_enabled=True, cudnn_benchmark=False, cudnn_deterministic=False, collect_stats=True, write_collected_feats=False, max_epoch=1000, patience=None, val_scheduler_criterion=('valid', 'loss'), early_stopping_criterion=('valid', 'loss', 'min'), best_model_criterion=[['train', 'total_count', 'max']], keep_nbest_models=10, nbest_averaging_interval=0, grad_clip=-1, grad_clip_type=2.0, grad_noise=False, accum_grad=1, no_forward_run=False, resume=False, train_dtype='float32', use_amp=False, log_interval=50, use_matplotlib=True, use_tensorboard=True, create_graph_in_tensorboard=False, use_wandb=True, wandb_project='GROTTS', wandb_id=None, wandb_entity=None, wandb_name='VITS_lr_3.0e-4', wandb_model_log_interval=-1, detect_anomaly=False, use_lora=False, save_lora_only=True, lora_conf={}, pretrain_path=None, init_param=['downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv'], ignore_init_mismatch=False, freeze_param=[], num_iters_per_epoch=1000, batch_size=40, valid_batch_size=None, batch_bins=10000000, valid_batch_bins=None, train_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.1.scp'], valid_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.1.scp'], batch_type='numel', valid_batch_type=None, fold_length=[], sort_in_batch='descending', shuffle_within_batch=False, sort_batch='descending', multiple_iterator=False, chunk_length=500, chunk_shift_ratio=0.5, num_cache_chunks=1024, chunk_excluded_key_prefixes=[], chunk_default_fs=None, train_data_path_and_name_and_type=[('dump/raw/train_nodev/text', 'text', 'text'), ('dump/raw/train_nodev/wav.scp', 'speech', 'sound'), ('dump/raw/train_nodev/utt2sid', 'sids', 'text_int')], valid_data_path_and_name_and_type=[('dump/raw/train_dev/text', 'text', 'text'), ('dump/raw/train_dev/wav.scp', 'speech', 'sound'), ('dump/raw/train_dev/utt2sid', 'sids', 'text_int')], allow_variable_data_keys=False, max_cache_size=0.0, max_cache_fd=32, allow_multi_rates=False, valid_max_cache_size=None, exclude_weight_decay=False, exclude_weight_decay_conf={}, optim='adamw', optim_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler='exponentiallr', scheduler_conf={'gamma': 0.999875}, optim2='adamw', optim2_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler2='exponentiallr', scheduler2_conf={'gamma': 0.999875}, generator_first=False, token_list=['<blank>', '<unk>', '<space>', 'e', 'n', 'a', 'o', 't', 'i', 'r', 'd', 's', 'k', 'l', 'm', 'u', 'g', 'h', 'w', 'v', '.', 'z', 'b', 'p', ',', 'j', 'c', 'f', '‘', '’', ':', '?', 'ö', "'", '!', '-', ';', 'ò', 'è', 'ì', 'é', 'y', 'ë', 'x', 'q', '<sos/eos>'], odim=None, model_conf={}, use_preprocessor=True, token_type='char', bpemodel=None, non_linguistic_symbols=None, cleaner=None, g2p=None, feats_extract='fbank', feats_extract_conf={'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'fs': 22050, 'fmin': 80, 'fmax': 7600, 'n_mels': 80}, normalize=None, normalize_conf={}, tts='vits', tts_conf={'generator_type': 'vits_generator', 'generator_params': {'hidden_channels': 192, 'spks': 4, 'global_channels': 256, 'segment_size': 32, 'text_encoder_attention_heads': 2, 'text_encoder_ffn_expand': 4, 'text_encoder_blocks': 6, 'text_encoder_positionwise_layer_type': 'conv1d', 'text_encoder_positionwise_conv_kernel_size': 3, 'text_encoder_positional_encoding_layer_type': 'rel_pos', 'text_encoder_self_attention_layer_type': 'rel_selfattn', 'text_encoder_activation_type': 'swish', 'text_encoder_normalize_before': True, 'text_encoder_dropout_rate': 0.1, 'text_encoder_positional_dropout_rate': 0.0, 'text_encoder_attention_dropout_rate': 0.1, 'use_macaron_style_in_text_encoder': True, 'use_conformer_conv_in_text_encoder': False, 'text_encoder_conformer_kernel_size': -1, 'decoder_kernel_size': 7, 'decoder_channels': 512, 'decoder_upsample_scales': [8, 8, 2, 2], 'decoder_upsample_kernel_sizes': [16, 16, 4, 4], 'decoder_resblock_kernel_sizes': [3, 7, 11], 'decoder_resblock_dilations': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'use_weight_norm_in_decoder': True, 'posterior_encoder_kernel_size': 5, 'posterior_encoder_layers': 16, 'posterior_encoder_stacks': 1, 'posterior_encoder_base_dilation': 1, 'posterior_encoder_dropout_rate': 0.0, 'use_weight_norm_in_posterior_encoder': True, 'flow_flows': 4, 'flow_kernel_size': 5, 'flow_base_dilation': 1, 'flow_layers': 4, 'flow_dropout_rate': 0.0, 'use_weight_norm_in_flow': True, 'use_only_mean_in_flow': True, 'stochastic_duration_predictor_kernel_size': 3, 'stochastic_duration_predictor_dropout_rate': 0.5, 'stochastic_duration_predictor_flows': 4, 'stochastic_duration_predictor_dds_conv_layers': 3, 'vocabs': 46, 'aux_channels': 80}, 'discriminator_type': 'hifigan_multi_scale_multi_period_discriminator', 'discriminator_params': {'scales': 1, 'scale_downsample_pooling': 'AvgPool1d', 'scale_downsample_pooling_params': {'kernel_size': 4, 'stride': 2, 'padding': 2}, 'scale_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [15, 41, 5, 3], 'channels': 128, 'max_downsample_channels': 1024, 'max_groups': 16, 'bias': True, 'downsample_scales': [2, 2, 4, 4, 1], 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': False, 'use_spectral_norm': False}, 'follow_official_norm': False, 'periods': [2, 3, 5, 7, 11], 'period_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [5, 3], 'channels': 32, 'downsample_scales': [3, 3, 3, 3, 1], 'max_downsample_channels': 1024, 'bias': True, 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': True, 'use_spectral_norm': False}}, 'generator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'discriminator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'feat_match_loss_params': {'average_by_discriminators': False, 'average_by_layers': False, 'include_final_outputs': True}, 'mel_loss_params': {'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'window': 'hann', 'n_mels': 80, 'fmin': 0, 'fmax': None, 'log_base': None}, 'lambda_adv': 1.0, 'lambda_mel': 45.0, 'lambda_feat_match': 2.0, 'lambda_dur': 1.0, 'lambda_kl': 1.0, 'sampling_rate': 22050, 'cache_generator_outputs': True}, pitch_extract=None, pitch_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'f0max': 400, 'f0min': 80}, pitch_normalize=None, pitch_normalize_conf={}, energy_extract=None, energy_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None}, energy_normalize=None, energy_normalize_conf={}, required=['output_dir', 'token_list'], version='202310', distributed=False)
|
1151 |
+
# Accounting: time=16 threads=1
|
1152 |
+
# Ended (code 0) at Fri Dec 1 15:58:50 UTC 2023, elapsed time 16 seconds
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/config.yaml
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config: conf/train_vits.yaml
|
2 |
+
print_config: false
|
3 |
+
log_level: INFO
|
4 |
+
drop_last_iter: false
|
5 |
+
dry_run: false
|
6 |
+
iterator_type: sequence
|
7 |
+
valid_iterator_type: null
|
8 |
+
output_dir: exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1
|
9 |
+
ngpu: 0
|
10 |
+
seed: 67823
|
11 |
+
num_workers: 4
|
12 |
+
num_att_plot: 3
|
13 |
+
dist_backend: nccl
|
14 |
+
dist_init_method: env://
|
15 |
+
dist_world_size: null
|
16 |
+
dist_rank: null
|
17 |
+
local_rank: null
|
18 |
+
dist_master_addr: null
|
19 |
+
dist_master_port: null
|
20 |
+
dist_launcher: null
|
21 |
+
multiprocessing_distributed: false
|
22 |
+
unused_parameters: true
|
23 |
+
sharded_ddp: false
|
24 |
+
cudnn_enabled: true
|
25 |
+
cudnn_benchmark: false
|
26 |
+
cudnn_deterministic: false
|
27 |
+
collect_stats: true
|
28 |
+
write_collected_feats: false
|
29 |
+
max_epoch: 1000
|
30 |
+
patience: null
|
31 |
+
val_scheduler_criterion:
|
32 |
+
- valid
|
33 |
+
- loss
|
34 |
+
early_stopping_criterion:
|
35 |
+
- valid
|
36 |
+
- loss
|
37 |
+
- min
|
38 |
+
best_model_criterion:
|
39 |
+
- - train
|
40 |
+
- total_count
|
41 |
+
- max
|
42 |
+
keep_nbest_models: 10
|
43 |
+
nbest_averaging_interval: 0
|
44 |
+
grad_clip: -1
|
45 |
+
grad_clip_type: 2.0
|
46 |
+
grad_noise: false
|
47 |
+
accum_grad: 1
|
48 |
+
no_forward_run: false
|
49 |
+
resume: false
|
50 |
+
train_dtype: float32
|
51 |
+
use_amp: false
|
52 |
+
log_interval: 50
|
53 |
+
use_matplotlib: true
|
54 |
+
use_tensorboard: true
|
55 |
+
create_graph_in_tensorboard: false
|
56 |
+
use_wandb: true
|
57 |
+
wandb_project: GROTTS
|
58 |
+
wandb_id: null
|
59 |
+
wandb_entity: null
|
60 |
+
wandb_name: VITS_lr_3.0e-4
|
61 |
+
wandb_model_log_interval: -1
|
62 |
+
detect_anomaly: false
|
63 |
+
use_lora: false
|
64 |
+
save_lora_only: true
|
65 |
+
lora_conf: {}
|
66 |
+
pretrain_path: null
|
67 |
+
init_param:
|
68 |
+
- downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv
|
69 |
+
ignore_init_mismatch: false
|
70 |
+
freeze_param: []
|
71 |
+
num_iters_per_epoch: 1000
|
72 |
+
batch_size: 40
|
73 |
+
valid_batch_size: null
|
74 |
+
batch_bins: 10000000
|
75 |
+
valid_batch_bins: null
|
76 |
+
train_shape_file:
|
77 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.1.scp
|
78 |
+
valid_shape_file:
|
79 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.1.scp
|
80 |
+
batch_type: numel
|
81 |
+
valid_batch_type: null
|
82 |
+
fold_length: []
|
83 |
+
sort_in_batch: descending
|
84 |
+
shuffle_within_batch: false
|
85 |
+
sort_batch: descending
|
86 |
+
multiple_iterator: false
|
87 |
+
chunk_length: 500
|
88 |
+
chunk_shift_ratio: 0.5
|
89 |
+
num_cache_chunks: 1024
|
90 |
+
chunk_excluded_key_prefixes: []
|
91 |
+
chunk_default_fs: null
|
92 |
+
train_data_path_and_name_and_type:
|
93 |
+
- - dump/raw/train_nodev/text
|
94 |
+
- text
|
95 |
+
- text
|
96 |
+
- - dump/raw/train_nodev/wav.scp
|
97 |
+
- speech
|
98 |
+
- sound
|
99 |
+
- - dump/raw/train_nodev/utt2sid
|
100 |
+
- sids
|
101 |
+
- text_int
|
102 |
+
valid_data_path_and_name_and_type:
|
103 |
+
- - dump/raw/train_dev/text
|
104 |
+
- text
|
105 |
+
- text
|
106 |
+
- - dump/raw/train_dev/wav.scp
|
107 |
+
- speech
|
108 |
+
- sound
|
109 |
+
- - dump/raw/train_dev/utt2sid
|
110 |
+
- sids
|
111 |
+
- text_int
|
112 |
+
allow_variable_data_keys: false
|
113 |
+
max_cache_size: 0.0
|
114 |
+
max_cache_fd: 32
|
115 |
+
allow_multi_rates: false
|
116 |
+
valid_max_cache_size: null
|
117 |
+
exclude_weight_decay: false
|
118 |
+
exclude_weight_decay_conf: {}
|
119 |
+
optim: adamw
|
120 |
+
optim_conf:
|
121 |
+
lr: 0.0003
|
122 |
+
betas:
|
123 |
+
- 0.8
|
124 |
+
- 0.99
|
125 |
+
eps: 1.0e-09
|
126 |
+
weight_decay: 0.0
|
127 |
+
scheduler: exponentiallr
|
128 |
+
scheduler_conf:
|
129 |
+
gamma: 0.999875
|
130 |
+
optim2: adamw
|
131 |
+
optim2_conf:
|
132 |
+
lr: 0.0003
|
133 |
+
betas:
|
134 |
+
- 0.8
|
135 |
+
- 0.99
|
136 |
+
eps: 1.0e-09
|
137 |
+
weight_decay: 0.0
|
138 |
+
scheduler2: exponentiallr
|
139 |
+
scheduler2_conf:
|
140 |
+
gamma: 0.999875
|
141 |
+
generator_first: false
|
142 |
+
token_list:
|
143 |
+
- <blank>
|
144 |
+
- <unk>
|
145 |
+
- <space>
|
146 |
+
- e
|
147 |
+
- n
|
148 |
+
- a
|
149 |
+
- o
|
150 |
+
- t
|
151 |
+
- i
|
152 |
+
- r
|
153 |
+
- d
|
154 |
+
- s
|
155 |
+
- k
|
156 |
+
- l
|
157 |
+
- m
|
158 |
+
- u
|
159 |
+
- g
|
160 |
+
- h
|
161 |
+
- w
|
162 |
+
- v
|
163 |
+
- .
|
164 |
+
- z
|
165 |
+
- b
|
166 |
+
- p
|
167 |
+
- ','
|
168 |
+
- j
|
169 |
+
- c
|
170 |
+
- f
|
171 |
+
- ‘
|
172 |
+
- ’
|
173 |
+
- ':'
|
174 |
+
- '?'
|
175 |
+
- ö
|
176 |
+
- ''''
|
177 |
+
- '!'
|
178 |
+
- '-'
|
179 |
+
- ;
|
180 |
+
- ò
|
181 |
+
- è
|
182 |
+
- ì
|
183 |
+
- é
|
184 |
+
- y
|
185 |
+
- ë
|
186 |
+
- x
|
187 |
+
- q
|
188 |
+
- <sos/eos>
|
189 |
+
odim: null
|
190 |
+
model_conf: {}
|
191 |
+
use_preprocessor: true
|
192 |
+
token_type: char
|
193 |
+
bpemodel: null
|
194 |
+
non_linguistic_symbols: null
|
195 |
+
cleaner: null
|
196 |
+
g2p: null
|
197 |
+
feats_extract: fbank
|
198 |
+
feats_extract_conf:
|
199 |
+
n_fft: 1024
|
200 |
+
hop_length: 256
|
201 |
+
win_length: null
|
202 |
+
fs: 22050
|
203 |
+
fmin: 80
|
204 |
+
fmax: 7600
|
205 |
+
n_mels: 80
|
206 |
+
normalize: null
|
207 |
+
normalize_conf: {}
|
208 |
+
tts: vits
|
209 |
+
tts_conf:
|
210 |
+
generator_type: vits_generator
|
211 |
+
generator_params:
|
212 |
+
hidden_channels: 192
|
213 |
+
spks: 4
|
214 |
+
global_channels: 256
|
215 |
+
segment_size: 32
|
216 |
+
text_encoder_attention_heads: 2
|
217 |
+
text_encoder_ffn_expand: 4
|
218 |
+
text_encoder_blocks: 6
|
219 |
+
text_encoder_positionwise_layer_type: conv1d
|
220 |
+
text_encoder_positionwise_conv_kernel_size: 3
|
221 |
+
text_encoder_positional_encoding_layer_type: rel_pos
|
222 |
+
text_encoder_self_attention_layer_type: rel_selfattn
|
223 |
+
text_encoder_activation_type: swish
|
224 |
+
text_encoder_normalize_before: true
|
225 |
+
text_encoder_dropout_rate: 0.1
|
226 |
+
text_encoder_positional_dropout_rate: 0.0
|
227 |
+
text_encoder_attention_dropout_rate: 0.1
|
228 |
+
use_macaron_style_in_text_encoder: true
|
229 |
+
use_conformer_conv_in_text_encoder: false
|
230 |
+
text_encoder_conformer_kernel_size: -1
|
231 |
+
decoder_kernel_size: 7
|
232 |
+
decoder_channels: 512
|
233 |
+
decoder_upsample_scales:
|
234 |
+
- 8
|
235 |
+
- 8
|
236 |
+
- 2
|
237 |
+
- 2
|
238 |
+
decoder_upsample_kernel_sizes:
|
239 |
+
- 16
|
240 |
+
- 16
|
241 |
+
- 4
|
242 |
+
- 4
|
243 |
+
decoder_resblock_kernel_sizes:
|
244 |
+
- 3
|
245 |
+
- 7
|
246 |
+
- 11
|
247 |
+
decoder_resblock_dilations:
|
248 |
+
- - 1
|
249 |
+
- 3
|
250 |
+
- 5
|
251 |
+
- - 1
|
252 |
+
- 3
|
253 |
+
- 5
|
254 |
+
- - 1
|
255 |
+
- 3
|
256 |
+
- 5
|
257 |
+
use_weight_norm_in_decoder: true
|
258 |
+
posterior_encoder_kernel_size: 5
|
259 |
+
posterior_encoder_layers: 16
|
260 |
+
posterior_encoder_stacks: 1
|
261 |
+
posterior_encoder_base_dilation: 1
|
262 |
+
posterior_encoder_dropout_rate: 0.0
|
263 |
+
use_weight_norm_in_posterior_encoder: true
|
264 |
+
flow_flows: 4
|
265 |
+
flow_kernel_size: 5
|
266 |
+
flow_base_dilation: 1
|
267 |
+
flow_layers: 4
|
268 |
+
flow_dropout_rate: 0.0
|
269 |
+
use_weight_norm_in_flow: true
|
270 |
+
use_only_mean_in_flow: true
|
271 |
+
stochastic_duration_predictor_kernel_size: 3
|
272 |
+
stochastic_duration_predictor_dropout_rate: 0.5
|
273 |
+
stochastic_duration_predictor_flows: 4
|
274 |
+
stochastic_duration_predictor_dds_conv_layers: 3
|
275 |
+
vocabs: 46
|
276 |
+
aux_channels: 80
|
277 |
+
discriminator_type: hifigan_multi_scale_multi_period_discriminator
|
278 |
+
discriminator_params:
|
279 |
+
scales: 1
|
280 |
+
scale_downsample_pooling: AvgPool1d
|
281 |
+
scale_downsample_pooling_params:
|
282 |
+
kernel_size: 4
|
283 |
+
stride: 2
|
284 |
+
padding: 2
|
285 |
+
scale_discriminator_params:
|
286 |
+
in_channels: 1
|
287 |
+
out_channels: 1
|
288 |
+
kernel_sizes:
|
289 |
+
- 15
|
290 |
+
- 41
|
291 |
+
- 5
|
292 |
+
- 3
|
293 |
+
channels: 128
|
294 |
+
max_downsample_channels: 1024
|
295 |
+
max_groups: 16
|
296 |
+
bias: true
|
297 |
+
downsample_scales:
|
298 |
+
- 2
|
299 |
+
- 2
|
300 |
+
- 4
|
301 |
+
- 4
|
302 |
+
- 1
|
303 |
+
nonlinear_activation: LeakyReLU
|
304 |
+
nonlinear_activation_params:
|
305 |
+
negative_slope: 0.1
|
306 |
+
use_weight_norm: false
|
307 |
+
use_spectral_norm: false
|
308 |
+
follow_official_norm: false
|
309 |
+
periods:
|
310 |
+
- 2
|
311 |
+
- 3
|
312 |
+
- 5
|
313 |
+
- 7
|
314 |
+
- 11
|
315 |
+
period_discriminator_params:
|
316 |
+
in_channels: 1
|
317 |
+
out_channels: 1
|
318 |
+
kernel_sizes:
|
319 |
+
- 5
|
320 |
+
- 3
|
321 |
+
channels: 32
|
322 |
+
downsample_scales:
|
323 |
+
- 3
|
324 |
+
- 3
|
325 |
+
- 3
|
326 |
+
- 3
|
327 |
+
- 1
|
328 |
+
max_downsample_channels: 1024
|
329 |
+
bias: true
|
330 |
+
nonlinear_activation: LeakyReLU
|
331 |
+
nonlinear_activation_params:
|
332 |
+
negative_slope: 0.1
|
333 |
+
use_weight_norm: true
|
334 |
+
use_spectral_norm: false
|
335 |
+
generator_adv_loss_params:
|
336 |
+
average_by_discriminators: false
|
337 |
+
loss_type: mse
|
338 |
+
discriminator_adv_loss_params:
|
339 |
+
average_by_discriminators: false
|
340 |
+
loss_type: mse
|
341 |
+
feat_match_loss_params:
|
342 |
+
average_by_discriminators: false
|
343 |
+
average_by_layers: false
|
344 |
+
include_final_outputs: true
|
345 |
+
mel_loss_params:
|
346 |
+
fs: 22050
|
347 |
+
n_fft: 1024
|
348 |
+
hop_length: 256
|
349 |
+
win_length: null
|
350 |
+
window: hann
|
351 |
+
n_mels: 80
|
352 |
+
fmin: 0
|
353 |
+
fmax: null
|
354 |
+
log_base: null
|
355 |
+
lambda_adv: 1.0
|
356 |
+
lambda_mel: 45.0
|
357 |
+
lambda_feat_match: 2.0
|
358 |
+
lambda_dur: 1.0
|
359 |
+
lambda_kl: 1.0
|
360 |
+
sampling_rate: 22050
|
361 |
+
cache_generator_outputs: true
|
362 |
+
pitch_extract: null
|
363 |
+
pitch_extract_conf:
|
364 |
+
fs: 22050
|
365 |
+
n_fft: 1024
|
366 |
+
hop_length: 256
|
367 |
+
f0max: 400
|
368 |
+
f0min: 80
|
369 |
+
pitch_normalize: null
|
370 |
+
pitch_normalize_conf: {}
|
371 |
+
energy_extract: null
|
372 |
+
energy_extract_conf:
|
373 |
+
fs: 22050
|
374 |
+
n_fft: 1024
|
375 |
+
hop_length: 256
|
376 |
+
win_length: null
|
377 |
+
energy_normalize: null
|
378 |
+
energy_normalize_conf: {}
|
379 |
+
required:
|
380 |
+
- output_dir
|
381 |
+
- token_list
|
382 |
+
version: '202310'
|
383 |
+
distributed: false
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/batch_keys
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
text
|
2 |
+
speech
|
3 |
+
sids
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/feats_lengths_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ddfdb5fa7d569f4cfd147a3b2c063b468bc622eef7ac57458ca7e4c3afded949
|
3 |
+
size 778
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/feats_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4410bc31eace8e651b586b137f0b39fafa8920aaf121ca372393331ef4abeadf
|
3 |
+
size 1402
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/sids_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-0002 1
|
2 |
+
Hoogelaandsters-0006 1
|
3 |
+
Hoogelaandsters-0010 1
|
4 |
+
Hoogelaandsters-0014 1
|
5 |
+
Hoogelaandsters-0018 1
|
6 |
+
Hoogelaandsters-0022 1
|
7 |
+
Hoogelaandsters-0026 1
|
8 |
+
Hoogelaandsters-0030 1
|
9 |
+
Hoogelaandsters-0034 1
|
10 |
+
Hoogelaandsters-0038 1
|
11 |
+
Hoogelaandsters-0042 1
|
12 |
+
Hoogelaandsters-0046 1
|
13 |
+
Hoogelaandsters-0050 1
|
14 |
+
Hoogelaandsters-0054 1
|
15 |
+
Hoogelaandsters-0058 1
|
16 |
+
Hoogelaandsters-0062 1
|
17 |
+
Hoogelaandsters-0066 1
|
18 |
+
Hoogelaandsters-0071 1
|
19 |
+
Hoogelaandsters-0075 1
|
20 |
+
Hoogelaandsters-0079 1
|
21 |
+
Hoogelaandsters-0083 1
|
22 |
+
Hoogelaandsters-0087 1
|
23 |
+
Hoogelaandsters-0091 1
|
24 |
+
Hoogelaandsters-0095 1
|
25 |
+
Hoogelaandsters-0099 1
|
26 |
+
Hoogelaandsters-0103 1
|
27 |
+
Hoogelaandsters-0107 1
|
28 |
+
Hoogelaandsters-0111 1
|
29 |
+
Hoogelaandsters-0115 1
|
30 |
+
Hoogelaandsters-0119 1
|
31 |
+
Hoogelaandsters-0123 1
|
32 |
+
Hoogelaandsters-0127 1
|
33 |
+
Hoogelaandsters-0131 1
|
34 |
+
Hoogelaandsters-0136 1
|
35 |
+
Hoogelaandsters-0140 1
|
36 |
+
Hoogelaandsters-0144 1
|
37 |
+
Hoogelaandsters-0148 1
|
38 |
+
Hoogelaandsters-0152 1
|
39 |
+
Hoogelaandsters-0156 1
|
40 |
+
Hoogelaandsters-0160 1
|
41 |
+
Hoogelaandsters-0003 1
|
42 |
+
Hoogelaandsters-0007 1
|
43 |
+
Hoogelaandsters-0011 1
|
44 |
+
Hoogelaandsters-0015 1
|
45 |
+
Hoogelaandsters-0019 1
|
46 |
+
Hoogelaandsters-0023 1
|
47 |
+
Hoogelaandsters-0027 1
|
48 |
+
Hoogelaandsters-0031 1
|
49 |
+
Hoogelaandsters-0035 1
|
50 |
+
Hoogelaandsters-0039 1
|
51 |
+
Hoogelaandsters-0043 1
|
52 |
+
Hoogelaandsters-0047 1
|
53 |
+
Hoogelaandsters-0051 1
|
54 |
+
Hoogelaandsters-0055 1
|
55 |
+
Hoogelaandsters-0059 1
|
56 |
+
Hoogelaandsters-0063 1
|
57 |
+
Hoogelaandsters-0067 1
|
58 |
+
Hoogelaandsters-0072 1
|
59 |
+
Hoogelaandsters-0076 1
|
60 |
+
Hoogelaandsters-0080 1
|
61 |
+
Hoogelaandsters-0084 1
|
62 |
+
Hoogelaandsters-0088 1
|
63 |
+
Hoogelaandsters-0092 1
|
64 |
+
Hoogelaandsters-0096 1
|
65 |
+
Hoogelaandsters-0100 1
|
66 |
+
Hoogelaandsters-0104 1
|
67 |
+
Hoogelaandsters-0108 1
|
68 |
+
Hoogelaandsters-0112 1
|
69 |
+
Hoogelaandsters-0116 1
|
70 |
+
Hoogelaandsters-0120 1
|
71 |
+
Hoogelaandsters-0124 1
|
72 |
+
Hoogelaandsters-0128 1
|
73 |
+
Hoogelaandsters-0132 1
|
74 |
+
Hoogelaandsters-0137 1
|
75 |
+
Hoogelaandsters-0141 1
|
76 |
+
Hoogelaandsters-0145 1
|
77 |
+
Hoogelaandsters-0149 1
|
78 |
+
Hoogelaandsters-0153 1
|
79 |
+
Hoogelaandsters-0157 1
|
80 |
+
Hoogelaandsters-0161 1
|
81 |
+
Hoogelaandsters-0004 1
|
82 |
+
Hoogelaandsters-0008 1
|
83 |
+
Hoogelaandsters-0012 1
|
84 |
+
Hoogelaandsters-0016 1
|
85 |
+
Hoogelaandsters-0020 1
|
86 |
+
Hoogelaandsters-0024 1
|
87 |
+
Hoogelaandsters-0028 1
|
88 |
+
Hoogelaandsters-0032 1
|
89 |
+
Hoogelaandsters-0036 1
|
90 |
+
Hoogelaandsters-0040 1
|
91 |
+
Hoogelaandsters-0044 1
|
92 |
+
Hoogelaandsters-0048 1
|
93 |
+
Hoogelaandsters-0052 1
|
94 |
+
Hoogelaandsters-0056 1
|
95 |
+
Hoogelaandsters-0060 1
|
96 |
+
Hoogelaandsters-0064 1
|
97 |
+
Hoogelaandsters-0069 1
|
98 |
+
Hoogelaandsters-0073 1
|
99 |
+
Hoogelaandsters-0077 1
|
100 |
+
Hoogelaandsters-0081 1
|
101 |
+
Hoogelaandsters-0085 1
|
102 |
+
Hoogelaandsters-0089 1
|
103 |
+
Hoogelaandsters-0093 1
|
104 |
+
Hoogelaandsters-0097 1
|
105 |
+
Hoogelaandsters-0101 1
|
106 |
+
Hoogelaandsters-0105 1
|
107 |
+
Hoogelaandsters-0109 1
|
108 |
+
Hoogelaandsters-0113 1
|
109 |
+
Hoogelaandsters-0117 1
|
110 |
+
Hoogelaandsters-0121 1
|
111 |
+
Hoogelaandsters-0125 1
|
112 |
+
Hoogelaandsters-0129 1
|
113 |
+
Hoogelaandsters-0133 1
|
114 |
+
Hoogelaandsters-0138 1
|
115 |
+
Hoogelaandsters-0142 1
|
116 |
+
Hoogelaandsters-0146 1
|
117 |
+
Hoogelaandsters-0150 1
|
118 |
+
Hoogelaandsters-0154 1
|
119 |
+
Hoogelaandsters-0158 1
|
120 |
+
Hoogelaandsters-0162 1
|
121 |
+
Hoogelaandsters-0005 1
|
122 |
+
Hoogelaandsters-0009 1
|
123 |
+
Hoogelaandsters-0013 1
|
124 |
+
Hoogelaandsters-0017 1
|
125 |
+
Hoogelaandsters-0021 1
|
126 |
+
Hoogelaandsters-0025 1
|
127 |
+
Hoogelaandsters-0029 1
|
128 |
+
Hoogelaandsters-0033 1
|
129 |
+
Hoogelaandsters-0037 1
|
130 |
+
Hoogelaandsters-0041 1
|
131 |
+
Hoogelaandsters-0045 1
|
132 |
+
Hoogelaandsters-0049 1
|
133 |
+
Hoogelaandsters-0053 1
|
134 |
+
Hoogelaandsters-0057 1
|
135 |
+
Hoogelaandsters-0061 1
|
136 |
+
Hoogelaandsters-0065 1
|
137 |
+
Hoogelaandsters-0070 1
|
138 |
+
Hoogelaandsters-0074 1
|
139 |
+
Hoogelaandsters-0078 1
|
140 |
+
Hoogelaandsters-0082 1
|
141 |
+
Hoogelaandsters-0086 1
|
142 |
+
Hoogelaandsters-0090 1
|
143 |
+
Hoogelaandsters-0094 1
|
144 |
+
Hoogelaandsters-0098 1
|
145 |
+
Hoogelaandsters-0102 1
|
146 |
+
Hoogelaandsters-0106 1
|
147 |
+
Hoogelaandsters-0110 1
|
148 |
+
Hoogelaandsters-0114 1
|
149 |
+
Hoogelaandsters-0118 1
|
150 |
+
Hoogelaandsters-0122 1
|
151 |
+
Hoogelaandsters-0126 1
|
152 |
+
Hoogelaandsters-0130 1
|
153 |
+
Hoogelaandsters-0134 1
|
154 |
+
Hoogelaandsters-0139 1
|
155 |
+
Hoogelaandsters-0143 1
|
156 |
+
Hoogelaandsters-0147 1
|
157 |
+
Hoogelaandsters-0151 1
|
158 |
+
Hoogelaandsters-0155 1
|
159 |
+
Hoogelaandsters-0159 1
|
160 |
+
Hoogelaandsters-0163 1
|
161 |
+
Hoogelaandsters-0164 1
|
162 |
+
Hoogelaandsters-0168 1
|
163 |
+
Hoogelaandsters-0172 1
|
164 |
+
Hoogelaandsters-0176 1
|
165 |
+
Hoogelaandsters-0180 1
|
166 |
+
Hoogelaandsters-0184 1
|
167 |
+
Hoogelaandsters-0188 1
|
168 |
+
Hoogelaandsters-0192 1
|
169 |
+
Hoogelaandsters-0196 1
|
170 |
+
Hoogelaandsters-0200 1
|
171 |
+
Hoogelaandsters-0205 1
|
172 |
+
Hoogelaandsters-0209 1
|
173 |
+
Hoogelaandsters-0213 1
|
174 |
+
Hoogelaandsters-0217 1
|
175 |
+
Hoogelaandsters-0221 1
|
176 |
+
Hoogelaandsters-0225 1
|
177 |
+
Hoogelaandsters-0229 1
|
178 |
+
Hoogelaandsters-0233 1
|
179 |
+
Hoogelaandsters-0237 1
|
180 |
+
Hoogelaandsters-0241 1
|
181 |
+
Hoogelaandsters-0245 1
|
182 |
+
Hoogelaandsters-0249 1
|
183 |
+
Hoogelaandsters-0253 1
|
184 |
+
Hoogelaandsters-0165 1
|
185 |
+
Hoogelaandsters-0169 1
|
186 |
+
Hoogelaandsters-0173 1
|
187 |
+
Hoogelaandsters-0177 1
|
188 |
+
Hoogelaandsters-0181 1
|
189 |
+
Hoogelaandsters-0185 1
|
190 |
+
Hoogelaandsters-0189 1
|
191 |
+
Hoogelaandsters-0193 1
|
192 |
+
Hoogelaandsters-0197 1
|
193 |
+
Hoogelaandsters-0201 1
|
194 |
+
Hoogelaandsters-0206 1
|
195 |
+
Hoogelaandsters-0210 1
|
196 |
+
Hoogelaandsters-0214 1
|
197 |
+
Hoogelaandsters-0218 1
|
198 |
+
Hoogelaandsters-0222 1
|
199 |
+
Hoogelaandsters-0226 1
|
200 |
+
Hoogelaandsters-0230 1
|
201 |
+
Hoogelaandsters-0234 1
|
202 |
+
Hoogelaandsters-0238 1
|
203 |
+
Hoogelaandsters-0242 1
|
204 |
+
Hoogelaandsters-0246 1
|
205 |
+
Hoogelaandsters-0250 1
|
206 |
+
Hoogelaandsters-0166 1
|
207 |
+
Hoogelaandsters-0170 1
|
208 |
+
Hoogelaandsters-0174 1
|
209 |
+
Hoogelaandsters-0178 1
|
210 |
+
Hoogelaandsters-0182 1
|
211 |
+
Hoogelaandsters-0186 1
|
212 |
+
Hoogelaandsters-0190 1
|
213 |
+
Hoogelaandsters-0194 1
|
214 |
+
Hoogelaandsters-0198 1
|
215 |
+
Hoogelaandsters-0203 1
|
216 |
+
Hoogelaandsters-0207 1
|
217 |
+
Hoogelaandsters-0211 1
|
218 |
+
Hoogelaandsters-0215 1
|
219 |
+
Hoogelaandsters-0219 1
|
220 |
+
Hoogelaandsters-0223 1
|
221 |
+
Hoogelaandsters-0227 1
|
222 |
+
Hoogelaandsters-0231 1
|
223 |
+
Hoogelaandsters-0235 1
|
224 |
+
Hoogelaandsters-0239 1
|
225 |
+
Hoogelaandsters-0243 1
|
226 |
+
Hoogelaandsters-0247 1
|
227 |
+
Hoogelaandsters-0251 1
|
228 |
+
Hoogelaandsters-0167 1
|
229 |
+
Hoogelaandsters-0171 1
|
230 |
+
Hoogelaandsters-0175 1
|
231 |
+
Hoogelaandsters-0179 1
|
232 |
+
Hoogelaandsters-0183 1
|
233 |
+
Hoogelaandsters-0187 1
|
234 |
+
Hoogelaandsters-0191 1
|
235 |
+
Hoogelaandsters-0195 1
|
236 |
+
Hoogelaandsters-0199 1
|
237 |
+
Hoogelaandsters-0204 1
|
238 |
+
Hoogelaandsters-0208 1
|
239 |
+
Hoogelaandsters-0212 1
|
240 |
+
Hoogelaandsters-0216 1
|
241 |
+
Hoogelaandsters-0220 1
|
242 |
+
Hoogelaandsters-0224 1
|
243 |
+
Hoogelaandsters-0228 1
|
244 |
+
Hoogelaandsters-0232 1
|
245 |
+
Hoogelaandsters-0236 1
|
246 |
+
Hoogelaandsters-0240 1
|
247 |
+
Hoogelaandsters-0244 1
|
248 |
+
Hoogelaandsters-0248 1
|
249 |
+
Hoogelaandsters-0252 1
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/speech_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-0002 148618
|
2 |
+
Hoogelaandsters-0006 71366
|
3 |
+
Hoogelaandsters-0010 40465
|
4 |
+
Hoogelaandsters-0014 141996
|
5 |
+
Hoogelaandsters-0018 123603
|
6 |
+
Hoogelaandsters-0022 80930
|
7 |
+
Hoogelaandsters-0026 71366
|
8 |
+
Hoogelaandsters-0030 82402
|
9 |
+
Hoogelaandsters-0034 85345
|
10 |
+
Hoogelaandsters-0038 76516
|
11 |
+
Hoogelaandsters-0042 179519
|
12 |
+
Hoogelaandsters-0046 375959
|
13 |
+
Hoogelaandsters-0050 44880
|
14 |
+
Hoogelaandsters-0054 61802
|
15 |
+
Hoogelaandsters-0058 75780
|
16 |
+
Hoogelaandsters-0062 153768
|
17 |
+
Hoogelaandsters-0066 83138
|
18 |
+
Hoogelaandsters-0071 129489
|
19 |
+
Hoogelaandsters-0075 130960
|
20 |
+
Hoogelaandsters-0079 153768
|
21 |
+
Hoogelaandsters-0083 135375
|
22 |
+
Hoogelaandsters-0087 83874
|
23 |
+
Hoogelaandsters-0091 87552
|
24 |
+
Hoogelaandsters-0095 80930
|
25 |
+
Hoogelaandsters-0099 90495
|
26 |
+
Hoogelaandsters-0103 133168
|
27 |
+
Hoogelaandsters-0107 38258
|
28 |
+
Hoogelaandsters-0111 48558
|
29 |
+
Hoogelaandsters-0115 100060
|
30 |
+
Hoogelaandsters-0119 49294
|
31 |
+
Hoogelaandsters-0123 66216
|
32 |
+
Hoogelaandsters-0127 186141
|
33 |
+
Hoogelaandsters-0131 37522
|
34 |
+
Hoogelaandsters-0136 139054
|
35 |
+
Hoogelaandsters-0140 40465
|
36 |
+
Hoogelaandsters-0144 64744
|
37 |
+
Hoogelaandsters-0148 41936
|
38 |
+
Hoogelaandsters-0152 99324
|
39 |
+
Hoogelaandsters-0156 70630
|
40 |
+
Hoogelaandsters-0160 92702
|
41 |
+
Hoogelaandsters-0003 124339
|
42 |
+
Hoogelaandsters-0007 58858
|
43 |
+
Hoogelaandsters-0011 187612
|
44 |
+
Hoogelaandsters-0015 52972
|
45 |
+
Hoogelaandsters-0019 56652
|
46 |
+
Hoogelaandsters-0023 36050
|
47 |
+
Hoogelaandsters-0027 90495
|
48 |
+
Hoogelaandsters-0031 25752
|
49 |
+
Hoogelaandsters-0035 91966
|
50 |
+
Hoogelaandsters-0039 144204
|
51 |
+
Hoogelaandsters-0043 75780
|
52 |
+
Hoogelaandsters-0047 168483
|
53 |
+
Hoogelaandsters-0051 153033
|
54 |
+
Hoogelaandsters-0055 57387
|
55 |
+
Hoogelaandsters-0059 104474
|
56 |
+
Hoogelaandsters-0063 113303
|
57 |
+
Hoogelaandsters-0067 47822
|
58 |
+
Hoogelaandsters-0072 122868
|
59 |
+
Hoogelaandsters-0076 54444
|
60 |
+
Hoogelaandsters-0080 75044
|
61 |
+
Hoogelaandsters-0084 103002
|
62 |
+
Hoogelaandsters-0088 224399
|
63 |
+
Hoogelaandsters-0092 85345
|
64 |
+
Hoogelaandsters-0096 86816
|
65 |
+
Hoogelaandsters-0100 122868
|
66 |
+
Hoogelaandsters-0104 82402
|
67 |
+
Hoogelaandsters-0108 82402
|
68 |
+
Hoogelaandsters-0112 77252
|
69 |
+
Hoogelaandsters-0116 139790
|
70 |
+
Hoogelaandsters-0120 111096
|
71 |
+
Hoogelaandsters-0124 63272
|
72 |
+
Hoogelaandsters-0128 86816
|
73 |
+
Hoogelaandsters-0132 42672
|
74 |
+
Hoogelaandsters-0137 101531
|
75 |
+
Hoogelaandsters-0141 128754
|
76 |
+
Hoogelaandsters-0145 96381
|
77 |
+
Hoogelaandsters-0149 151561
|
78 |
+
Hoogelaandsters-0153 100060
|
79 |
+
Hoogelaandsters-0157 114774
|
80 |
+
Hoogelaandsters-0161 106682
|
81 |
+
Hoogelaandsters-0004 96381
|
82 |
+
Hoogelaandsters-0008 49294
|
83 |
+
Hoogelaandsters-0012 75780
|
84 |
+
Hoogelaandsters-0016 104474
|
85 |
+
Hoogelaandsters-0020 55916
|
86 |
+
Hoogelaandsters-0024 77988
|
87 |
+
Hoogelaandsters-0028 128018
|
88 |
+
Hoogelaandsters-0032 33844
|
89 |
+
Hoogelaandsters-0036 94910
|
90 |
+
Hoogelaandsters-0040 58858
|
91 |
+
Hoogelaandsters-0044 72102
|
92 |
+
Hoogelaandsters-0048 134639
|
93 |
+
Hoogelaandsters-0052 95646
|
94 |
+
Hoogelaandsters-0056 37522
|
95 |
+
Hoogelaandsters-0060 55180
|
96 |
+
Hoogelaandsters-0064 57387
|
97 |
+
Hoogelaandsters-0069 126546
|
98 |
+
Hoogelaandsters-0073 210420
|
99 |
+
Hoogelaandsters-0077 86816
|
100 |
+
Hoogelaandsters-0081 65480
|
101 |
+
Hoogelaandsters-0085 122868
|
102 |
+
Hoogelaandsters-0089 84610
|
103 |
+
Hoogelaandsters-0093 148618
|
104 |
+
Hoogelaandsters-0097 75044
|
105 |
+
Hoogelaandsters-0101 44144
|
106 |
+
Hoogelaandsters-0105 43408
|
107 |
+
Hoogelaandsters-0109 267071
|
108 |
+
Hoogelaandsters-0113 141996
|
109 |
+
Hoogelaandsters-0117 44144
|
110 |
+
Hoogelaandsters-0121 94910
|
111 |
+
Hoogelaandsters-0125 63272
|
112 |
+
Hoogelaandsters-0129 38994
|
113 |
+
Hoogelaandsters-0133 61066
|
114 |
+
Hoogelaandsters-0138 58122
|
115 |
+
Hoogelaandsters-0142 115510
|
116 |
+
Hoogelaandsters-0146 63272
|
117 |
+
Hoogelaandsters-0150 52972
|
118 |
+
Hoogelaandsters-0154 130225
|
119 |
+
Hoogelaandsters-0158 119189
|
120 |
+
Hoogelaandsters-0162 30164
|
121 |
+
Hoogelaandsters-0005 44144
|
122 |
+
Hoogelaandsters-0009 189819
|
123 |
+
Hoogelaandsters-0013 122868
|
124 |
+
Hoogelaandsters-0017 72838
|
125 |
+
Hoogelaandsters-0021 86080
|
126 |
+
Hoogelaandsters-0025 217042
|
127 |
+
Hoogelaandsters-0029 63272
|
128 |
+
Hoogelaandsters-0033 114774
|
129 |
+
Hoogelaandsters-0037 138318
|
130 |
+
Hoogelaandsters-0041 148618
|
131 |
+
Hoogelaandsters-0045 126546
|
132 |
+
Hoogelaandsters-0049 57387
|
133 |
+
Hoogelaandsters-0053 66952
|
134 |
+
Hoogelaandsters-0057 33844
|
135 |
+
Hoogelaandsters-0061 47822
|
136 |
+
Hoogelaandsters-0065 66216
|
137 |
+
Hoogelaandsters-0070 186877
|
138 |
+
Hoogelaandsters-0074 66952
|
139 |
+
Hoogelaandsters-0078 83874
|
140 |
+
Hoogelaandsters-0082 90495
|
141 |
+
Hoogelaandsters-0086 167012
|
142 |
+
Hoogelaandsters-0090 43408
|
143 |
+
Hoogelaandsters-0094 44880
|
144 |
+
Hoogelaandsters-0098 105946
|
145 |
+
Hoogelaandsters-0102 143468
|
146 |
+
Hoogelaandsters-0106 111096
|
147 |
+
Hoogelaandsters-0110 97852
|
148 |
+
Hoogelaandsters-0114 108152
|
149 |
+
Hoogelaandsters-0118 100796
|
150 |
+
Hoogelaandsters-0122 77252
|
151 |
+
Hoogelaandsters-0126 62537
|
152 |
+
Hoogelaandsters-0130 100796
|
153 |
+
Hoogelaandsters-0134 67688
|
154 |
+
Hoogelaandsters-0139 111096
|
155 |
+
Hoogelaandsters-0143 97116
|
156 |
+
Hoogelaandsters-0147 54444
|
157 |
+
Hoogelaandsters-0151 58858
|
158 |
+
Hoogelaandsters-0155 48558
|
159 |
+
Hoogelaandsters-0159 102267
|
160 |
+
Hoogelaandsters-0163 48558
|
161 |
+
Hoogelaandsters-0164 41936
|
162 |
+
Hoogelaandsters-0168 121396
|
163 |
+
Hoogelaandsters-0172 87552
|
164 |
+
Hoogelaandsters-0176 57387
|
165 |
+
Hoogelaandsters-0180 102267
|
166 |
+
Hoogelaandsters-0184 46350
|
167 |
+
Hoogelaandsters-0188 75044
|
168 |
+
Hoogelaandsters-0192 38994
|
169 |
+
Hoogelaandsters-0196 77988
|
170 |
+
Hoogelaandsters-0200 114038
|
171 |
+
Hoogelaandsters-0205 51501
|
172 |
+
Hoogelaandsters-0209 95646
|
173 |
+
Hoogelaandsters-0213 176576
|
174 |
+
Hoogelaandsters-0217 44880
|
175 |
+
Hoogelaandsters-0221 64744
|
176 |
+
Hoogelaandsters-0225 94174
|
177 |
+
Hoogelaandsters-0229 102267
|
178 |
+
Hoogelaandsters-0233 209684
|
179 |
+
Hoogelaandsters-0237 186877
|
180 |
+
Hoogelaandsters-0241 156711
|
181 |
+
Hoogelaandsters-0245 252357
|
182 |
+
Hoogelaandsters-0249 59594
|
183 |
+
Hoogelaandsters-0253 60330
|
184 |
+
Hoogelaandsters-0165 86080
|
185 |
+
Hoogelaandsters-0169 62537
|
186 |
+
Hoogelaandsters-0173 64008
|
187 |
+
Hoogelaandsters-0177 36788
|
188 |
+
Hoogelaandsters-0181 70630
|
189 |
+
Hoogelaandsters-0185 85345
|
190 |
+
Hoogelaandsters-0189 42672
|
191 |
+
Hoogelaandsters-0193 58122
|
192 |
+
Hoogelaandsters-0197 91966
|
193 |
+
Hoogelaandsters-0201 116982
|
194 |
+
Hoogelaandsters-0206 28693
|
195 |
+
Hoogelaandsters-0210 86816
|
196 |
+
Hoogelaandsters-0214 119189
|
197 |
+
Hoogelaandsters-0218 41936
|
198 |
+
Hoogelaandsters-0222 88288
|
199 |
+
Hoogelaandsters-0226 112567
|
200 |
+
Hoogelaandsters-0230 75044
|
201 |
+
Hoogelaandsters-0234 106682
|
202 |
+
Hoogelaandsters-0238 111832
|
203 |
+
Hoogelaandsters-0242 111096
|
204 |
+
Hoogelaandsters-0246 94910
|
205 |
+
Hoogelaandsters-0250 75780
|
206 |
+
Hoogelaandsters-0166 86080
|
207 |
+
Hoogelaandsters-0170 38994
|
208 |
+
Hoogelaandsters-0174 33844
|
209 |
+
Hoogelaandsters-0178 42672
|
210 |
+
Hoogelaandsters-0182 33844
|
211 |
+
Hoogelaandsters-0186 29428
|
212 |
+
Hoogelaandsters-0190 69158
|
213 |
+
Hoogelaandsters-0194 36050
|
214 |
+
Hoogelaandsters-0198 180991
|
215 |
+
Hoogelaandsters-0203 68423
|
216 |
+
Hoogelaandsters-0207 83874
|
217 |
+
Hoogelaandsters-0211 147147
|
218 |
+
Hoogelaandsters-0215 54444
|
219 |
+
Hoogelaandsters-0219 243528
|
220 |
+
Hoogelaandsters-0223 105946
|
221 |
+
Hoogelaandsters-0227 64744
|
222 |
+
Hoogelaandsters-0231 142732
|
223 |
+
Hoogelaandsters-0235 97852
|
224 |
+
Hoogelaandsters-0239 73574
|
225 |
+
Hoogelaandsters-0243 160390
|
226 |
+
Hoogelaandsters-0247 63272
|
227 |
+
Hoogelaandsters-0251 55916
|
228 |
+
Hoogelaandsters-0167 83138
|
229 |
+
Hoogelaandsters-0171 75044
|
230 |
+
Hoogelaandsters-0175 147882
|
231 |
+
Hoogelaandsters-0179 105946
|
232 |
+
Hoogelaandsters-0183 40465
|
233 |
+
Hoogelaandsters-0187 54444
|
234 |
+
Hoogelaandsters-0191 158183
|
235 |
+
Hoogelaandsters-0195 78724
|
236 |
+
Hoogelaandsters-0199 64008
|
237 |
+
Hoogelaandsters-0204 143468
|
238 |
+
Hoogelaandsters-0208 47822
|
239 |
+
Hoogelaandsters-0212 45615
|
240 |
+
Hoogelaandsters-0216 150826
|
241 |
+
Hoogelaandsters-0220 125810
|
242 |
+
Hoogelaandsters-0224 114774
|
243 |
+
Hoogelaandsters-0228 107417
|
244 |
+
Hoogelaandsters-0232 153768
|
245 |
+
Hoogelaandsters-0236 139054
|
246 |
+
Hoogelaandsters-0240 149354
|
247 |
+
Hoogelaandsters-0244 83874
|
248 |
+
Hoogelaandsters-0248 69158
|
249 |
+
Hoogelaandsters-0252 112567
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/stats_keys
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
feats
|
2 |
+
feats_lengths
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/train/text_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-0002 64
|
2 |
+
Hoogelaandsters-0006 54
|
3 |
+
Hoogelaandsters-0010 29
|
4 |
+
Hoogelaandsters-0014 97
|
5 |
+
Hoogelaandsters-0018 94
|
6 |
+
Hoogelaandsters-0022 62
|
7 |
+
Hoogelaandsters-0026 54
|
8 |
+
Hoogelaandsters-0030 51
|
9 |
+
Hoogelaandsters-0034 52
|
10 |
+
Hoogelaandsters-0038 50
|
11 |
+
Hoogelaandsters-0042 114
|
12 |
+
Hoogelaandsters-0046 241
|
13 |
+
Hoogelaandsters-0050 32
|
14 |
+
Hoogelaandsters-0054 42
|
15 |
+
Hoogelaandsters-0058 48
|
16 |
+
Hoogelaandsters-0062 118
|
17 |
+
Hoogelaandsters-0066 72
|
18 |
+
Hoogelaandsters-0071 95
|
19 |
+
Hoogelaandsters-0075 108
|
20 |
+
Hoogelaandsters-0079 110
|
21 |
+
Hoogelaandsters-0083 110
|
22 |
+
Hoogelaandsters-0087 67
|
23 |
+
Hoogelaandsters-0091 60
|
24 |
+
Hoogelaandsters-0095 70
|
25 |
+
Hoogelaandsters-0099 61
|
26 |
+
Hoogelaandsters-0103 85
|
27 |
+
Hoogelaandsters-0107 30
|
28 |
+
Hoogelaandsters-0111 26
|
29 |
+
Hoogelaandsters-0115 61
|
30 |
+
Hoogelaandsters-0119 44
|
31 |
+
Hoogelaandsters-0123 54
|
32 |
+
Hoogelaandsters-0127 138
|
33 |
+
Hoogelaandsters-0131 31
|
34 |
+
Hoogelaandsters-0136 91
|
35 |
+
Hoogelaandsters-0140 28
|
36 |
+
Hoogelaandsters-0144 47
|
37 |
+
Hoogelaandsters-0148 26
|
38 |
+
Hoogelaandsters-0152 84
|
39 |
+
Hoogelaandsters-0156 46
|
40 |
+
Hoogelaandsters-0160 66
|
41 |
+
Hoogelaandsters-0003 96
|
42 |
+
Hoogelaandsters-0007 38
|
43 |
+
Hoogelaandsters-0011 113
|
44 |
+
Hoogelaandsters-0015 50
|
45 |
+
Hoogelaandsters-0019 43
|
46 |
+
Hoogelaandsters-0023 30
|
47 |
+
Hoogelaandsters-0027 69
|
48 |
+
Hoogelaandsters-0031 14
|
49 |
+
Hoogelaandsters-0035 60
|
50 |
+
Hoogelaandsters-0039 98
|
51 |
+
Hoogelaandsters-0043 52
|
52 |
+
Hoogelaandsters-0047 113
|
53 |
+
Hoogelaandsters-0051 92
|
54 |
+
Hoogelaandsters-0055 37
|
55 |
+
Hoogelaandsters-0059 82
|
56 |
+
Hoogelaandsters-0063 78
|
57 |
+
Hoogelaandsters-0067 30
|
58 |
+
Hoogelaandsters-0072 77
|
59 |
+
Hoogelaandsters-0076 50
|
60 |
+
Hoogelaandsters-0080 49
|
61 |
+
Hoogelaandsters-0084 86
|
62 |
+
Hoogelaandsters-0088 162
|
63 |
+
Hoogelaandsters-0092 60
|
64 |
+
Hoogelaandsters-0096 65
|
65 |
+
Hoogelaandsters-0100 83
|
66 |
+
Hoogelaandsters-0104 55
|
67 |
+
Hoogelaandsters-0108 66
|
68 |
+
Hoogelaandsters-0112 42
|
69 |
+
Hoogelaandsters-0116 97
|
70 |
+
Hoogelaandsters-0120 79
|
71 |
+
Hoogelaandsters-0124 50
|
72 |
+
Hoogelaandsters-0128 49
|
73 |
+
Hoogelaandsters-0132 26
|
74 |
+
Hoogelaandsters-0137 68
|
75 |
+
Hoogelaandsters-0141 89
|
76 |
+
Hoogelaandsters-0145 70
|
77 |
+
Hoogelaandsters-0149 92
|
78 |
+
Hoogelaandsters-0153 60
|
79 |
+
Hoogelaandsters-0157 74
|
80 |
+
Hoogelaandsters-0161 81
|
81 |
+
Hoogelaandsters-0004 69
|
82 |
+
Hoogelaandsters-0008 38
|
83 |
+
Hoogelaandsters-0012 55
|
84 |
+
Hoogelaandsters-0016 70
|
85 |
+
Hoogelaandsters-0020 28
|
86 |
+
Hoogelaandsters-0024 64
|
87 |
+
Hoogelaandsters-0028 87
|
88 |
+
Hoogelaandsters-0032 18
|
89 |
+
Hoogelaandsters-0036 72
|
90 |
+
Hoogelaandsters-0040 30
|
91 |
+
Hoogelaandsters-0044 44
|
92 |
+
Hoogelaandsters-0048 99
|
93 |
+
Hoogelaandsters-0052 75
|
94 |
+
Hoogelaandsters-0056 18
|
95 |
+
Hoogelaandsters-0060 38
|
96 |
+
Hoogelaandsters-0064 41
|
97 |
+
Hoogelaandsters-0069 86
|
98 |
+
Hoogelaandsters-0073 149
|
99 |
+
Hoogelaandsters-0077 62
|
100 |
+
Hoogelaandsters-0081 49
|
101 |
+
Hoogelaandsters-0085 92
|
102 |
+
Hoogelaandsters-0089 63
|
103 |
+
Hoogelaandsters-0093 104
|
104 |
+
Hoogelaandsters-0097 50
|
105 |
+
Hoogelaandsters-0101 36
|
106 |
+
Hoogelaandsters-0105 33
|
107 |
+
Hoogelaandsters-0109 166
|
108 |
+
Hoogelaandsters-0113 70
|
109 |
+
Hoogelaandsters-0117 31
|
110 |
+
Hoogelaandsters-0121 62
|
111 |
+
Hoogelaandsters-0125 41
|
112 |
+
Hoogelaandsters-0129 26
|
113 |
+
Hoogelaandsters-0133 41
|
114 |
+
Hoogelaandsters-0138 35
|
115 |
+
Hoogelaandsters-0142 86
|
116 |
+
Hoogelaandsters-0146 50
|
117 |
+
Hoogelaandsters-0150 42
|
118 |
+
Hoogelaandsters-0154 103
|
119 |
+
Hoogelaandsters-0158 74
|
120 |
+
Hoogelaandsters-0162 25
|
121 |
+
Hoogelaandsters-0005 37
|
122 |
+
Hoogelaandsters-0009 121
|
123 |
+
Hoogelaandsters-0013 78
|
124 |
+
Hoogelaandsters-0017 56
|
125 |
+
Hoogelaandsters-0021 67
|
126 |
+
Hoogelaandsters-0025 127
|
127 |
+
Hoogelaandsters-0029 51
|
128 |
+
Hoogelaandsters-0033 82
|
129 |
+
Hoogelaandsters-0037 100
|
130 |
+
Hoogelaandsters-0041 87
|
131 |
+
Hoogelaandsters-0045 87
|
132 |
+
Hoogelaandsters-0049 44
|
133 |
+
Hoogelaandsters-0053 42
|
134 |
+
Hoogelaandsters-0057 30
|
135 |
+
Hoogelaandsters-0061 36
|
136 |
+
Hoogelaandsters-0065 51
|
137 |
+
Hoogelaandsters-0070 130
|
138 |
+
Hoogelaandsters-0074 51
|
139 |
+
Hoogelaandsters-0078 62
|
140 |
+
Hoogelaandsters-0082 74
|
141 |
+
Hoogelaandsters-0086 119
|
142 |
+
Hoogelaandsters-0090 33
|
143 |
+
Hoogelaandsters-0094 32
|
144 |
+
Hoogelaandsters-0098 82
|
145 |
+
Hoogelaandsters-0102 83
|
146 |
+
Hoogelaandsters-0106 76
|
147 |
+
Hoogelaandsters-0110 54
|
148 |
+
Hoogelaandsters-0114 63
|
149 |
+
Hoogelaandsters-0118 61
|
150 |
+
Hoogelaandsters-0122 47
|
151 |
+
Hoogelaandsters-0126 42
|
152 |
+
Hoogelaandsters-0130 71
|
153 |
+
Hoogelaandsters-0134 45
|
154 |
+
Hoogelaandsters-0139 94
|
155 |
+
Hoogelaandsters-0143 67
|
156 |
+
Hoogelaandsters-0147 30
|
157 |
+
Hoogelaandsters-0151 38
|
158 |
+
Hoogelaandsters-0155 36
|
159 |
+
Hoogelaandsters-0159 79
|
160 |
+
Hoogelaandsters-0163 39
|
161 |
+
Hoogelaandsters-0164 32
|
162 |
+
Hoogelaandsters-0168 86
|
163 |
+
Hoogelaandsters-0172 59
|
164 |
+
Hoogelaandsters-0176 38
|
165 |
+
Hoogelaandsters-0180 59
|
166 |
+
Hoogelaandsters-0184 30
|
167 |
+
Hoogelaandsters-0188 54
|
168 |
+
Hoogelaandsters-0192 38
|
169 |
+
Hoogelaandsters-0196 58
|
170 |
+
Hoogelaandsters-0200 73
|
171 |
+
Hoogelaandsters-0205 42
|
172 |
+
Hoogelaandsters-0209 63
|
173 |
+
Hoogelaandsters-0213 119
|
174 |
+
Hoogelaandsters-0217 35
|
175 |
+
Hoogelaandsters-0221 36
|
176 |
+
Hoogelaandsters-0225 65
|
177 |
+
Hoogelaandsters-0229 75
|
178 |
+
Hoogelaandsters-0233 126
|
179 |
+
Hoogelaandsters-0237 126
|
180 |
+
Hoogelaandsters-0241 107
|
181 |
+
Hoogelaandsters-0245 168
|
182 |
+
Hoogelaandsters-0249 45
|
183 |
+
Hoogelaandsters-0253 41
|
184 |
+
Hoogelaandsters-0165 68
|
185 |
+
Hoogelaandsters-0169 35
|
186 |
+
Hoogelaandsters-0173 44
|
187 |
+
Hoogelaandsters-0177 28
|
188 |
+
Hoogelaandsters-0181 39
|
189 |
+
Hoogelaandsters-0185 58
|
190 |
+
Hoogelaandsters-0189 27
|
191 |
+
Hoogelaandsters-0193 35
|
192 |
+
Hoogelaandsters-0197 61
|
193 |
+
Hoogelaandsters-0201 76
|
194 |
+
Hoogelaandsters-0206 23
|
195 |
+
Hoogelaandsters-0210 62
|
196 |
+
Hoogelaandsters-0214 89
|
197 |
+
Hoogelaandsters-0218 26
|
198 |
+
Hoogelaandsters-0222 63
|
199 |
+
Hoogelaandsters-0226 76
|
200 |
+
Hoogelaandsters-0230 59
|
201 |
+
Hoogelaandsters-0234 72
|
202 |
+
Hoogelaandsters-0238 73
|
203 |
+
Hoogelaandsters-0242 79
|
204 |
+
Hoogelaandsters-0246 54
|
205 |
+
Hoogelaandsters-0250 63
|
206 |
+
Hoogelaandsters-0166 64
|
207 |
+
Hoogelaandsters-0170 37
|
208 |
+
Hoogelaandsters-0174 29
|
209 |
+
Hoogelaandsters-0178 30
|
210 |
+
Hoogelaandsters-0182 37
|
211 |
+
Hoogelaandsters-0186 29
|
212 |
+
Hoogelaandsters-0190 51
|
213 |
+
Hoogelaandsters-0194 30
|
214 |
+
Hoogelaandsters-0198 119
|
215 |
+
Hoogelaandsters-0203 49
|
216 |
+
Hoogelaandsters-0207 57
|
217 |
+
Hoogelaandsters-0211 101
|
218 |
+
Hoogelaandsters-0215 42
|
219 |
+
Hoogelaandsters-0219 166
|
220 |
+
Hoogelaandsters-0223 71
|
221 |
+
Hoogelaandsters-0227 40
|
222 |
+
Hoogelaandsters-0231 92
|
223 |
+
Hoogelaandsters-0235 66
|
224 |
+
Hoogelaandsters-0239 54
|
225 |
+
Hoogelaandsters-0243 94
|
226 |
+
Hoogelaandsters-0247 41
|
227 |
+
Hoogelaandsters-0251 43
|
228 |
+
Hoogelaandsters-0167 66
|
229 |
+
Hoogelaandsters-0171 54
|
230 |
+
Hoogelaandsters-0175 113
|
231 |
+
Hoogelaandsters-0179 78
|
232 |
+
Hoogelaandsters-0183 39
|
233 |
+
Hoogelaandsters-0187 44
|
234 |
+
Hoogelaandsters-0191 93
|
235 |
+
Hoogelaandsters-0195 58
|
236 |
+
Hoogelaandsters-0199 51
|
237 |
+
Hoogelaandsters-0204 111
|
238 |
+
Hoogelaandsters-0208 35
|
239 |
+
Hoogelaandsters-0212 27
|
240 |
+
Hoogelaandsters-0216 110
|
241 |
+
Hoogelaandsters-0220 73
|
242 |
+
Hoogelaandsters-0224 47
|
243 |
+
Hoogelaandsters-0228 66
|
244 |
+
Hoogelaandsters-0232 101
|
245 |
+
Hoogelaandsters-0236 94
|
246 |
+
Hoogelaandsters-0240 104
|
247 |
+
Hoogelaandsters-0244 50
|
248 |
+
Hoogelaandsters-0248 44
|
249 |
+
Hoogelaandsters-0252 85
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/batch_keys
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
text
|
2 |
+
speech
|
3 |
+
sids
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/feats_lengths_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:92b775aaa5d2948c527ad29e192999a8388c2e6fd81fad2475ee7da577f3594a
|
3 |
+
size 778
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/feats_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4abdc1055a5330f17559bc4667c89f68c0ab191e3debc39c5735481cdf9d19ef
|
3 |
+
size 1402
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/sids_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-0001 1
|
2 |
+
Hoogelaandsters-0269 1
|
3 |
+
Hoogelaandsters-0068 1
|
4 |
+
Hoogelaandsters-0135 1
|
5 |
+
Hoogelaandsters-0202 1
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/speech_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-0001 195705
|
2 |
+
Hoogelaandsters-0269 119189
|
3 |
+
Hoogelaandsters-0068 136111
|
4 |
+
Hoogelaandsters-0135 87552
|
5 |
+
Hoogelaandsters-0202 109624
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/stats_keys
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
feats
|
2 |
+
feats_lengths
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.1/valid/text_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-0001 111
|
2 |
+
Hoogelaandsters-0269 86
|
3 |
+
Hoogelaandsters-0068 91
|
4 |
+
Hoogelaandsters-0135 62
|
5 |
+
Hoogelaandsters-0202 75
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10.log
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.gan_tts_train --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.10.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.10.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
2 |
+
# Started at Fri Dec 1 15:58:34 UTC 2023
|
3 |
+
#
|
4 |
+
/data2/p280965/tts/espnet/tools/venv/bin/python3 /data2/p280965/tts/espnet/espnet2/bin/gan_tts_train.py --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.10.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.10.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
5 |
+
[wieling-3-a100] 2023-12-01 15:58:40,202 (gan_tts:293) INFO: Vocabulary size: 46
|
6 |
+
[wieling-3-a100] 2023-12-01 15:58:40,315 (encoder:174) INFO: encoder self-attention layer type = relative self-attention
|
7 |
+
/data2/p280965/tts/espnet/tools/venv/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
|
8 |
+
warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
|
9 |
+
/data2/p280965/tts/espnet/espnet2/gan_tts/vits/monotonic_align/__init__.py:19: UserWarning: Cython version is not available. Fallback to 'EXPERIMETAL' numba version. If you want to use the cython version, please build it as follows: `cd espnet2/gan_tts/vits/monotonic_align; python setup.py build_ext --inplace`
|
10 |
+
warnings.warn(
|
11 |
+
[wieling-3-a100] 2023-12-01 15:58:41,727 (abs_task:1268) INFO: pytorch.version=2.1.0+cu121, cuda.available=True, cudnn.version=8902, cudnn.benchmark=False, cudnn.deterministic=False
|
12 |
+
[wieling-3-a100] 2023-12-01 15:58:41,759 (abs_task:1269) INFO: Model structure:
|
13 |
+
ESPnetGANTTSModel(
|
14 |
+
(feats_extract): LogMelFbank(
|
15 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
16 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=80, fmax=7600, htk=False)
|
17 |
+
)
|
18 |
+
(tts): VITS(
|
19 |
+
(generator): VITSGenerator(
|
20 |
+
(text_encoder): TextEncoder(
|
21 |
+
(emb): Embedding(46, 192)
|
22 |
+
(encoder): Encoder(
|
23 |
+
(embed): Sequential(
|
24 |
+
(0): RelPositionalEncoding(
|
25 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(encoders): MultiSequential(
|
29 |
+
(0): EncoderLayer(
|
30 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
31 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
32 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
33 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
34 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
37 |
+
)
|
38 |
+
(feed_forward): MultiLayeredConv1d(
|
39 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
40 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
41 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
42 |
+
)
|
43 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
44 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
45 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
46 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
47 |
+
)
|
48 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
50 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
51 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
52 |
+
)
|
53 |
+
(1): EncoderLayer(
|
54 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
55 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
56 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
57 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
58 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
61 |
+
)
|
62 |
+
(feed_forward): MultiLayeredConv1d(
|
63 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
64 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
65 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
66 |
+
)
|
67 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
68 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
69 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
70 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
74 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
75 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
76 |
+
)
|
77 |
+
(2): EncoderLayer(
|
78 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
79 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
80 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
81 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
82 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
85 |
+
)
|
86 |
+
(feed_forward): MultiLayeredConv1d(
|
87 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
88 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
92 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
93 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
98 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
99 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
100 |
+
)
|
101 |
+
(3): EncoderLayer(
|
102 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
103 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
104 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
105 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
106 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
109 |
+
)
|
110 |
+
(feed_forward): MultiLayeredConv1d(
|
111 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
112 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
113 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
114 |
+
)
|
115 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
116 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
117 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
118 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
119 |
+
)
|
120 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
122 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
123 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
124 |
+
)
|
125 |
+
(4): EncoderLayer(
|
126 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
127 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
128 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
129 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
130 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
133 |
+
)
|
134 |
+
(feed_forward): MultiLayeredConv1d(
|
135 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
136 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
137 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
138 |
+
)
|
139 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
140 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
141 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
142 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
143 |
+
)
|
144 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
146 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
147 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
148 |
+
)
|
149 |
+
(5): EncoderLayer(
|
150 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
151 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
152 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
153 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
154 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
157 |
+
)
|
158 |
+
(feed_forward): MultiLayeredConv1d(
|
159 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
160 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
161 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
162 |
+
)
|
163 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
164 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
165 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
166 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
167 |
+
)
|
168 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
171 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
172 |
+
)
|
173 |
+
)
|
174 |
+
(after_norm): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
175 |
+
)
|
176 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
177 |
+
)
|
178 |
+
(decoder): HiFiGANGenerator(
|
179 |
+
(input_conv): Conv1d(192, 512, kernel_size=(7,), stride=(1,), padding=(3,))
|
180 |
+
(upsamples): ModuleList(
|
181 |
+
(0): Sequential(
|
182 |
+
(0): LeakyReLU(negative_slope=0.1)
|
183 |
+
(1): ConvTranspose1d(512, 256, kernel_size=(16,), stride=(8,), padding=(4,))
|
184 |
+
)
|
185 |
+
(1): Sequential(
|
186 |
+
(0): LeakyReLU(negative_slope=0.1)
|
187 |
+
(1): ConvTranspose1d(256, 128, kernel_size=(16,), stride=(8,), padding=(4,))
|
188 |
+
)
|
189 |
+
(2): Sequential(
|
190 |
+
(0): LeakyReLU(negative_slope=0.1)
|
191 |
+
(1): ConvTranspose1d(128, 64, kernel_size=(4,), stride=(2,), padding=(1,))
|
192 |
+
)
|
193 |
+
(3): Sequential(
|
194 |
+
(0): LeakyReLU(negative_slope=0.1)
|
195 |
+
(1): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(2,), padding=(1,))
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(blocks): ModuleList(
|
199 |
+
(0): ResidualBlock(
|
200 |
+
(convs1): ModuleList(
|
201 |
+
(0): Sequential(
|
202 |
+
(0): LeakyReLU(negative_slope=0.1)
|
203 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
204 |
+
)
|
205 |
+
(1): Sequential(
|
206 |
+
(0): LeakyReLU(negative_slope=0.1)
|
207 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
208 |
+
)
|
209 |
+
(2): Sequential(
|
210 |
+
(0): LeakyReLU(negative_slope=0.1)
|
211 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(convs2): ModuleList(
|
215 |
+
(0-2): 3 x Sequential(
|
216 |
+
(0): LeakyReLU(negative_slope=0.1)
|
217 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
218 |
+
)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(1): ResidualBlock(
|
222 |
+
(convs1): ModuleList(
|
223 |
+
(0): Sequential(
|
224 |
+
(0): LeakyReLU(negative_slope=0.1)
|
225 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
226 |
+
)
|
227 |
+
(1): Sequential(
|
228 |
+
(0): LeakyReLU(negative_slope=0.1)
|
229 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
230 |
+
)
|
231 |
+
(2): Sequential(
|
232 |
+
(0): LeakyReLU(negative_slope=0.1)
|
233 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
234 |
+
)
|
235 |
+
)
|
236 |
+
(convs2): ModuleList(
|
237 |
+
(0-2): 3 x Sequential(
|
238 |
+
(0): LeakyReLU(negative_slope=0.1)
|
239 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
240 |
+
)
|
241 |
+
)
|
242 |
+
)
|
243 |
+
(2): ResidualBlock(
|
244 |
+
(convs1): ModuleList(
|
245 |
+
(0): Sequential(
|
246 |
+
(0): LeakyReLU(negative_slope=0.1)
|
247 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
248 |
+
)
|
249 |
+
(1): Sequential(
|
250 |
+
(0): LeakyReLU(negative_slope=0.1)
|
251 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
252 |
+
)
|
253 |
+
(2): Sequential(
|
254 |
+
(0): LeakyReLU(negative_slope=0.1)
|
255 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(convs2): ModuleList(
|
259 |
+
(0-2): 3 x Sequential(
|
260 |
+
(0): LeakyReLU(negative_slope=0.1)
|
261 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
262 |
+
)
|
263 |
+
)
|
264 |
+
)
|
265 |
+
(3): ResidualBlock(
|
266 |
+
(convs1): ModuleList(
|
267 |
+
(0): Sequential(
|
268 |
+
(0): LeakyReLU(negative_slope=0.1)
|
269 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
270 |
+
)
|
271 |
+
(1): Sequential(
|
272 |
+
(0): LeakyReLU(negative_slope=0.1)
|
273 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
274 |
+
)
|
275 |
+
(2): Sequential(
|
276 |
+
(0): LeakyReLU(negative_slope=0.1)
|
277 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
278 |
+
)
|
279 |
+
)
|
280 |
+
(convs2): ModuleList(
|
281 |
+
(0-2): 3 x Sequential(
|
282 |
+
(0): LeakyReLU(negative_slope=0.1)
|
283 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
284 |
+
)
|
285 |
+
)
|
286 |
+
)
|
287 |
+
(4): ResidualBlock(
|
288 |
+
(convs1): ModuleList(
|
289 |
+
(0): Sequential(
|
290 |
+
(0): LeakyReLU(negative_slope=0.1)
|
291 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
292 |
+
)
|
293 |
+
(1): Sequential(
|
294 |
+
(0): LeakyReLU(negative_slope=0.1)
|
295 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
296 |
+
)
|
297 |
+
(2): Sequential(
|
298 |
+
(0): LeakyReLU(negative_slope=0.1)
|
299 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
300 |
+
)
|
301 |
+
)
|
302 |
+
(convs2): ModuleList(
|
303 |
+
(0-2): 3 x Sequential(
|
304 |
+
(0): LeakyReLU(negative_slope=0.1)
|
305 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
306 |
+
)
|
307 |
+
)
|
308 |
+
)
|
309 |
+
(5): ResidualBlock(
|
310 |
+
(convs1): ModuleList(
|
311 |
+
(0): Sequential(
|
312 |
+
(0): LeakyReLU(negative_slope=0.1)
|
313 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
314 |
+
)
|
315 |
+
(1): Sequential(
|
316 |
+
(0): LeakyReLU(negative_slope=0.1)
|
317 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
318 |
+
)
|
319 |
+
(2): Sequential(
|
320 |
+
(0): LeakyReLU(negative_slope=0.1)
|
321 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
322 |
+
)
|
323 |
+
)
|
324 |
+
(convs2): ModuleList(
|
325 |
+
(0-2): 3 x Sequential(
|
326 |
+
(0): LeakyReLU(negative_slope=0.1)
|
327 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
328 |
+
)
|
329 |
+
)
|
330 |
+
)
|
331 |
+
(6): ResidualBlock(
|
332 |
+
(convs1): ModuleList(
|
333 |
+
(0): Sequential(
|
334 |
+
(0): LeakyReLU(negative_slope=0.1)
|
335 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
336 |
+
)
|
337 |
+
(1): Sequential(
|
338 |
+
(0): LeakyReLU(negative_slope=0.1)
|
339 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
340 |
+
)
|
341 |
+
(2): Sequential(
|
342 |
+
(0): LeakyReLU(negative_slope=0.1)
|
343 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
344 |
+
)
|
345 |
+
)
|
346 |
+
(convs2): ModuleList(
|
347 |
+
(0-2): 3 x Sequential(
|
348 |
+
(0): LeakyReLU(negative_slope=0.1)
|
349 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
350 |
+
)
|
351 |
+
)
|
352 |
+
)
|
353 |
+
(7): ResidualBlock(
|
354 |
+
(convs1): ModuleList(
|
355 |
+
(0): Sequential(
|
356 |
+
(0): LeakyReLU(negative_slope=0.1)
|
357 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
358 |
+
)
|
359 |
+
(1): Sequential(
|
360 |
+
(0): LeakyReLU(negative_slope=0.1)
|
361 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
362 |
+
)
|
363 |
+
(2): Sequential(
|
364 |
+
(0): LeakyReLU(negative_slope=0.1)
|
365 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
366 |
+
)
|
367 |
+
)
|
368 |
+
(convs2): ModuleList(
|
369 |
+
(0-2): 3 x Sequential(
|
370 |
+
(0): LeakyReLU(negative_slope=0.1)
|
371 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
372 |
+
)
|
373 |
+
)
|
374 |
+
)
|
375 |
+
(8): ResidualBlock(
|
376 |
+
(convs1): ModuleList(
|
377 |
+
(0): Sequential(
|
378 |
+
(0): LeakyReLU(negative_slope=0.1)
|
379 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
380 |
+
)
|
381 |
+
(1): Sequential(
|
382 |
+
(0): LeakyReLU(negative_slope=0.1)
|
383 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
384 |
+
)
|
385 |
+
(2): Sequential(
|
386 |
+
(0): LeakyReLU(negative_slope=0.1)
|
387 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
388 |
+
)
|
389 |
+
)
|
390 |
+
(convs2): ModuleList(
|
391 |
+
(0-2): 3 x Sequential(
|
392 |
+
(0): LeakyReLU(negative_slope=0.1)
|
393 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
394 |
+
)
|
395 |
+
)
|
396 |
+
)
|
397 |
+
(9): ResidualBlock(
|
398 |
+
(convs1): ModuleList(
|
399 |
+
(0): Sequential(
|
400 |
+
(0): LeakyReLU(negative_slope=0.1)
|
401 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
402 |
+
)
|
403 |
+
(1): Sequential(
|
404 |
+
(0): LeakyReLU(negative_slope=0.1)
|
405 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
406 |
+
)
|
407 |
+
(2): Sequential(
|
408 |
+
(0): LeakyReLU(negative_slope=0.1)
|
409 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
410 |
+
)
|
411 |
+
)
|
412 |
+
(convs2): ModuleList(
|
413 |
+
(0-2): 3 x Sequential(
|
414 |
+
(0): LeakyReLU(negative_slope=0.1)
|
415 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
416 |
+
)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(10): ResidualBlock(
|
420 |
+
(convs1): ModuleList(
|
421 |
+
(0): Sequential(
|
422 |
+
(0): LeakyReLU(negative_slope=0.1)
|
423 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
424 |
+
)
|
425 |
+
(1): Sequential(
|
426 |
+
(0): LeakyReLU(negative_slope=0.1)
|
427 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
428 |
+
)
|
429 |
+
(2): Sequential(
|
430 |
+
(0): LeakyReLU(negative_slope=0.1)
|
431 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(convs2): ModuleList(
|
435 |
+
(0-2): 3 x Sequential(
|
436 |
+
(0): LeakyReLU(negative_slope=0.1)
|
437 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
438 |
+
)
|
439 |
+
)
|
440 |
+
)
|
441 |
+
(11): ResidualBlock(
|
442 |
+
(convs1): ModuleList(
|
443 |
+
(0): Sequential(
|
444 |
+
(0): LeakyReLU(negative_slope=0.1)
|
445 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
446 |
+
)
|
447 |
+
(1): Sequential(
|
448 |
+
(0): LeakyReLU(negative_slope=0.1)
|
449 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
450 |
+
)
|
451 |
+
(2): Sequential(
|
452 |
+
(0): LeakyReLU(negative_slope=0.1)
|
453 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
454 |
+
)
|
455 |
+
)
|
456 |
+
(convs2): ModuleList(
|
457 |
+
(0-2): 3 x Sequential(
|
458 |
+
(0): LeakyReLU(negative_slope=0.1)
|
459 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
460 |
+
)
|
461 |
+
)
|
462 |
+
)
|
463 |
+
)
|
464 |
+
(output_conv): Sequential(
|
465 |
+
(0): LeakyReLU(negative_slope=0.01)
|
466 |
+
(1): Conv1d(32, 1, kernel_size=(7,), stride=(1,), padding=(3,))
|
467 |
+
(2): Tanh()
|
468 |
+
)
|
469 |
+
(global_conv): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
470 |
+
)
|
471 |
+
(posterior_encoder): PosteriorEncoder(
|
472 |
+
(input_conv): Conv1d(80, 192, kernel_size=(1,), stride=(1,))
|
473 |
+
(encoder): WaveNet(
|
474 |
+
(conv_layers): ModuleList(
|
475 |
+
(0-15): 16 x ResidualBlock(
|
476 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
477 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
478 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
479 |
+
)
|
480 |
+
)
|
481 |
+
)
|
482 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
483 |
+
)
|
484 |
+
(flow): ResidualAffineCouplingBlock(
|
485 |
+
(flows): ModuleList(
|
486 |
+
(0): ResidualAffineCouplingLayer(
|
487 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
488 |
+
(encoder): WaveNet(
|
489 |
+
(conv_layers): ModuleList(
|
490 |
+
(0-3): 4 x ResidualBlock(
|
491 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
492 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
493 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
494 |
+
)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
498 |
+
)
|
499 |
+
(1): FlipFlow()
|
500 |
+
(2): ResidualAffineCouplingLayer(
|
501 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
502 |
+
(encoder): WaveNet(
|
503 |
+
(conv_layers): ModuleList(
|
504 |
+
(0-3): 4 x ResidualBlock(
|
505 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
506 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
507 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
508 |
+
)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
512 |
+
)
|
513 |
+
(3): FlipFlow()
|
514 |
+
(4): ResidualAffineCouplingLayer(
|
515 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
516 |
+
(encoder): WaveNet(
|
517 |
+
(conv_layers): ModuleList(
|
518 |
+
(0-3): 4 x ResidualBlock(
|
519 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
520 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
521 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
522 |
+
)
|
523 |
+
)
|
524 |
+
)
|
525 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
526 |
+
)
|
527 |
+
(5): FlipFlow()
|
528 |
+
(6): ResidualAffineCouplingLayer(
|
529 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
530 |
+
(encoder): WaveNet(
|
531 |
+
(conv_layers): ModuleList(
|
532 |
+
(0-3): 4 x ResidualBlock(
|
533 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
534 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
535 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
536 |
+
)
|
537 |
+
)
|
538 |
+
)
|
539 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
540 |
+
)
|
541 |
+
(7): FlipFlow()
|
542 |
+
)
|
543 |
+
)
|
544 |
+
(duration_predictor): StochasticDurationPredictor(
|
545 |
+
(pre): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
546 |
+
(dds): DilatedDepthSeparableConv(
|
547 |
+
(convs): ModuleList(
|
548 |
+
(0): Sequential(
|
549 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
550 |
+
(1): Transpose()
|
551 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
552 |
+
(3): Transpose()
|
553 |
+
(4): GELU(approximate='none')
|
554 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
555 |
+
(6): Transpose()
|
556 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
557 |
+
(8): Transpose()
|
558 |
+
(9): GELU(approximate='none')
|
559 |
+
(10): Dropout(p=0.5, inplace=False)
|
560 |
+
)
|
561 |
+
(1): Sequential(
|
562 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
563 |
+
(1): Transpose()
|
564 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
565 |
+
(3): Transpose()
|
566 |
+
(4): GELU(approximate='none')
|
567 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
568 |
+
(6): Transpose()
|
569 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
570 |
+
(8): Transpose()
|
571 |
+
(9): GELU(approximate='none')
|
572 |
+
(10): Dropout(p=0.5, inplace=False)
|
573 |
+
)
|
574 |
+
(2): Sequential(
|
575 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
576 |
+
(1): Transpose()
|
577 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
578 |
+
(3): Transpose()
|
579 |
+
(4): GELU(approximate='none')
|
580 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
581 |
+
(6): Transpose()
|
582 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
583 |
+
(8): Transpose()
|
584 |
+
(9): GELU(approximate='none')
|
585 |
+
(10): Dropout(p=0.5, inplace=False)
|
586 |
+
)
|
587 |
+
)
|
588 |
+
)
|
589 |
+
(proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
590 |
+
(log_flow): LogFlow()
|
591 |
+
(flows): ModuleList(
|
592 |
+
(0): ElementwiseAffineFlow()
|
593 |
+
(1): ConvFlow(
|
594 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
595 |
+
(dds_conv): DilatedDepthSeparableConv(
|
596 |
+
(convs): ModuleList(
|
597 |
+
(0): Sequential(
|
598 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
599 |
+
(1): Transpose()
|
600 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
601 |
+
(3): Transpose()
|
602 |
+
(4): GELU(approximate='none')
|
603 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
604 |
+
(6): Transpose()
|
605 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
606 |
+
(8): Transpose()
|
607 |
+
(9): GELU(approximate='none')
|
608 |
+
(10): Dropout(p=0.0, inplace=False)
|
609 |
+
)
|
610 |
+
(1): Sequential(
|
611 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
612 |
+
(1): Transpose()
|
613 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
614 |
+
(3): Transpose()
|
615 |
+
(4): GELU(approximate='none')
|
616 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
617 |
+
(6): Transpose()
|
618 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
619 |
+
(8): Transpose()
|
620 |
+
(9): GELU(approximate='none')
|
621 |
+
(10): Dropout(p=0.0, inplace=False)
|
622 |
+
)
|
623 |
+
(2): Sequential(
|
624 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
625 |
+
(1): Transpose()
|
626 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
627 |
+
(3): Transpose()
|
628 |
+
(4): GELU(approximate='none')
|
629 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
630 |
+
(6): Transpose()
|
631 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
632 |
+
(8): Transpose()
|
633 |
+
(9): GELU(approximate='none')
|
634 |
+
(10): Dropout(p=0.0, inplace=False)
|
635 |
+
)
|
636 |
+
)
|
637 |
+
)
|
638 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
639 |
+
)
|
640 |
+
(2): FlipFlow()
|
641 |
+
(3): ConvFlow(
|
642 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
643 |
+
(dds_conv): DilatedDepthSeparableConv(
|
644 |
+
(convs): ModuleList(
|
645 |
+
(0): Sequential(
|
646 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
647 |
+
(1): Transpose()
|
648 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
649 |
+
(3): Transpose()
|
650 |
+
(4): GELU(approximate='none')
|
651 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
652 |
+
(6): Transpose()
|
653 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
654 |
+
(8): Transpose()
|
655 |
+
(9): GELU(approximate='none')
|
656 |
+
(10): Dropout(p=0.0, inplace=False)
|
657 |
+
)
|
658 |
+
(1): Sequential(
|
659 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
660 |
+
(1): Transpose()
|
661 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
662 |
+
(3): Transpose()
|
663 |
+
(4): GELU(approximate='none')
|
664 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
665 |
+
(6): Transpose()
|
666 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
667 |
+
(8): Transpose()
|
668 |
+
(9): GELU(approximate='none')
|
669 |
+
(10): Dropout(p=0.0, inplace=False)
|
670 |
+
)
|
671 |
+
(2): Sequential(
|
672 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
673 |
+
(1): Transpose()
|
674 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
675 |
+
(3): Transpose()
|
676 |
+
(4): GELU(approximate='none')
|
677 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
678 |
+
(6): Transpose()
|
679 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
680 |
+
(8): Transpose()
|
681 |
+
(9): GELU(approximate='none')
|
682 |
+
(10): Dropout(p=0.0, inplace=False)
|
683 |
+
)
|
684 |
+
)
|
685 |
+
)
|
686 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
687 |
+
)
|
688 |
+
(4): FlipFlow()
|
689 |
+
(5): ConvFlow(
|
690 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
691 |
+
(dds_conv): DilatedDepthSeparableConv(
|
692 |
+
(convs): ModuleList(
|
693 |
+
(0): Sequential(
|
694 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
695 |
+
(1): Transpose()
|
696 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
697 |
+
(3): Transpose()
|
698 |
+
(4): GELU(approximate='none')
|
699 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
700 |
+
(6): Transpose()
|
701 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
702 |
+
(8): Transpose()
|
703 |
+
(9): GELU(approximate='none')
|
704 |
+
(10): Dropout(p=0.0, inplace=False)
|
705 |
+
)
|
706 |
+
(1): Sequential(
|
707 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
708 |
+
(1): Transpose()
|
709 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
710 |
+
(3): Transpose()
|
711 |
+
(4): GELU(approximate='none')
|
712 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
713 |
+
(6): Transpose()
|
714 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
715 |
+
(8): Transpose()
|
716 |
+
(9): GELU(approximate='none')
|
717 |
+
(10): Dropout(p=0.0, inplace=False)
|
718 |
+
)
|
719 |
+
(2): Sequential(
|
720 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
721 |
+
(1): Transpose()
|
722 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
723 |
+
(3): Transpose()
|
724 |
+
(4): GELU(approximate='none')
|
725 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
726 |
+
(6): Transpose()
|
727 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
728 |
+
(8): Transpose()
|
729 |
+
(9): GELU(approximate='none')
|
730 |
+
(10): Dropout(p=0.0, inplace=False)
|
731 |
+
)
|
732 |
+
)
|
733 |
+
)
|
734 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
735 |
+
)
|
736 |
+
(6): FlipFlow()
|
737 |
+
(7): ConvFlow(
|
738 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
739 |
+
(dds_conv): DilatedDepthSeparableConv(
|
740 |
+
(convs): ModuleList(
|
741 |
+
(0): Sequential(
|
742 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
743 |
+
(1): Transpose()
|
744 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
745 |
+
(3): Transpose()
|
746 |
+
(4): GELU(approximate='none')
|
747 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
748 |
+
(6): Transpose()
|
749 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
750 |
+
(8): Transpose()
|
751 |
+
(9): GELU(approximate='none')
|
752 |
+
(10): Dropout(p=0.0, inplace=False)
|
753 |
+
)
|
754 |
+
(1): Sequential(
|
755 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
756 |
+
(1): Transpose()
|
757 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
758 |
+
(3): Transpose()
|
759 |
+
(4): GELU(approximate='none')
|
760 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
761 |
+
(6): Transpose()
|
762 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
763 |
+
(8): Transpose()
|
764 |
+
(9): GELU(approximate='none')
|
765 |
+
(10): Dropout(p=0.0, inplace=False)
|
766 |
+
)
|
767 |
+
(2): Sequential(
|
768 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
769 |
+
(1): Transpose()
|
770 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
771 |
+
(3): Transpose()
|
772 |
+
(4): GELU(approximate='none')
|
773 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
774 |
+
(6): Transpose()
|
775 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
776 |
+
(8): Transpose()
|
777 |
+
(9): GELU(approximate='none')
|
778 |
+
(10): Dropout(p=0.0, inplace=False)
|
779 |
+
)
|
780 |
+
)
|
781 |
+
)
|
782 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
783 |
+
)
|
784 |
+
(8): FlipFlow()
|
785 |
+
)
|
786 |
+
(post_pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
787 |
+
(post_dds): DilatedDepthSeparableConv(
|
788 |
+
(convs): ModuleList(
|
789 |
+
(0): Sequential(
|
790 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
791 |
+
(1): Transpose()
|
792 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
793 |
+
(3): Transpose()
|
794 |
+
(4): GELU(approximate='none')
|
795 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
796 |
+
(6): Transpose()
|
797 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
798 |
+
(8): Transpose()
|
799 |
+
(9): GELU(approximate='none')
|
800 |
+
(10): Dropout(p=0.5, inplace=False)
|
801 |
+
)
|
802 |
+
(1): Sequential(
|
803 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
804 |
+
(1): Transpose()
|
805 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
806 |
+
(3): Transpose()
|
807 |
+
(4): GELU(approximate='none')
|
808 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
809 |
+
(6): Transpose()
|
810 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
811 |
+
(8): Transpose()
|
812 |
+
(9): GELU(approximate='none')
|
813 |
+
(10): Dropout(p=0.5, inplace=False)
|
814 |
+
)
|
815 |
+
(2): Sequential(
|
816 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
817 |
+
(1): Transpose()
|
818 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
819 |
+
(3): Transpose()
|
820 |
+
(4): GELU(approximate='none')
|
821 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
822 |
+
(6): Transpose()
|
823 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
824 |
+
(8): Transpose()
|
825 |
+
(9): GELU(approximate='none')
|
826 |
+
(10): Dropout(p=0.5, inplace=False)
|
827 |
+
)
|
828 |
+
)
|
829 |
+
)
|
830 |
+
(post_proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
831 |
+
(post_flows): ModuleList(
|
832 |
+
(0): ElementwiseAffineFlow()
|
833 |
+
(1): ConvFlow(
|
834 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
835 |
+
(dds_conv): DilatedDepthSeparableConv(
|
836 |
+
(convs): ModuleList(
|
837 |
+
(0): Sequential(
|
838 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
839 |
+
(1): Transpose()
|
840 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
841 |
+
(3): Transpose()
|
842 |
+
(4): GELU(approximate='none')
|
843 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
844 |
+
(6): Transpose()
|
845 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
846 |
+
(8): Transpose()
|
847 |
+
(9): GELU(approximate='none')
|
848 |
+
(10): Dropout(p=0.0, inplace=False)
|
849 |
+
)
|
850 |
+
(1): Sequential(
|
851 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
852 |
+
(1): Transpose()
|
853 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
854 |
+
(3): Transpose()
|
855 |
+
(4): GELU(approximate='none')
|
856 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
857 |
+
(6): Transpose()
|
858 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
859 |
+
(8): Transpose()
|
860 |
+
(9): GELU(approximate='none')
|
861 |
+
(10): Dropout(p=0.0, inplace=False)
|
862 |
+
)
|
863 |
+
(2): Sequential(
|
864 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
865 |
+
(1): Transpose()
|
866 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
867 |
+
(3): Transpose()
|
868 |
+
(4): GELU(approximate='none')
|
869 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
870 |
+
(6): Transpose()
|
871 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
872 |
+
(8): Transpose()
|
873 |
+
(9): GELU(approximate='none')
|
874 |
+
(10): Dropout(p=0.0, inplace=False)
|
875 |
+
)
|
876 |
+
)
|
877 |
+
)
|
878 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
879 |
+
)
|
880 |
+
(2): FlipFlow()
|
881 |
+
(3): ConvFlow(
|
882 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
883 |
+
(dds_conv): DilatedDepthSeparableConv(
|
884 |
+
(convs): ModuleList(
|
885 |
+
(0): Sequential(
|
886 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
887 |
+
(1): Transpose()
|
888 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
889 |
+
(3): Transpose()
|
890 |
+
(4): GELU(approximate='none')
|
891 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
892 |
+
(6): Transpose()
|
893 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
894 |
+
(8): Transpose()
|
895 |
+
(9): GELU(approximate='none')
|
896 |
+
(10): Dropout(p=0.0, inplace=False)
|
897 |
+
)
|
898 |
+
(1): Sequential(
|
899 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
900 |
+
(1): Transpose()
|
901 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
902 |
+
(3): Transpose()
|
903 |
+
(4): GELU(approximate='none')
|
904 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
905 |
+
(6): Transpose()
|
906 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
907 |
+
(8): Transpose()
|
908 |
+
(9): GELU(approximate='none')
|
909 |
+
(10): Dropout(p=0.0, inplace=False)
|
910 |
+
)
|
911 |
+
(2): Sequential(
|
912 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
913 |
+
(1): Transpose()
|
914 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
915 |
+
(3): Transpose()
|
916 |
+
(4): GELU(approximate='none')
|
917 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
918 |
+
(6): Transpose()
|
919 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
920 |
+
(8): Transpose()
|
921 |
+
(9): GELU(approximate='none')
|
922 |
+
(10): Dropout(p=0.0, inplace=False)
|
923 |
+
)
|
924 |
+
)
|
925 |
+
)
|
926 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
927 |
+
)
|
928 |
+
(4): FlipFlow()
|
929 |
+
(5): ConvFlow(
|
930 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
931 |
+
(dds_conv): DilatedDepthSeparableConv(
|
932 |
+
(convs): ModuleList(
|
933 |
+
(0): Sequential(
|
934 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
935 |
+
(1): Transpose()
|
936 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
937 |
+
(3): Transpose()
|
938 |
+
(4): GELU(approximate='none')
|
939 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
940 |
+
(6): Transpose()
|
941 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
942 |
+
(8): Transpose()
|
943 |
+
(9): GELU(approximate='none')
|
944 |
+
(10): Dropout(p=0.0, inplace=False)
|
945 |
+
)
|
946 |
+
(1): Sequential(
|
947 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
948 |
+
(1): Transpose()
|
949 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
950 |
+
(3): Transpose()
|
951 |
+
(4): GELU(approximate='none')
|
952 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
953 |
+
(6): Transpose()
|
954 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
955 |
+
(8): Transpose()
|
956 |
+
(9): GELU(approximate='none')
|
957 |
+
(10): Dropout(p=0.0, inplace=False)
|
958 |
+
)
|
959 |
+
(2): Sequential(
|
960 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
961 |
+
(1): Transpose()
|
962 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
963 |
+
(3): Transpose()
|
964 |
+
(4): GELU(approximate='none')
|
965 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
966 |
+
(6): Transpose()
|
967 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
968 |
+
(8): Transpose()
|
969 |
+
(9): GELU(approximate='none')
|
970 |
+
(10): Dropout(p=0.0, inplace=False)
|
971 |
+
)
|
972 |
+
)
|
973 |
+
)
|
974 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
975 |
+
)
|
976 |
+
(6): FlipFlow()
|
977 |
+
(7): ConvFlow(
|
978 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
979 |
+
(dds_conv): DilatedDepthSeparableConv(
|
980 |
+
(convs): ModuleList(
|
981 |
+
(0): Sequential(
|
982 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
983 |
+
(1): Transpose()
|
984 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
985 |
+
(3): Transpose()
|
986 |
+
(4): GELU(approximate='none')
|
987 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
988 |
+
(6): Transpose()
|
989 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
990 |
+
(8): Transpose()
|
991 |
+
(9): GELU(approximate='none')
|
992 |
+
(10): Dropout(p=0.0, inplace=False)
|
993 |
+
)
|
994 |
+
(1): Sequential(
|
995 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
996 |
+
(1): Transpose()
|
997 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
998 |
+
(3): Transpose()
|
999 |
+
(4): GELU(approximate='none')
|
1000 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1001 |
+
(6): Transpose()
|
1002 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1003 |
+
(8): Transpose()
|
1004 |
+
(9): GELU(approximate='none')
|
1005 |
+
(10): Dropout(p=0.0, inplace=False)
|
1006 |
+
)
|
1007 |
+
(2): Sequential(
|
1008 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
1009 |
+
(1): Transpose()
|
1010 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1011 |
+
(3): Transpose()
|
1012 |
+
(4): GELU(approximate='none')
|
1013 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1014 |
+
(6): Transpose()
|
1015 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1016 |
+
(8): Transpose()
|
1017 |
+
(9): GELU(approximate='none')
|
1018 |
+
(10): Dropout(p=0.0, inplace=False)
|
1019 |
+
)
|
1020 |
+
)
|
1021 |
+
)
|
1022 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
1023 |
+
)
|
1024 |
+
(8): FlipFlow()
|
1025 |
+
)
|
1026 |
+
(global_conv): Conv1d(256, 192, kernel_size=(1,), stride=(1,))
|
1027 |
+
)
|
1028 |
+
(global_emb): Embedding(4, 256)
|
1029 |
+
)
|
1030 |
+
(discriminator): HiFiGANMultiScaleMultiPeriodDiscriminator(
|
1031 |
+
(msd): HiFiGANMultiScaleDiscriminator(
|
1032 |
+
(discriminators): ModuleList(
|
1033 |
+
(0): HiFiGANScaleDiscriminator(
|
1034 |
+
(layers): ModuleList(
|
1035 |
+
(0): Sequential(
|
1036 |
+
(0): Conv1d(1, 128, kernel_size=(15,), stride=(1,), padding=(7,))
|
1037 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1038 |
+
)
|
1039 |
+
(1): Sequential(
|
1040 |
+
(0): Conv1d(128, 128, kernel_size=(41,), stride=(2,), padding=(20,), groups=4)
|
1041 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1042 |
+
)
|
1043 |
+
(2): Sequential(
|
1044 |
+
(0): Conv1d(128, 256, kernel_size=(41,), stride=(2,), padding=(20,), groups=16)
|
1045 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1046 |
+
)
|
1047 |
+
(3): Sequential(
|
1048 |
+
(0): Conv1d(256, 512, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1049 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1050 |
+
)
|
1051 |
+
(4): Sequential(
|
1052 |
+
(0): Conv1d(512, 1024, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1053 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1054 |
+
)
|
1055 |
+
(5): Sequential(
|
1056 |
+
(0): Conv1d(1024, 1024, kernel_size=(41,), stride=(1,), padding=(20,), groups=16)
|
1057 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1058 |
+
)
|
1059 |
+
(6): Sequential(
|
1060 |
+
(0): Conv1d(1024, 1024, kernel_size=(5,), stride=(1,), padding=(2,))
|
1061 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1062 |
+
)
|
1063 |
+
(7): Conv1d(1024, 1, kernel_size=(3,), stride=(1,), padding=(1,))
|
1064 |
+
)
|
1065 |
+
)
|
1066 |
+
)
|
1067 |
+
)
|
1068 |
+
(mpd): HiFiGANMultiPeriodDiscriminator(
|
1069 |
+
(discriminators): ModuleList(
|
1070 |
+
(0-4): 5 x HiFiGANPeriodDiscriminator(
|
1071 |
+
(convs): ModuleList(
|
1072 |
+
(0): Sequential(
|
1073 |
+
(0): Conv2d(1, 32, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1074 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1075 |
+
)
|
1076 |
+
(1): Sequential(
|
1077 |
+
(0): Conv2d(32, 128, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1078 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1079 |
+
)
|
1080 |
+
(2): Sequential(
|
1081 |
+
(0): Conv2d(128, 512, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1082 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1083 |
+
)
|
1084 |
+
(3): Sequential(
|
1085 |
+
(0): Conv2d(512, 1024, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1086 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1087 |
+
)
|
1088 |
+
(4): Sequential(
|
1089 |
+
(0): Conv2d(1024, 1024, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))
|
1090 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1091 |
+
)
|
1092 |
+
)
|
1093 |
+
(output_conv): Conv2d(1024, 1, kernel_size=(2, 1), stride=(1, 1), padding=(1, 0))
|
1094 |
+
)
|
1095 |
+
)
|
1096 |
+
)
|
1097 |
+
)
|
1098 |
+
(generator_adv_loss): GeneratorAdversarialLoss()
|
1099 |
+
(discriminator_adv_loss): DiscriminatorAdversarialLoss()
|
1100 |
+
(feat_match_loss): FeatureMatchLoss()
|
1101 |
+
(mel_loss): MelSpectrogramLoss(
|
1102 |
+
(wav_to_mel): LogMelFbank(
|
1103 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
1104 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=0, fmax=11025.0, htk=False)
|
1105 |
+
)
|
1106 |
+
)
|
1107 |
+
(kl_loss): KLDivergenceLoss()
|
1108 |
+
)
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
Model summary:
|
1112 |
+
Class Name: ESPnetGANTTSModel
|
1113 |
+
Total Number of model parameters: 96.24 M
|
1114 |
+
Number of trainable parameters: 96.24 M (100.0%)
|
1115 |
+
Size: 384.96 MB
|
1116 |
+
Type: torch.float32
|
1117 |
+
[wieling-3-a100] 2023-12-01 15:58:41,759 (abs_task:1272) INFO: Optimizer:
|
1118 |
+
AdamW (
|
1119 |
+
Parameter Group 0
|
1120 |
+
amsgrad: False
|
1121 |
+
betas: [0.8, 0.99]
|
1122 |
+
capturable: False
|
1123 |
+
differentiable: False
|
1124 |
+
eps: 1e-09
|
1125 |
+
foreach: None
|
1126 |
+
fused: None
|
1127 |
+
initial_lr: 0.0003
|
1128 |
+
lr: 0.0003
|
1129 |
+
maximize: False
|
1130 |
+
weight_decay: 0.0
|
1131 |
+
)
|
1132 |
+
[wieling-3-a100] 2023-12-01 15:58:41,759 (abs_task:1273) INFO: Scheduler: <torch.optim.lr_scheduler.ExponentialLR object at 0x7ffa7c9b4880>
|
1133 |
+
[wieling-3-a100] 2023-12-01 15:58:41,759 (abs_task:1272) INFO: Optimizer2:
|
1134 |
+
AdamW (
|
1135 |
+
Parameter Group 0
|
1136 |
+
amsgrad: False
|
1137 |
+
betas: [0.8, 0.99]
|
1138 |
+
capturable: False
|
1139 |
+
differentiable: False
|
1140 |
+
eps: 1e-09
|
1141 |
+
foreach: None
|
1142 |
+
fused: None
|
1143 |
+
initial_lr: 0.0003
|
1144 |
+
lr: 0.0003
|
1145 |
+
maximize: False
|
1146 |
+
weight_decay: 0.0
|
1147 |
+
)
|
1148 |
+
[wieling-3-a100] 2023-12-01 15:58:41,759 (abs_task:1273) INFO: Scheduler2: <torch.optim.lr_scheduler.ExponentialLR object at 0x7ffa7c9b4820>
|
1149 |
+
[wieling-3-a100] 2023-12-01 15:58:41,759 (abs_task:1282) INFO: Saving the configuration in exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/config.yaml
|
1150 |
+
[wieling-3-a100] 2023-12-01 15:58:41,790 (abs_task:1293) INFO: Namespace(config='conf/train_vits.yaml', print_config=False, log_level='INFO', drop_last_iter=False, dry_run=False, iterator_type='sequence', valid_iterator_type=None, output_dir='exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10', ngpu=0, seed=67823, num_workers=4, num_att_plot=3, dist_backend='nccl', dist_init_method='env://', dist_world_size=None, dist_rank=None, local_rank=None, dist_master_addr=None, dist_master_port=None, dist_launcher=None, multiprocessing_distributed=False, unused_parameters=True, sharded_ddp=False, cudnn_enabled=True, cudnn_benchmark=False, cudnn_deterministic=False, collect_stats=True, write_collected_feats=False, max_epoch=1000, patience=None, val_scheduler_criterion=('valid', 'loss'), early_stopping_criterion=('valid', 'loss', 'min'), best_model_criterion=[['train', 'total_count', 'max']], keep_nbest_models=10, nbest_averaging_interval=0, grad_clip=-1, grad_clip_type=2.0, grad_noise=False, accum_grad=1, no_forward_run=False, resume=False, train_dtype='float32', use_amp=False, log_interval=50, use_matplotlib=True, use_tensorboard=True, create_graph_in_tensorboard=False, use_wandb=True, wandb_project='GROTTS', wandb_id=None, wandb_entity=None, wandb_name='VITS_lr_3.0e-4', wandb_model_log_interval=-1, detect_anomaly=False, use_lora=False, save_lora_only=True, lora_conf={}, pretrain_path=None, init_param=['downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv'], ignore_init_mismatch=False, freeze_param=[], num_iters_per_epoch=1000, batch_size=40, valid_batch_size=None, batch_bins=10000000, valid_batch_bins=None, train_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.10.scp'], valid_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.10.scp'], batch_type='numel', valid_batch_type=None, fold_length=[], sort_in_batch='descending', shuffle_within_batch=False, sort_batch='descending', multiple_iterator=False, chunk_length=500, chunk_shift_ratio=0.5, num_cache_chunks=1024, chunk_excluded_key_prefixes=[], chunk_default_fs=None, train_data_path_and_name_and_type=[('dump/raw/train_nodev/text', 'text', 'text'), ('dump/raw/train_nodev/wav.scp', 'speech', 'sound'), ('dump/raw/train_nodev/utt2sid', 'sids', 'text_int')], valid_data_path_and_name_and_type=[('dump/raw/train_dev/text', 'text', 'text'), ('dump/raw/train_dev/wav.scp', 'speech', 'sound'), ('dump/raw/train_dev/utt2sid', 'sids', 'text_int')], allow_variable_data_keys=False, max_cache_size=0.0, max_cache_fd=32, allow_multi_rates=False, valid_max_cache_size=None, exclude_weight_decay=False, exclude_weight_decay_conf={}, optim='adamw', optim_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler='exponentiallr', scheduler_conf={'gamma': 0.999875}, optim2='adamw', optim2_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler2='exponentiallr', scheduler2_conf={'gamma': 0.999875}, generator_first=False, token_list=['<blank>', '<unk>', '<space>', 'e', 'n', 'a', 'o', 't', 'i', 'r', 'd', 's', 'k', 'l', 'm', 'u', 'g', 'h', 'w', 'v', '.', 'z', 'b', 'p', ',', 'j', 'c', 'f', '‘', '’', ':', '?', 'ö', "'", '!', '-', ';', 'ò', 'è', 'ì', 'é', 'y', 'ë', 'x', 'q', '<sos/eos>'], odim=None, model_conf={}, use_preprocessor=True, token_type='char', bpemodel=None, non_linguistic_symbols=None, cleaner=None, g2p=None, feats_extract='fbank', feats_extract_conf={'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'fs': 22050, 'fmin': 80, 'fmax': 7600, 'n_mels': 80}, normalize=None, normalize_conf={}, tts='vits', tts_conf={'generator_type': 'vits_generator', 'generator_params': {'hidden_channels': 192, 'spks': 4, 'global_channels': 256, 'segment_size': 32, 'text_encoder_attention_heads': 2, 'text_encoder_ffn_expand': 4, 'text_encoder_blocks': 6, 'text_encoder_positionwise_layer_type': 'conv1d', 'text_encoder_positionwise_conv_kernel_size': 3, 'text_encoder_positional_encoding_layer_type': 'rel_pos', 'text_encoder_self_attention_layer_type': 'rel_selfattn', 'text_encoder_activation_type': 'swish', 'text_encoder_normalize_before': True, 'text_encoder_dropout_rate': 0.1, 'text_encoder_positional_dropout_rate': 0.0, 'text_encoder_attention_dropout_rate': 0.1, 'use_macaron_style_in_text_encoder': True, 'use_conformer_conv_in_text_encoder': False, 'text_encoder_conformer_kernel_size': -1, 'decoder_kernel_size': 7, 'decoder_channels': 512, 'decoder_upsample_scales': [8, 8, 2, 2], 'decoder_upsample_kernel_sizes': [16, 16, 4, 4], 'decoder_resblock_kernel_sizes': [3, 7, 11], 'decoder_resblock_dilations': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'use_weight_norm_in_decoder': True, 'posterior_encoder_kernel_size': 5, 'posterior_encoder_layers': 16, 'posterior_encoder_stacks': 1, 'posterior_encoder_base_dilation': 1, 'posterior_encoder_dropout_rate': 0.0, 'use_weight_norm_in_posterior_encoder': True, 'flow_flows': 4, 'flow_kernel_size': 5, 'flow_base_dilation': 1, 'flow_layers': 4, 'flow_dropout_rate': 0.0, 'use_weight_norm_in_flow': True, 'use_only_mean_in_flow': True, 'stochastic_duration_predictor_kernel_size': 3, 'stochastic_duration_predictor_dropout_rate': 0.5, 'stochastic_duration_predictor_flows': 4, 'stochastic_duration_predictor_dds_conv_layers': 3, 'vocabs': 46, 'aux_channels': 80}, 'discriminator_type': 'hifigan_multi_scale_multi_period_discriminator', 'discriminator_params': {'scales': 1, 'scale_downsample_pooling': 'AvgPool1d', 'scale_downsample_pooling_params': {'kernel_size': 4, 'stride': 2, 'padding': 2}, 'scale_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [15, 41, 5, 3], 'channels': 128, 'max_downsample_channels': 1024, 'max_groups': 16, 'bias': True, 'downsample_scales': [2, 2, 4, 4, 1], 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': False, 'use_spectral_norm': False}, 'follow_official_norm': False, 'periods': [2, 3, 5, 7, 11], 'period_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [5, 3], 'channels': 32, 'downsample_scales': [3, 3, 3, 3, 1], 'max_downsample_channels': 1024, 'bias': True, 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': True, 'use_spectral_norm': False}}, 'generator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'discriminator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'feat_match_loss_params': {'average_by_discriminators': False, 'average_by_layers': False, 'include_final_outputs': True}, 'mel_loss_params': {'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'window': 'hann', 'n_mels': 80, 'fmin': 0, 'fmax': None, 'log_base': None}, 'lambda_adv': 1.0, 'lambda_mel': 45.0, 'lambda_feat_match': 2.0, 'lambda_dur': 1.0, 'lambda_kl': 1.0, 'sampling_rate': 22050, 'cache_generator_outputs': True}, pitch_extract=None, pitch_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'f0max': 400, 'f0min': 80}, pitch_normalize=None, pitch_normalize_conf={}, energy_extract=None, energy_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None}, energy_normalize=None, energy_normalize_conf={}, required=['output_dir', 'token_list'], version='202310', distributed=False)
|
1151 |
+
# Accounting: time=18 threads=1
|
1152 |
+
# Ended (code 0) at Fri Dec 1 15:58:52 UTC 2023, elapsed time 18 seconds
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/config.yaml
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config: conf/train_vits.yaml
|
2 |
+
print_config: false
|
3 |
+
log_level: INFO
|
4 |
+
drop_last_iter: false
|
5 |
+
dry_run: false
|
6 |
+
iterator_type: sequence
|
7 |
+
valid_iterator_type: null
|
8 |
+
output_dir: exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10
|
9 |
+
ngpu: 0
|
10 |
+
seed: 67823
|
11 |
+
num_workers: 4
|
12 |
+
num_att_plot: 3
|
13 |
+
dist_backend: nccl
|
14 |
+
dist_init_method: env://
|
15 |
+
dist_world_size: null
|
16 |
+
dist_rank: null
|
17 |
+
local_rank: null
|
18 |
+
dist_master_addr: null
|
19 |
+
dist_master_port: null
|
20 |
+
dist_launcher: null
|
21 |
+
multiprocessing_distributed: false
|
22 |
+
unused_parameters: true
|
23 |
+
sharded_ddp: false
|
24 |
+
cudnn_enabled: true
|
25 |
+
cudnn_benchmark: false
|
26 |
+
cudnn_deterministic: false
|
27 |
+
collect_stats: true
|
28 |
+
write_collected_feats: false
|
29 |
+
max_epoch: 1000
|
30 |
+
patience: null
|
31 |
+
val_scheduler_criterion:
|
32 |
+
- valid
|
33 |
+
- loss
|
34 |
+
early_stopping_criterion:
|
35 |
+
- valid
|
36 |
+
- loss
|
37 |
+
- min
|
38 |
+
best_model_criterion:
|
39 |
+
- - train
|
40 |
+
- total_count
|
41 |
+
- max
|
42 |
+
keep_nbest_models: 10
|
43 |
+
nbest_averaging_interval: 0
|
44 |
+
grad_clip: -1
|
45 |
+
grad_clip_type: 2.0
|
46 |
+
grad_noise: false
|
47 |
+
accum_grad: 1
|
48 |
+
no_forward_run: false
|
49 |
+
resume: false
|
50 |
+
train_dtype: float32
|
51 |
+
use_amp: false
|
52 |
+
log_interval: 50
|
53 |
+
use_matplotlib: true
|
54 |
+
use_tensorboard: true
|
55 |
+
create_graph_in_tensorboard: false
|
56 |
+
use_wandb: true
|
57 |
+
wandb_project: GROTTS
|
58 |
+
wandb_id: null
|
59 |
+
wandb_entity: null
|
60 |
+
wandb_name: VITS_lr_3.0e-4
|
61 |
+
wandb_model_log_interval: -1
|
62 |
+
detect_anomaly: false
|
63 |
+
use_lora: false
|
64 |
+
save_lora_only: true
|
65 |
+
lora_conf: {}
|
66 |
+
pretrain_path: null
|
67 |
+
init_param:
|
68 |
+
- downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv
|
69 |
+
ignore_init_mismatch: false
|
70 |
+
freeze_param: []
|
71 |
+
num_iters_per_epoch: 1000
|
72 |
+
batch_size: 40
|
73 |
+
valid_batch_size: null
|
74 |
+
batch_bins: 10000000
|
75 |
+
valid_batch_bins: null
|
76 |
+
train_shape_file:
|
77 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.10.scp
|
78 |
+
valid_shape_file:
|
79 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.10.scp
|
80 |
+
batch_type: numel
|
81 |
+
valid_batch_type: null
|
82 |
+
fold_length: []
|
83 |
+
sort_in_batch: descending
|
84 |
+
shuffle_within_batch: false
|
85 |
+
sort_batch: descending
|
86 |
+
multiple_iterator: false
|
87 |
+
chunk_length: 500
|
88 |
+
chunk_shift_ratio: 0.5
|
89 |
+
num_cache_chunks: 1024
|
90 |
+
chunk_excluded_key_prefixes: []
|
91 |
+
chunk_default_fs: null
|
92 |
+
train_data_path_and_name_and_type:
|
93 |
+
- - dump/raw/train_nodev/text
|
94 |
+
- text
|
95 |
+
- text
|
96 |
+
- - dump/raw/train_nodev/wav.scp
|
97 |
+
- speech
|
98 |
+
- sound
|
99 |
+
- - dump/raw/train_nodev/utt2sid
|
100 |
+
- sids
|
101 |
+
- text_int
|
102 |
+
valid_data_path_and_name_and_type:
|
103 |
+
- - dump/raw/train_dev/text
|
104 |
+
- text
|
105 |
+
- text
|
106 |
+
- - dump/raw/train_dev/wav.scp
|
107 |
+
- speech
|
108 |
+
- sound
|
109 |
+
- - dump/raw/train_dev/utt2sid
|
110 |
+
- sids
|
111 |
+
- text_int
|
112 |
+
allow_variable_data_keys: false
|
113 |
+
max_cache_size: 0.0
|
114 |
+
max_cache_fd: 32
|
115 |
+
allow_multi_rates: false
|
116 |
+
valid_max_cache_size: null
|
117 |
+
exclude_weight_decay: false
|
118 |
+
exclude_weight_decay_conf: {}
|
119 |
+
optim: adamw
|
120 |
+
optim_conf:
|
121 |
+
lr: 0.0003
|
122 |
+
betas:
|
123 |
+
- 0.8
|
124 |
+
- 0.99
|
125 |
+
eps: 1.0e-09
|
126 |
+
weight_decay: 0.0
|
127 |
+
scheduler: exponentiallr
|
128 |
+
scheduler_conf:
|
129 |
+
gamma: 0.999875
|
130 |
+
optim2: adamw
|
131 |
+
optim2_conf:
|
132 |
+
lr: 0.0003
|
133 |
+
betas:
|
134 |
+
- 0.8
|
135 |
+
- 0.99
|
136 |
+
eps: 1.0e-09
|
137 |
+
weight_decay: 0.0
|
138 |
+
scheduler2: exponentiallr
|
139 |
+
scheduler2_conf:
|
140 |
+
gamma: 0.999875
|
141 |
+
generator_first: false
|
142 |
+
token_list:
|
143 |
+
- <blank>
|
144 |
+
- <unk>
|
145 |
+
- <space>
|
146 |
+
- e
|
147 |
+
- n
|
148 |
+
- a
|
149 |
+
- o
|
150 |
+
- t
|
151 |
+
- i
|
152 |
+
- r
|
153 |
+
- d
|
154 |
+
- s
|
155 |
+
- k
|
156 |
+
- l
|
157 |
+
- m
|
158 |
+
- u
|
159 |
+
- g
|
160 |
+
- h
|
161 |
+
- w
|
162 |
+
- v
|
163 |
+
- .
|
164 |
+
- z
|
165 |
+
- b
|
166 |
+
- p
|
167 |
+
- ','
|
168 |
+
- j
|
169 |
+
- c
|
170 |
+
- f
|
171 |
+
- ‘
|
172 |
+
- ’
|
173 |
+
- ':'
|
174 |
+
- '?'
|
175 |
+
- ö
|
176 |
+
- ''''
|
177 |
+
- '!'
|
178 |
+
- '-'
|
179 |
+
- ;
|
180 |
+
- ò
|
181 |
+
- è
|
182 |
+
- ì
|
183 |
+
- é
|
184 |
+
- y
|
185 |
+
- ë
|
186 |
+
- x
|
187 |
+
- q
|
188 |
+
- <sos/eos>
|
189 |
+
odim: null
|
190 |
+
model_conf: {}
|
191 |
+
use_preprocessor: true
|
192 |
+
token_type: char
|
193 |
+
bpemodel: null
|
194 |
+
non_linguistic_symbols: null
|
195 |
+
cleaner: null
|
196 |
+
g2p: null
|
197 |
+
feats_extract: fbank
|
198 |
+
feats_extract_conf:
|
199 |
+
n_fft: 1024
|
200 |
+
hop_length: 256
|
201 |
+
win_length: null
|
202 |
+
fs: 22050
|
203 |
+
fmin: 80
|
204 |
+
fmax: 7600
|
205 |
+
n_mels: 80
|
206 |
+
normalize: null
|
207 |
+
normalize_conf: {}
|
208 |
+
tts: vits
|
209 |
+
tts_conf:
|
210 |
+
generator_type: vits_generator
|
211 |
+
generator_params:
|
212 |
+
hidden_channels: 192
|
213 |
+
spks: 4
|
214 |
+
global_channels: 256
|
215 |
+
segment_size: 32
|
216 |
+
text_encoder_attention_heads: 2
|
217 |
+
text_encoder_ffn_expand: 4
|
218 |
+
text_encoder_blocks: 6
|
219 |
+
text_encoder_positionwise_layer_type: conv1d
|
220 |
+
text_encoder_positionwise_conv_kernel_size: 3
|
221 |
+
text_encoder_positional_encoding_layer_type: rel_pos
|
222 |
+
text_encoder_self_attention_layer_type: rel_selfattn
|
223 |
+
text_encoder_activation_type: swish
|
224 |
+
text_encoder_normalize_before: true
|
225 |
+
text_encoder_dropout_rate: 0.1
|
226 |
+
text_encoder_positional_dropout_rate: 0.0
|
227 |
+
text_encoder_attention_dropout_rate: 0.1
|
228 |
+
use_macaron_style_in_text_encoder: true
|
229 |
+
use_conformer_conv_in_text_encoder: false
|
230 |
+
text_encoder_conformer_kernel_size: -1
|
231 |
+
decoder_kernel_size: 7
|
232 |
+
decoder_channels: 512
|
233 |
+
decoder_upsample_scales:
|
234 |
+
- 8
|
235 |
+
- 8
|
236 |
+
- 2
|
237 |
+
- 2
|
238 |
+
decoder_upsample_kernel_sizes:
|
239 |
+
- 16
|
240 |
+
- 16
|
241 |
+
- 4
|
242 |
+
- 4
|
243 |
+
decoder_resblock_kernel_sizes:
|
244 |
+
- 3
|
245 |
+
- 7
|
246 |
+
- 11
|
247 |
+
decoder_resblock_dilations:
|
248 |
+
- - 1
|
249 |
+
- 3
|
250 |
+
- 5
|
251 |
+
- - 1
|
252 |
+
- 3
|
253 |
+
- 5
|
254 |
+
- - 1
|
255 |
+
- 3
|
256 |
+
- 5
|
257 |
+
use_weight_norm_in_decoder: true
|
258 |
+
posterior_encoder_kernel_size: 5
|
259 |
+
posterior_encoder_layers: 16
|
260 |
+
posterior_encoder_stacks: 1
|
261 |
+
posterior_encoder_base_dilation: 1
|
262 |
+
posterior_encoder_dropout_rate: 0.0
|
263 |
+
use_weight_norm_in_posterior_encoder: true
|
264 |
+
flow_flows: 4
|
265 |
+
flow_kernel_size: 5
|
266 |
+
flow_base_dilation: 1
|
267 |
+
flow_layers: 4
|
268 |
+
flow_dropout_rate: 0.0
|
269 |
+
use_weight_norm_in_flow: true
|
270 |
+
use_only_mean_in_flow: true
|
271 |
+
stochastic_duration_predictor_kernel_size: 3
|
272 |
+
stochastic_duration_predictor_dropout_rate: 0.5
|
273 |
+
stochastic_duration_predictor_flows: 4
|
274 |
+
stochastic_duration_predictor_dds_conv_layers: 3
|
275 |
+
vocabs: 46
|
276 |
+
aux_channels: 80
|
277 |
+
discriminator_type: hifigan_multi_scale_multi_period_discriminator
|
278 |
+
discriminator_params:
|
279 |
+
scales: 1
|
280 |
+
scale_downsample_pooling: AvgPool1d
|
281 |
+
scale_downsample_pooling_params:
|
282 |
+
kernel_size: 4
|
283 |
+
stride: 2
|
284 |
+
padding: 2
|
285 |
+
scale_discriminator_params:
|
286 |
+
in_channels: 1
|
287 |
+
out_channels: 1
|
288 |
+
kernel_sizes:
|
289 |
+
- 15
|
290 |
+
- 41
|
291 |
+
- 5
|
292 |
+
- 3
|
293 |
+
channels: 128
|
294 |
+
max_downsample_channels: 1024
|
295 |
+
max_groups: 16
|
296 |
+
bias: true
|
297 |
+
downsample_scales:
|
298 |
+
- 2
|
299 |
+
- 2
|
300 |
+
- 4
|
301 |
+
- 4
|
302 |
+
- 1
|
303 |
+
nonlinear_activation: LeakyReLU
|
304 |
+
nonlinear_activation_params:
|
305 |
+
negative_slope: 0.1
|
306 |
+
use_weight_norm: false
|
307 |
+
use_spectral_norm: false
|
308 |
+
follow_official_norm: false
|
309 |
+
periods:
|
310 |
+
- 2
|
311 |
+
- 3
|
312 |
+
- 5
|
313 |
+
- 7
|
314 |
+
- 11
|
315 |
+
period_discriminator_params:
|
316 |
+
in_channels: 1
|
317 |
+
out_channels: 1
|
318 |
+
kernel_sizes:
|
319 |
+
- 5
|
320 |
+
- 3
|
321 |
+
channels: 32
|
322 |
+
downsample_scales:
|
323 |
+
- 3
|
324 |
+
- 3
|
325 |
+
- 3
|
326 |
+
- 3
|
327 |
+
- 1
|
328 |
+
max_downsample_channels: 1024
|
329 |
+
bias: true
|
330 |
+
nonlinear_activation: LeakyReLU
|
331 |
+
nonlinear_activation_params:
|
332 |
+
negative_slope: 0.1
|
333 |
+
use_weight_norm: true
|
334 |
+
use_spectral_norm: false
|
335 |
+
generator_adv_loss_params:
|
336 |
+
average_by_discriminators: false
|
337 |
+
loss_type: mse
|
338 |
+
discriminator_adv_loss_params:
|
339 |
+
average_by_discriminators: false
|
340 |
+
loss_type: mse
|
341 |
+
feat_match_loss_params:
|
342 |
+
average_by_discriminators: false
|
343 |
+
average_by_layers: false
|
344 |
+
include_final_outputs: true
|
345 |
+
mel_loss_params:
|
346 |
+
fs: 22050
|
347 |
+
n_fft: 1024
|
348 |
+
hop_length: 256
|
349 |
+
win_length: null
|
350 |
+
window: hann
|
351 |
+
n_mels: 80
|
352 |
+
fmin: 0
|
353 |
+
fmax: null
|
354 |
+
log_base: null
|
355 |
+
lambda_adv: 1.0
|
356 |
+
lambda_mel: 45.0
|
357 |
+
lambda_feat_match: 2.0
|
358 |
+
lambda_dur: 1.0
|
359 |
+
lambda_kl: 1.0
|
360 |
+
sampling_rate: 22050
|
361 |
+
cache_generator_outputs: true
|
362 |
+
pitch_extract: null
|
363 |
+
pitch_extract_conf:
|
364 |
+
fs: 22050
|
365 |
+
n_fft: 1024
|
366 |
+
hop_length: 256
|
367 |
+
f0max: 400
|
368 |
+
f0min: 80
|
369 |
+
pitch_normalize: null
|
370 |
+
pitch_normalize_conf: {}
|
371 |
+
energy_extract: null
|
372 |
+
energy_extract_conf:
|
373 |
+
fs: 22050
|
374 |
+
n_fft: 1024
|
375 |
+
hop_length: 256
|
376 |
+
win_length: null
|
377 |
+
energy_normalize: null
|
378 |
+
energy_normalize_conf: {}
|
379 |
+
required:
|
380 |
+
- output_dir
|
381 |
+
- token_list
|
382 |
+
version: '202310'
|
383 |
+
distributed: false
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/batch_keys
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
text
|
2 |
+
speech
|
3 |
+
sids
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/feats_lengths_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af79191d13bfcc12aecb8430b36098d2678e2934adbe5d1a061dee1deef5773e
|
3 |
+
size 778
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/feats_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:574f2692fe20cefd55fe03010ac1815121a4aa53069aa042c591fb317d7804b0
|
3 |
+
size 1402
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/sids_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-2288-MoanMorn 1
|
2 |
+
Hoogelaandsters-2294-MoanMorn 1
|
3 |
+
Hoogelaandsters-2299-MoanMorn 1
|
4 |
+
Hoogelaandsters-2303-MoanMorn 1
|
5 |
+
Hoogelaandsters-2307-MoanMorn 1
|
6 |
+
Hoogelaandsters-2311-MoanMorn 1
|
7 |
+
Hoogelaandsters-2316-MoanMorn 1
|
8 |
+
Hoogelaandsters-2320-MoanMorn 1
|
9 |
+
Hoogelaandsters-2324-MoanMorn 1
|
10 |
+
Hoogelaandsters-2328-MoanMorn 1
|
11 |
+
Hoogelaandsters-2332-MoanMorn 1
|
12 |
+
Hoogelaandsters-2336-MoanMorn 1
|
13 |
+
Hoogelaandsters-2340-MoanMorn 1
|
14 |
+
Hoogelaandsters-2344-MoanMorn 1
|
15 |
+
Hoogelaandsters-2348-MoanMorn 1
|
16 |
+
Hoogelaandsters-2352-MoanMorn 1
|
17 |
+
Hoogelaandsters-2356-MoanMorn 1
|
18 |
+
Hoogelaandsters-2361-MoanMorn 1
|
19 |
+
Hoogelaandsters-2365-MoanMorn 1
|
20 |
+
Hoogelaandsters-2369-MoanMorn 1
|
21 |
+
Hoogelaandsters-2373-MoanMorn 1
|
22 |
+
Hoogelaandsters-2377-MoanMorn 1
|
23 |
+
Hoogelaandsters-2381-MoanMorn 1
|
24 |
+
Hoogelaandsters-2386-MoanMorn 1
|
25 |
+
Hoogelaandsters-2390-MoanMorn 1
|
26 |
+
Hoogelaandsters-2395-MoanMorn 1
|
27 |
+
Hoogelaandsters-2399-MoanMorn 1
|
28 |
+
Hoogelaandsters-2403-MoanMorn 1
|
29 |
+
Hoogelaandsters-2407-MoanMorn 1
|
30 |
+
Hoogelaandsters-2411-MoanMorn 1
|
31 |
+
Hoogelaandsters-2418-MoanMorn 1
|
32 |
+
Hoogelaandsters-2422-MoanMorn 1
|
33 |
+
Hoogelaandsters-2426-MoanMorn 1
|
34 |
+
Hoogelaandsters-2431-MoanMorn 1
|
35 |
+
Hoogelaandsters-2435-MoanMorn 1
|
36 |
+
Hoogelaandsters-2440-MoanMorn 1
|
37 |
+
Hoogelaandsters-2444-MoanMorn 1
|
38 |
+
Hoogelaandsters-2448-MoanMorn 1
|
39 |
+
Hoogelaandsters-2452-MoanMorn 1
|
40 |
+
Hoogelaandsters-2456-MoanMorn 1
|
41 |
+
Hoogelaandsters-2289-MoanMorn 1
|
42 |
+
Hoogelaandsters-2295-MoanMorn 1
|
43 |
+
Hoogelaandsters-2300-MoanMorn 1
|
44 |
+
Hoogelaandsters-2304-MoanMorn 1
|
45 |
+
Hoogelaandsters-2308-MoanMorn 1
|
46 |
+
Hoogelaandsters-2312-MoanMorn 1
|
47 |
+
Hoogelaandsters-2317-MoanMorn 1
|
48 |
+
Hoogelaandsters-2321-MoanMorn 1
|
49 |
+
Hoogelaandsters-2325-MoanMorn 1
|
50 |
+
Hoogelaandsters-2329-MoanMorn 1
|
51 |
+
Hoogelaandsters-2333-MoanMorn 1
|
52 |
+
Hoogelaandsters-2337-MoanMorn 1
|
53 |
+
Hoogelaandsters-2341-MoanMorn 1
|
54 |
+
Hoogelaandsters-2345-MoanMorn 1
|
55 |
+
Hoogelaandsters-2349-MoanMorn 1
|
56 |
+
Hoogelaandsters-2353-MoanMorn 1
|
57 |
+
Hoogelaandsters-2358-MoanMorn 1
|
58 |
+
Hoogelaandsters-2362-MoanMorn 1
|
59 |
+
Hoogelaandsters-2366-MoanMorn 1
|
60 |
+
Hoogelaandsters-2370-MoanMorn 1
|
61 |
+
Hoogelaandsters-2374-MoanMorn 1
|
62 |
+
Hoogelaandsters-2378-MoanMorn 1
|
63 |
+
Hoogelaandsters-2382-MoanMorn 1
|
64 |
+
Hoogelaandsters-2387-MoanMorn 1
|
65 |
+
Hoogelaandsters-2391-MoanMorn 1
|
66 |
+
Hoogelaandsters-2396-MoanMorn 1
|
67 |
+
Hoogelaandsters-2400-MoanMorn 1
|
68 |
+
Hoogelaandsters-2404-MoanMorn 1
|
69 |
+
Hoogelaandsters-2408-MoanMorn 1
|
70 |
+
Hoogelaandsters-2412-MoanMorn 1
|
71 |
+
Hoogelaandsters-2419-MoanMorn 1
|
72 |
+
Hoogelaandsters-2423-MoanMorn 1
|
73 |
+
Hoogelaandsters-2427-MoanMorn 1
|
74 |
+
Hoogelaandsters-2432-MoanMorn 1
|
75 |
+
Hoogelaandsters-2437-MoanMorn 1
|
76 |
+
Hoogelaandsters-2441-MoanMorn 1
|
77 |
+
Hoogelaandsters-2445-MoanMorn 1
|
78 |
+
Hoogelaandsters-2449-MoanMorn 1
|
79 |
+
Hoogelaandsters-2453-MoanMorn 1
|
80 |
+
Hoogelaandsters-2457-MoanMorn 1
|
81 |
+
Hoogelaandsters-2291-MoanMorn 1
|
82 |
+
Hoogelaandsters-2297-MoanMorn 1
|
83 |
+
Hoogelaandsters-2301-MoanMorn 1
|
84 |
+
Hoogelaandsters-2305-MoanMorn 1
|
85 |
+
Hoogelaandsters-2309-MoanMorn 1
|
86 |
+
Hoogelaandsters-2314-MoanMorn 1
|
87 |
+
Hoogelaandsters-2318-MoanMorn 1
|
88 |
+
Hoogelaandsters-2322-MoanMorn 1
|
89 |
+
Hoogelaandsters-2326-MoanMorn 1
|
90 |
+
Hoogelaandsters-2330-MoanMorn 1
|
91 |
+
Hoogelaandsters-2334-MoanMorn 1
|
92 |
+
Hoogelaandsters-2338-MoanMorn 1
|
93 |
+
Hoogelaandsters-2342-MoanMorn 1
|
94 |
+
Hoogelaandsters-2346-MoanMorn 1
|
95 |
+
Hoogelaandsters-2350-MoanMorn 1
|
96 |
+
Hoogelaandsters-2354-MoanMorn 1
|
97 |
+
Hoogelaandsters-2359-MoanMorn 1
|
98 |
+
Hoogelaandsters-2363-MoanMorn 1
|
99 |
+
Hoogelaandsters-2367-MoanMorn 1
|
100 |
+
Hoogelaandsters-2371-MoanMorn 1
|
101 |
+
Hoogelaandsters-2375-MoanMorn 1
|
102 |
+
Hoogelaandsters-2379-MoanMorn 1
|
103 |
+
Hoogelaandsters-2384-MoanMorn 1
|
104 |
+
Hoogelaandsters-2388-MoanMorn 1
|
105 |
+
Hoogelaandsters-2392-MoanMorn 1
|
106 |
+
Hoogelaandsters-2397-MoanMorn 1
|
107 |
+
Hoogelaandsters-2401-MoanMorn 1
|
108 |
+
Hoogelaandsters-2405-MoanMorn 1
|
109 |
+
Hoogelaandsters-2409-MoanMorn 1
|
110 |
+
Hoogelaandsters-2413-MoanMorn 1
|
111 |
+
Hoogelaandsters-2420-MoanMorn 1
|
112 |
+
Hoogelaandsters-2424-MoanMorn 1
|
113 |
+
Hoogelaandsters-2429-MoanMorn 1
|
114 |
+
Hoogelaandsters-2433-MoanMorn 1
|
115 |
+
Hoogelaandsters-2438-MoanMorn 1
|
116 |
+
Hoogelaandsters-2442-MoanMorn 1
|
117 |
+
Hoogelaandsters-2446-MoanMorn 1
|
118 |
+
Hoogelaandsters-2450-MoanMorn 1
|
119 |
+
Hoogelaandsters-2454-MoanMorn 1
|
120 |
+
Hoogelaandsters-2459-MoanMorn 1
|
121 |
+
Hoogelaandsters-2293-MoanMorn 1
|
122 |
+
Hoogelaandsters-2298-MoanMorn 1
|
123 |
+
Hoogelaandsters-2302-MoanMorn 1
|
124 |
+
Hoogelaandsters-2306-MoanMorn 1
|
125 |
+
Hoogelaandsters-2310-MoanMorn 1
|
126 |
+
Hoogelaandsters-2315-MoanMorn 1
|
127 |
+
Hoogelaandsters-2319-MoanMorn 1
|
128 |
+
Hoogelaandsters-2323-MoanMorn 1
|
129 |
+
Hoogelaandsters-2327-MoanMorn 1
|
130 |
+
Hoogelaandsters-2331-MoanMorn 1
|
131 |
+
Hoogelaandsters-2335-MoanMorn 1
|
132 |
+
Hoogelaandsters-2339-MoanMorn 1
|
133 |
+
Hoogelaandsters-2343-MoanMorn 1
|
134 |
+
Hoogelaandsters-2347-MoanMorn 1
|
135 |
+
Hoogelaandsters-2351-MoanMorn 1
|
136 |
+
Hoogelaandsters-2355-MoanMorn 1
|
137 |
+
Hoogelaandsters-2360-MoanMorn 1
|
138 |
+
Hoogelaandsters-2364-MoanMorn 1
|
139 |
+
Hoogelaandsters-2368-MoanMorn 1
|
140 |
+
Hoogelaandsters-2372-MoanMorn 1
|
141 |
+
Hoogelaandsters-2376-MoanMorn 1
|
142 |
+
Hoogelaandsters-2380-MoanMorn 1
|
143 |
+
Hoogelaandsters-2385-MoanMorn 1
|
144 |
+
Hoogelaandsters-2389-MoanMorn 1
|
145 |
+
Hoogelaandsters-2393-MoanMorn 1
|
146 |
+
Hoogelaandsters-2398-MoanMorn 1
|
147 |
+
Hoogelaandsters-2402-MoanMorn 1
|
148 |
+
Hoogelaandsters-2406-MoanMorn 1
|
149 |
+
Hoogelaandsters-2410-MoanMorn 1
|
150 |
+
Hoogelaandsters-2415-MoanMorn 1
|
151 |
+
Hoogelaandsters-2421-MoanMorn 1
|
152 |
+
Hoogelaandsters-2425-MoanMorn 1
|
153 |
+
Hoogelaandsters-2430-MoanMorn 1
|
154 |
+
Hoogelaandsters-2434-MoanMorn 1
|
155 |
+
Hoogelaandsters-2439-MoanMorn 1
|
156 |
+
Hoogelaandsters-2443-MoanMorn 1
|
157 |
+
Hoogelaandsters-2447-MoanMorn 1
|
158 |
+
Hoogelaandsters-2451-MoanMorn 1
|
159 |
+
Hoogelaandsters-2455-MoanMorn 1
|
160 |
+
Hoogelaandsters-2460-MoanMorn 1
|
161 |
+
Hoogelaandsters-2461-MoanMorn 1
|
162 |
+
Hoogelaandsters-2465-MoanMorn 1
|
163 |
+
Hoogelaandsters-2469-MoanMorn 1
|
164 |
+
Hoogelaandsters-2473-MoanMorn 1
|
165 |
+
Hoogelaandsters-2477-MoanMorn 1
|
166 |
+
Hoogelaandsters-2481-MoanMorn 1
|
167 |
+
Hoogelaandsters-2486-MoanMorn 1
|
168 |
+
Hoogelaandsters-2490-MoanMorn 1
|
169 |
+
Hoogelaandsters-2494-MoanMorn 1
|
170 |
+
Hoogelaandsters-2499-MoanMorn 1
|
171 |
+
Hoogelaandsters-2503-MoanMorn 1
|
172 |
+
Hoogelaandsters-2507-MoanMorn 1
|
173 |
+
Hoogelaandsters-2511-MoanMorn 1
|
174 |
+
Hoogelaandsters-2515-MoanMorn 1
|
175 |
+
Hoogelaandsters-2519-MoanMorn 1
|
176 |
+
Hoogelaandsters-2523-MoanMorn 1
|
177 |
+
Hoogelaandsters-2527-MoanMorn 1
|
178 |
+
Hoogelaandsters-2531-MoanMorn 1
|
179 |
+
Hoogelaandsters-2535-MoanMorn 1
|
180 |
+
Hoogelaandsters-2540-MoanMorn 1
|
181 |
+
Hoogelaandsters-2544-MoanMorn 1
|
182 |
+
Hoogelaandsters-2548-MoanMorn 1
|
183 |
+
Hoogelaandsters-2552-MoanMorn 1
|
184 |
+
Hoogelaandsters-2462-MoanMorn 1
|
185 |
+
Hoogelaandsters-2466-MoanMorn 1
|
186 |
+
Hoogelaandsters-2470-MoanMorn 1
|
187 |
+
Hoogelaandsters-2474-MoanMorn 1
|
188 |
+
Hoogelaandsters-2478-MoanMorn 1
|
189 |
+
Hoogelaandsters-2482-MoanMorn 1
|
190 |
+
Hoogelaandsters-2487-MoanMorn 1
|
191 |
+
Hoogelaandsters-2491-MoanMorn 1
|
192 |
+
Hoogelaandsters-2495-MoanMorn 1
|
193 |
+
Hoogelaandsters-2500-MoanMorn 1
|
194 |
+
Hoogelaandsters-2504-MoanMorn 1
|
195 |
+
Hoogelaandsters-2508-MoanMorn 1
|
196 |
+
Hoogelaandsters-2512-MoanMorn 1
|
197 |
+
Hoogelaandsters-2516-MoanMorn 1
|
198 |
+
Hoogelaandsters-2520-MoanMorn 1
|
199 |
+
Hoogelaandsters-2524-MoanMorn 1
|
200 |
+
Hoogelaandsters-2528-MoanMorn 1
|
201 |
+
Hoogelaandsters-2532-MoanMorn 1
|
202 |
+
Hoogelaandsters-2537-MoanMorn 1
|
203 |
+
Hoogelaandsters-2541-MoanMorn 1
|
204 |
+
Hoogelaandsters-2545-MoanMorn 1
|
205 |
+
Hoogelaandsters-2549-MoanMorn 1
|
206 |
+
Hoogelaandsters-2463-MoanMorn 1
|
207 |
+
Hoogelaandsters-2467-MoanMorn 1
|
208 |
+
Hoogelaandsters-2471-MoanMorn 1
|
209 |
+
Hoogelaandsters-2475-MoanMorn 1
|
210 |
+
Hoogelaandsters-2479-MoanMorn 1
|
211 |
+
Hoogelaandsters-2483-MoanMorn 1
|
212 |
+
Hoogelaandsters-2488-MoanMorn 1
|
213 |
+
Hoogelaandsters-2492-MoanMorn 1
|
214 |
+
Hoogelaandsters-2497-MoanMorn 1
|
215 |
+
Hoogelaandsters-2501-MoanMorn 1
|
216 |
+
Hoogelaandsters-2505-MoanMorn 1
|
217 |
+
Hoogelaandsters-2509-MoanMorn 1
|
218 |
+
Hoogelaandsters-2513-MoanMorn 1
|
219 |
+
Hoogelaandsters-2517-MoanMorn 1
|
220 |
+
Hoogelaandsters-2521-MoanMorn 1
|
221 |
+
Hoogelaandsters-2525-MoanMorn 1
|
222 |
+
Hoogelaandsters-2529-MoanMorn 1
|
223 |
+
Hoogelaandsters-2533-MoanMorn 1
|
224 |
+
Hoogelaandsters-2538-MoanMorn 1
|
225 |
+
Hoogelaandsters-2542-MoanMorn 1
|
226 |
+
Hoogelaandsters-2546-MoanMorn 1
|
227 |
+
Hoogelaandsters-2550-MoanMorn 1
|
228 |
+
Hoogelaandsters-2464-MoanMorn 1
|
229 |
+
Hoogelaandsters-2468-MoanMorn 1
|
230 |
+
Hoogelaandsters-2472-MoanMorn 1
|
231 |
+
Hoogelaandsters-2476-MoanMorn 1
|
232 |
+
Hoogelaandsters-2480-MoanMorn 1
|
233 |
+
Hoogelaandsters-2485-MoanMorn 1
|
234 |
+
Hoogelaandsters-2489-MoanMorn 1
|
235 |
+
Hoogelaandsters-2493-MoanMorn 1
|
236 |
+
Hoogelaandsters-2498-MoanMorn 1
|
237 |
+
Hoogelaandsters-2502-MoanMorn 1
|
238 |
+
Hoogelaandsters-2506-MoanMorn 1
|
239 |
+
Hoogelaandsters-2510-MoanMorn 1
|
240 |
+
Hoogelaandsters-2514-MoanMorn 1
|
241 |
+
Hoogelaandsters-2518-MoanMorn 1
|
242 |
+
Hoogelaandsters-2522-MoanMorn 1
|
243 |
+
Hoogelaandsters-2526-MoanMorn 1
|
244 |
+
Hoogelaandsters-2530-MoanMorn 1
|
245 |
+
Hoogelaandsters-2534-MoanMorn 1
|
246 |
+
Hoogelaandsters-2539-MoanMorn 1
|
247 |
+
Hoogelaandsters-2543-MoanMorn 1
|
248 |
+
Hoogelaandsters-2547-MoanMorn 1
|
249 |
+
Hoogelaandsters-2551-MoanMorn 1
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/speech_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-2288-MoanMorn 117445
|
2 |
+
Hoogelaandsters-2294-MoanMorn 152790
|
3 |
+
Hoogelaandsters-2299-MoanMorn 95858
|
4 |
+
Hoogelaandsters-2303-MoanMorn 79027
|
5 |
+
Hoogelaandsters-2307-MoanMorn 97165
|
6 |
+
Hoogelaandsters-2311-MoanMorn 77335
|
7 |
+
Hoogelaandsters-2316-MoanMorn 115718
|
8 |
+
Hoogelaandsters-2320-MoanMorn 256717
|
9 |
+
Hoogelaandsters-2324-MoanMorn 62264
|
10 |
+
Hoogelaandsters-2328-MoanMorn 162365
|
11 |
+
Hoogelaandsters-2332-MoanMorn 244260
|
12 |
+
Hoogelaandsters-2336-MoanMorn 85700
|
13 |
+
Hoogelaandsters-2340-MoanMorn 64222
|
14 |
+
Hoogelaandsters-2344-MoanMorn 52887
|
15 |
+
Hoogelaandsters-2348-MoanMorn 167328
|
16 |
+
Hoogelaandsters-2352-MoanMorn 135077
|
17 |
+
Hoogelaandsters-2356-MoanMorn 134774
|
18 |
+
Hoogelaandsters-2361-MoanMorn 74095
|
19 |
+
Hoogelaandsters-2365-MoanMorn 90694
|
20 |
+
Hoogelaandsters-2369-MoanMorn 187706
|
21 |
+
Hoogelaandsters-2373-MoanMorn 204919
|
22 |
+
Hoogelaandsters-2377-MoanMorn 98649
|
23 |
+
Hoogelaandsters-2381-MoanMorn 128977
|
24 |
+
Hoogelaandsters-2386-MoanMorn 90664
|
25 |
+
Hoogelaandsters-2390-MoanMorn 323639
|
26 |
+
Hoogelaandsters-2395-MoanMorn 61014
|
27 |
+
Hoogelaandsters-2399-MoanMorn 270015
|
28 |
+
Hoogelaandsters-2403-MoanMorn 80986
|
29 |
+
Hoogelaandsters-2407-MoanMorn 120663
|
30 |
+
Hoogelaandsters-2411-MoanMorn 101842
|
31 |
+
Hoogelaandsters-2418-MoanMorn 172321
|
32 |
+
Hoogelaandsters-2422-MoanMorn 119205
|
33 |
+
Hoogelaandsters-2426-MoanMorn 41493
|
34 |
+
Hoogelaandsters-2431-MoanMorn 155997
|
35 |
+
Hoogelaandsters-2435-MoanMorn 149437
|
36 |
+
Hoogelaandsters-2440-MoanMorn 106718
|
37 |
+
Hoogelaandsters-2444-MoanMorn 223892
|
38 |
+
Hoogelaandsters-2448-MoanMorn 111220
|
39 |
+
Hoogelaandsters-2452-MoanMorn 210485
|
40 |
+
Hoogelaandsters-2456-MoanMorn 235422
|
41 |
+
Hoogelaandsters-2289-MoanMorn 270050
|
42 |
+
Hoogelaandsters-2295-MoanMorn 64915
|
43 |
+
Hoogelaandsters-2300-MoanMorn 234710
|
44 |
+
Hoogelaandsters-2304-MoanMorn 281339
|
45 |
+
Hoogelaandsters-2308-MoanMorn 51878
|
46 |
+
Hoogelaandsters-2312-MoanMorn 76205
|
47 |
+
Hoogelaandsters-2317-MoanMorn 256841
|
48 |
+
Hoogelaandsters-2321-MoanMorn 109919
|
49 |
+
Hoogelaandsters-2325-MoanMorn 56870
|
50 |
+
Hoogelaandsters-2329-MoanMorn 56448
|
51 |
+
Hoogelaandsters-2333-MoanMorn 114522
|
52 |
+
Hoogelaandsters-2337-MoanMorn 69593
|
53 |
+
Hoogelaandsters-2341-MoanMorn 124803
|
54 |
+
Hoogelaandsters-2345-MoanMorn 103242
|
55 |
+
Hoogelaandsters-2349-MoanMorn 193651
|
56 |
+
Hoogelaandsters-2353-MoanMorn 81114
|
57 |
+
Hoogelaandsters-2358-MoanMorn 95962
|
58 |
+
Hoogelaandsters-2362-MoanMorn 196092
|
59 |
+
Hoogelaandsters-2366-MoanMorn 124712
|
60 |
+
Hoogelaandsters-2370-MoanMorn 90317
|
61 |
+
Hoogelaandsters-2374-MoanMorn 147754
|
62 |
+
Hoogelaandsters-2378-MoanMorn 237031
|
63 |
+
Hoogelaandsters-2382-MoanMorn 143942
|
64 |
+
Hoogelaandsters-2387-MoanMorn 56448
|
65 |
+
Hoogelaandsters-2391-MoanMorn 69609
|
66 |
+
Hoogelaandsters-2396-MoanMorn 99452
|
67 |
+
Hoogelaandsters-2400-MoanMorn 78535
|
68 |
+
Hoogelaandsters-2404-MoanMorn 130726
|
69 |
+
Hoogelaandsters-2408-MoanMorn 193877
|
70 |
+
Hoogelaandsters-2412-MoanMorn 53626
|
71 |
+
Hoogelaandsters-2419-MoanMorn 316671
|
72 |
+
Hoogelaandsters-2423-MoanMorn 117655
|
73 |
+
Hoogelaandsters-2427-MoanMorn 319451
|
74 |
+
Hoogelaandsters-2432-MoanMorn 162733
|
75 |
+
Hoogelaandsters-2437-MoanMorn 107702
|
76 |
+
Hoogelaandsters-2441-MoanMorn 53626
|
77 |
+
Hoogelaandsters-2445-MoanMorn 115718
|
78 |
+
Hoogelaandsters-2449-MoanMorn 217179
|
79 |
+
Hoogelaandsters-2453-MoanMorn 66767
|
80 |
+
Hoogelaandsters-2457-MoanMorn 255710
|
81 |
+
Hoogelaandsters-2291-MoanMorn 31046
|
82 |
+
Hoogelaandsters-2297-MoanMorn 377978
|
83 |
+
Hoogelaandsters-2301-MoanMorn 141324
|
84 |
+
Hoogelaandsters-2305-MoanMorn 84672
|
85 |
+
Hoogelaandsters-2309-MoanMorn 79787
|
86 |
+
Hoogelaandsters-2314-MoanMorn 75773
|
87 |
+
Hoogelaandsters-2318-MoanMorn 160174
|
88 |
+
Hoogelaandsters-2322-MoanMorn 132835
|
89 |
+
Hoogelaandsters-2326-MoanMorn 101606
|
90 |
+
Hoogelaandsters-2330-MoanMorn 135933
|
91 |
+
Hoogelaandsters-2334-MoanMorn 78025
|
92 |
+
Hoogelaandsters-2338-MoanMorn 129449
|
93 |
+
Hoogelaandsters-2342-MoanMorn 38856
|
94 |
+
Hoogelaandsters-2346-MoanMorn 174562
|
95 |
+
Hoogelaandsters-2350-MoanMorn 128445
|
96 |
+
Hoogelaandsters-2354-MoanMorn 160490
|
97 |
+
Hoogelaandsters-2359-MoanMorn 228493
|
98 |
+
Hoogelaandsters-2363-MoanMorn 98433
|
99 |
+
Hoogelaandsters-2367-MoanMorn 56448
|
100 |
+
Hoogelaandsters-2371-MoanMorn 77172
|
101 |
+
Hoogelaandsters-2375-MoanMorn 126690
|
102 |
+
Hoogelaandsters-2379-MoanMorn 166001
|
103 |
+
Hoogelaandsters-2384-MoanMorn 414643
|
104 |
+
Hoogelaandsters-2388-MoanMorn 135592
|
105 |
+
Hoogelaandsters-2392-MoanMorn 199799
|
106 |
+
Hoogelaandsters-2397-MoanMorn 35135
|
107 |
+
Hoogelaandsters-2401-MoanMorn 189656
|
108 |
+
Hoogelaandsters-2405-MoanMorn 280393
|
109 |
+
Hoogelaandsters-2409-MoanMorn 222797
|
110 |
+
Hoogelaandsters-2413-MoanMorn 244597
|
111 |
+
Hoogelaandsters-2420-MoanMorn 112072
|
112 |
+
Hoogelaandsters-2424-MoanMorn 65163
|
113 |
+
Hoogelaandsters-2429-MoanMorn 73382
|
114 |
+
Hoogelaandsters-2433-MoanMorn 144641
|
115 |
+
Hoogelaandsters-2438-MoanMorn 132752
|
116 |
+
Hoogelaandsters-2442-MoanMorn 81602
|
117 |
+
Hoogelaandsters-2446-MoanMorn 178999
|
118 |
+
Hoogelaandsters-2450-MoanMorn 139858
|
119 |
+
Hoogelaandsters-2454-MoanMorn 297187
|
120 |
+
Hoogelaandsters-2459-MoanMorn 348416
|
121 |
+
Hoogelaandsters-2293-MoanMorn 173015
|
122 |
+
Hoogelaandsters-2298-MoanMorn 114482
|
123 |
+
Hoogelaandsters-2302-MoanMorn 129931
|
124 |
+
Hoogelaandsters-2306-MoanMorn 59714
|
125 |
+
Hoogelaandsters-2310-MoanMorn 98201
|
126 |
+
Hoogelaandsters-2315-MoanMorn 365776
|
127 |
+
Hoogelaandsters-2319-MoanMorn 118998
|
128 |
+
Hoogelaandsters-2323-MoanMorn 133528
|
129 |
+
Hoogelaandsters-2327-MoanMorn 137558
|
130 |
+
Hoogelaandsters-2331-MoanMorn 30210
|
131 |
+
Hoogelaandsters-2335-MoanMorn 147860
|
132 |
+
Hoogelaandsters-2339-MoanMorn 162823
|
133 |
+
Hoogelaandsters-2343-MoanMorn 124110
|
134 |
+
Hoogelaandsters-2347-MoanMorn 122295
|
135 |
+
Hoogelaandsters-2351-MoanMorn 69605
|
136 |
+
Hoogelaandsters-2355-MoanMorn 117925
|
137 |
+
Hoogelaandsters-2360-MoanMorn 79325
|
138 |
+
Hoogelaandsters-2364-MoanMorn 155437
|
139 |
+
Hoogelaandsters-2368-MoanMorn 347030
|
140 |
+
Hoogelaandsters-2372-MoanMorn 116698
|
141 |
+
Hoogelaandsters-2376-MoanMorn 127143
|
142 |
+
Hoogelaandsters-2380-MoanMorn 214235
|
143 |
+
Hoogelaandsters-2385-MoanMorn 114241
|
144 |
+
Hoogelaandsters-2389-MoanMorn 136878
|
145 |
+
Hoogelaandsters-2393-MoanMorn 110685
|
146 |
+
Hoogelaandsters-2398-MoanMorn 148220
|
147 |
+
Hoogelaandsters-2402-MoanMorn 189724
|
148 |
+
Hoogelaandsters-2406-MoanMorn 142468
|
149 |
+
Hoogelaandsters-2410-MoanMorn 80968
|
150 |
+
Hoogelaandsters-2415-MoanMorn 92540
|
151 |
+
Hoogelaandsters-2421-MoanMorn 117050
|
152 |
+
Hoogelaandsters-2425-MoanMorn 91659
|
153 |
+
Hoogelaandsters-2430-MoanMorn 109139
|
154 |
+
Hoogelaandsters-2434-MoanMorn 150905
|
155 |
+
Hoogelaandsters-2439-MoanMorn 89319
|
156 |
+
Hoogelaandsters-2443-MoanMorn 151690
|
157 |
+
Hoogelaandsters-2447-MoanMorn 191388
|
158 |
+
Hoogelaandsters-2451-MoanMorn 256575
|
159 |
+
Hoogelaandsters-2455-MoanMorn 143121
|
160 |
+
Hoogelaandsters-2460-MoanMorn 148964
|
161 |
+
Hoogelaandsters-2461-MoanMorn 202459
|
162 |
+
Hoogelaandsters-2465-MoanMorn 77353
|
163 |
+
Hoogelaandsters-2469-MoanMorn 202205
|
164 |
+
Hoogelaandsters-2473-MoanMorn 144494
|
165 |
+
Hoogelaandsters-2477-MoanMorn 261203
|
166 |
+
Hoogelaandsters-2481-MoanMorn 55523
|
167 |
+
Hoogelaandsters-2486-MoanMorn 154579
|
168 |
+
Hoogelaandsters-2490-MoanMorn 189951
|
169 |
+
Hoogelaandsters-2494-MoanMorn 322452
|
170 |
+
Hoogelaandsters-2499-MoanMorn 80295
|
171 |
+
Hoogelaandsters-2503-MoanMorn 49367
|
172 |
+
Hoogelaandsters-2507-MoanMorn 150136
|
173 |
+
Hoogelaandsters-2511-MoanMorn 154426
|
174 |
+
Hoogelaandsters-2515-MoanMorn 72940
|
175 |
+
Hoogelaandsters-2519-MoanMorn 117693
|
176 |
+
Hoogelaandsters-2523-MoanMorn 65506
|
177 |
+
Hoogelaandsters-2527-MoanMorn 186486
|
178 |
+
Hoogelaandsters-2531-MoanMorn 66332
|
179 |
+
Hoogelaandsters-2535-MoanMorn 59270
|
180 |
+
Hoogelaandsters-2540-MoanMorn 92545
|
181 |
+
Hoogelaandsters-2544-MoanMorn 74985
|
182 |
+
Hoogelaandsters-2548-MoanMorn 187809
|
183 |
+
Hoogelaandsters-2552-MoanMorn 165658
|
184 |
+
Hoogelaandsters-2462-MoanMorn 151515
|
185 |
+
Hoogelaandsters-2466-MoanMorn 75367
|
186 |
+
Hoogelaandsters-2470-MoanMorn 59270
|
187 |
+
Hoogelaandsters-2474-MoanMorn 76195
|
188 |
+
Hoogelaandsters-2478-MoanMorn 97331
|
189 |
+
Hoogelaandsters-2482-MoanMorn 55406
|
190 |
+
Hoogelaandsters-2487-MoanMorn 267130
|
191 |
+
Hoogelaandsters-2491-MoanMorn 197159
|
192 |
+
Hoogelaandsters-2495-MoanMorn 115714
|
193 |
+
Hoogelaandsters-2500-MoanMorn 115155
|
194 |
+
Hoogelaandsters-2504-MoanMorn 122315
|
195 |
+
Hoogelaandsters-2508-MoanMorn 173640
|
196 |
+
Hoogelaandsters-2512-MoanMorn 387092
|
197 |
+
Hoogelaandsters-2516-MoanMorn 56448
|
198 |
+
Hoogelaandsters-2520-MoanMorn 271221
|
199 |
+
Hoogelaandsters-2524-MoanMorn 206196
|
200 |
+
Hoogelaandsters-2528-MoanMorn 216440
|
201 |
+
Hoogelaandsters-2532-MoanMorn 102710
|
202 |
+
Hoogelaandsters-2537-MoanMorn 426213
|
203 |
+
Hoogelaandsters-2541-MoanMorn 119456
|
204 |
+
Hoogelaandsters-2545-MoanMorn 107043
|
205 |
+
Hoogelaandsters-2549-MoanMorn 164150
|
206 |
+
Hoogelaandsters-2463-MoanMorn 50962
|
207 |
+
Hoogelaandsters-2467-MoanMorn 122984
|
208 |
+
Hoogelaandsters-2471-MoanMorn 73212
|
209 |
+
Hoogelaandsters-2475-MoanMorn 71040
|
210 |
+
Hoogelaandsters-2479-MoanMorn 79027
|
211 |
+
Hoogelaandsters-2483-MoanMorn 33869
|
212 |
+
Hoogelaandsters-2488-MoanMorn 61981
|
213 |
+
Hoogelaandsters-2492-MoanMorn 341502
|
214 |
+
Hoogelaandsters-2497-MoanMorn 150345
|
215 |
+
Hoogelaandsters-2501-MoanMorn 134396
|
216 |
+
Hoogelaandsters-2505-MoanMorn 151752
|
217 |
+
Hoogelaandsters-2509-MoanMorn 127099
|
218 |
+
Hoogelaandsters-2513-MoanMorn 124822
|
219 |
+
Hoogelaandsters-2517-MoanMorn 90045
|
220 |
+
Hoogelaandsters-2521-MoanMorn 73110
|
221 |
+
Hoogelaandsters-2525-MoanMorn 70279
|
222 |
+
Hoogelaandsters-2529-MoanMorn 188522
|
223 |
+
Hoogelaandsters-2533-MoanMorn 158311
|
224 |
+
Hoogelaandsters-2538-MoanMorn 136310
|
225 |
+
Hoogelaandsters-2542-MoanMorn 253487
|
226 |
+
Hoogelaandsters-2546-MoanMorn 67738
|
227 |
+
Hoogelaandsters-2550-MoanMorn 115291
|
228 |
+
Hoogelaandsters-2464-MoanMorn 93139
|
229 |
+
Hoogelaandsters-2468-MoanMorn 244448
|
230 |
+
Hoogelaandsters-2472-MoanMorn 111901
|
231 |
+
Hoogelaandsters-2476-MoanMorn 129484
|
232 |
+
Hoogelaandsters-2480-MoanMorn 122230
|
233 |
+
Hoogelaandsters-2485-MoanMorn 63917
|
234 |
+
Hoogelaandsters-2489-MoanMorn 146083
|
235 |
+
Hoogelaandsters-2493-MoanMorn 79573
|
236 |
+
Hoogelaandsters-2498-MoanMorn 116144
|
237 |
+
Hoogelaandsters-2502-MoanMorn 126772
|
238 |
+
Hoogelaandsters-2506-MoanMorn 84358
|
239 |
+
Hoogelaandsters-2510-MoanMorn 258288
|
240 |
+
Hoogelaandsters-2514-MoanMorn 218302
|
241 |
+
Hoogelaandsters-2518-MoanMorn 387837
|
242 |
+
Hoogelaandsters-2522-MoanMorn 67878
|
243 |
+
Hoogelaandsters-2526-MoanMorn 139164
|
244 |
+
Hoogelaandsters-2530-MoanMorn 150036
|
245 |
+
Hoogelaandsters-2534-MoanMorn 163176
|
246 |
+
Hoogelaandsters-2539-MoanMorn 115911
|
247 |
+
Hoogelaandsters-2543-MoanMorn 387694
|
248 |
+
Hoogelaandsters-2547-MoanMorn 160101
|
249 |
+
Hoogelaandsters-2551-MoanMorn 178543
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/stats_keys
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
feats
|
2 |
+
feats_lengths
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/train/text_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-2288-MoanMorn 68
|
2 |
+
Hoogelaandsters-2294-MoanMorn 95
|
3 |
+
Hoogelaandsters-2299-MoanMorn 42
|
4 |
+
Hoogelaandsters-2303-MoanMorn 54
|
5 |
+
Hoogelaandsters-2307-MoanMorn 55
|
6 |
+
Hoogelaandsters-2311-MoanMorn 42
|
7 |
+
Hoogelaandsters-2316-MoanMorn 81
|
8 |
+
Hoogelaandsters-2320-MoanMorn 149
|
9 |
+
Hoogelaandsters-2324-MoanMorn 41
|
10 |
+
Hoogelaandsters-2328-MoanMorn 104
|
11 |
+
Hoogelaandsters-2332-MoanMorn 162
|
12 |
+
Hoogelaandsters-2336-MoanMorn 53
|
13 |
+
Hoogelaandsters-2340-MoanMorn 34
|
14 |
+
Hoogelaandsters-2344-MoanMorn 23
|
15 |
+
Hoogelaandsters-2348-MoanMorn 98
|
16 |
+
Hoogelaandsters-2352-MoanMorn 90
|
17 |
+
Hoogelaandsters-2356-MoanMorn 86
|
18 |
+
Hoogelaandsters-2361-MoanMorn 51
|
19 |
+
Hoogelaandsters-2365-MoanMorn 45
|
20 |
+
Hoogelaandsters-2369-MoanMorn 119
|
21 |
+
Hoogelaandsters-2373-MoanMorn 129
|
22 |
+
Hoogelaandsters-2377-MoanMorn 50
|
23 |
+
Hoogelaandsters-2381-MoanMorn 74
|
24 |
+
Hoogelaandsters-2386-MoanMorn 57
|
25 |
+
Hoogelaandsters-2390-MoanMorn 185
|
26 |
+
Hoogelaandsters-2395-MoanMorn 30
|
27 |
+
Hoogelaandsters-2399-MoanMorn 178
|
28 |
+
Hoogelaandsters-2403-MoanMorn 55
|
29 |
+
Hoogelaandsters-2407-MoanMorn 62
|
30 |
+
Hoogelaandsters-2411-MoanMorn 52
|
31 |
+
Hoogelaandsters-2418-MoanMorn 103
|
32 |
+
Hoogelaandsters-2422-MoanMorn 63
|
33 |
+
Hoogelaandsters-2426-MoanMorn 21
|
34 |
+
Hoogelaandsters-2431-MoanMorn 90
|
35 |
+
Hoogelaandsters-2435-MoanMorn 97
|
36 |
+
Hoogelaandsters-2440-MoanMorn 63
|
37 |
+
Hoogelaandsters-2444-MoanMorn 144
|
38 |
+
Hoogelaandsters-2448-MoanMorn 62
|
39 |
+
Hoogelaandsters-2452-MoanMorn 128
|
40 |
+
Hoogelaandsters-2456-MoanMorn 165
|
41 |
+
Hoogelaandsters-2289-MoanMorn 177
|
42 |
+
Hoogelaandsters-2295-MoanMorn 45
|
43 |
+
Hoogelaandsters-2300-MoanMorn 137
|
44 |
+
Hoogelaandsters-2304-MoanMorn 175
|
45 |
+
Hoogelaandsters-2308-MoanMorn 27
|
46 |
+
Hoogelaandsters-2312-MoanMorn 48
|
47 |
+
Hoogelaandsters-2317-MoanMorn 133
|
48 |
+
Hoogelaandsters-2321-MoanMorn 73
|
49 |
+
Hoogelaandsters-2325-MoanMorn 48
|
50 |
+
Hoogelaandsters-2329-MoanMorn 31
|
51 |
+
Hoogelaandsters-2333-MoanMorn 74
|
52 |
+
Hoogelaandsters-2337-MoanMorn 32
|
53 |
+
Hoogelaandsters-2341-MoanMorn 80
|
54 |
+
Hoogelaandsters-2345-MoanMorn 62
|
55 |
+
Hoogelaandsters-2349-MoanMorn 104
|
56 |
+
Hoogelaandsters-2353-MoanMorn 45
|
57 |
+
Hoogelaandsters-2358-MoanMorn 46
|
58 |
+
Hoogelaandsters-2362-MoanMorn 119
|
59 |
+
Hoogelaandsters-2366-MoanMorn 69
|
60 |
+
Hoogelaandsters-2370-MoanMorn 69
|
61 |
+
Hoogelaandsters-2374-MoanMorn 84
|
62 |
+
Hoogelaandsters-2378-MoanMorn 134
|
63 |
+
Hoogelaandsters-2382-MoanMorn 93
|
64 |
+
Hoogelaandsters-2387-MoanMorn 48
|
65 |
+
Hoogelaandsters-2391-MoanMorn 34
|
66 |
+
Hoogelaandsters-2396-MoanMorn 51
|
67 |
+
Hoogelaandsters-2400-MoanMorn 44
|
68 |
+
Hoogelaandsters-2404-MoanMorn 75
|
69 |
+
Hoogelaandsters-2408-MoanMorn 112
|
70 |
+
Hoogelaandsters-2412-MoanMorn 25
|
71 |
+
Hoogelaandsters-2419-MoanMorn 186
|
72 |
+
Hoogelaandsters-2423-MoanMorn 60
|
73 |
+
Hoogelaandsters-2427-MoanMorn 210
|
74 |
+
Hoogelaandsters-2432-MoanMorn 105
|
75 |
+
Hoogelaandsters-2437-MoanMorn 65
|
76 |
+
Hoogelaandsters-2441-MoanMorn 35
|
77 |
+
Hoogelaandsters-2445-MoanMorn 76
|
78 |
+
Hoogelaandsters-2449-MoanMorn 125
|
79 |
+
Hoogelaandsters-2453-MoanMorn 33
|
80 |
+
Hoogelaandsters-2457-MoanMorn 156
|
81 |
+
Hoogelaandsters-2291-MoanMorn 22
|
82 |
+
Hoogelaandsters-2297-MoanMorn 202
|
83 |
+
Hoogelaandsters-2301-MoanMorn 75
|
84 |
+
Hoogelaandsters-2305-MoanMorn 47
|
85 |
+
Hoogelaandsters-2309-MoanMorn 43
|
86 |
+
Hoogelaandsters-2314-MoanMorn 32
|
87 |
+
Hoogelaandsters-2318-MoanMorn 101
|
88 |
+
Hoogelaandsters-2322-MoanMorn 61
|
89 |
+
Hoogelaandsters-2326-MoanMorn 63
|
90 |
+
Hoogelaandsters-2330-MoanMorn 74
|
91 |
+
Hoogelaandsters-2334-MoanMorn 50
|
92 |
+
Hoogelaandsters-2338-MoanMorn 74
|
93 |
+
Hoogelaandsters-2342-MoanMorn 24
|
94 |
+
Hoogelaandsters-2346-MoanMorn 108
|
95 |
+
Hoogelaandsters-2350-MoanMorn 82
|
96 |
+
Hoogelaandsters-2354-MoanMorn 89
|
97 |
+
Hoogelaandsters-2359-MoanMorn 141
|
98 |
+
Hoogelaandsters-2363-MoanMorn 63
|
99 |
+
Hoogelaandsters-2367-MoanMorn 36
|
100 |
+
Hoogelaandsters-2371-MoanMorn 46
|
101 |
+
Hoogelaandsters-2375-MoanMorn 89
|
102 |
+
Hoogelaandsters-2379-MoanMorn 106
|
103 |
+
Hoogelaandsters-2384-MoanMorn 301
|
104 |
+
Hoogelaandsters-2388-MoanMorn 80
|
105 |
+
Hoogelaandsters-2392-MoanMorn 110
|
106 |
+
Hoogelaandsters-2397-MoanMorn 18
|
107 |
+
Hoogelaandsters-2401-MoanMorn 102
|
108 |
+
Hoogelaandsters-2405-MoanMorn 199
|
109 |
+
Hoogelaandsters-2409-MoanMorn 103
|
110 |
+
Hoogelaandsters-2413-MoanMorn 147
|
111 |
+
Hoogelaandsters-2420-MoanMorn 65
|
112 |
+
Hoogelaandsters-2424-MoanMorn 38
|
113 |
+
Hoogelaandsters-2429-MoanMorn 57
|
114 |
+
Hoogelaandsters-2433-MoanMorn 75
|
115 |
+
Hoogelaandsters-2438-MoanMorn 76
|
116 |
+
Hoogelaandsters-2442-MoanMorn 42
|
117 |
+
Hoogelaandsters-2446-MoanMorn 106
|
118 |
+
Hoogelaandsters-2450-MoanMorn 97
|
119 |
+
Hoogelaandsters-2454-MoanMorn 183
|
120 |
+
Hoogelaandsters-2459-MoanMorn 224
|
121 |
+
Hoogelaandsters-2293-MoanMorn 88
|
122 |
+
Hoogelaandsters-2298-MoanMorn 65
|
123 |
+
Hoogelaandsters-2302-MoanMorn 86
|
124 |
+
Hoogelaandsters-2306-MoanMorn 29
|
125 |
+
Hoogelaandsters-2310-MoanMorn 66
|
126 |
+
Hoogelaandsters-2315-MoanMorn 210
|
127 |
+
Hoogelaandsters-2319-MoanMorn 78
|
128 |
+
Hoogelaandsters-2323-MoanMorn 71
|
129 |
+
Hoogelaandsters-2327-MoanMorn 86
|
130 |
+
Hoogelaandsters-2331-MoanMorn 21
|
131 |
+
Hoogelaandsters-2335-MoanMorn 91
|
132 |
+
Hoogelaandsters-2339-MoanMorn 109
|
133 |
+
Hoogelaandsters-2343-MoanMorn 65
|
134 |
+
Hoogelaandsters-2347-MoanMorn 70
|
135 |
+
Hoogelaandsters-2351-MoanMorn 42
|
136 |
+
Hoogelaandsters-2355-MoanMorn 64
|
137 |
+
Hoogelaandsters-2360-MoanMorn 50
|
138 |
+
Hoogelaandsters-2364-MoanMorn 267
|
139 |
+
Hoogelaandsters-2368-MoanMorn 216
|
140 |
+
Hoogelaandsters-2372-MoanMorn 66
|
141 |
+
Hoogelaandsters-2376-MoanMorn 68
|
142 |
+
Hoogelaandsters-2380-MoanMorn 136
|
143 |
+
Hoogelaandsters-2385-MoanMorn 61
|
144 |
+
Hoogelaandsters-2389-MoanMorn 82
|
145 |
+
Hoogelaandsters-2393-MoanMorn 82
|
146 |
+
Hoogelaandsters-2398-MoanMorn 97
|
147 |
+
Hoogelaandsters-2402-MoanMorn 135
|
148 |
+
Hoogelaandsters-2406-MoanMorn 80
|
149 |
+
Hoogelaandsters-2410-MoanMorn 48
|
150 |
+
Hoogelaandsters-2415-MoanMorn 69
|
151 |
+
Hoogelaandsters-2421-MoanMorn 64
|
152 |
+
Hoogelaandsters-2425-MoanMorn 50
|
153 |
+
Hoogelaandsters-2430-MoanMorn 60
|
154 |
+
Hoogelaandsters-2434-MoanMorn 94
|
155 |
+
Hoogelaandsters-2439-MoanMorn 56
|
156 |
+
Hoogelaandsters-2443-MoanMorn 80
|
157 |
+
Hoogelaandsters-2447-MoanMorn 130
|
158 |
+
Hoogelaandsters-2451-MoanMorn 163
|
159 |
+
Hoogelaandsters-2455-MoanMorn 84
|
160 |
+
Hoogelaandsters-2460-MoanMorn 97
|
161 |
+
Hoogelaandsters-2461-MoanMorn 126
|
162 |
+
Hoogelaandsters-2465-MoanMorn 36
|
163 |
+
Hoogelaandsters-2469-MoanMorn 117
|
164 |
+
Hoogelaandsters-2473-MoanMorn 79
|
165 |
+
Hoogelaandsters-2477-MoanMorn 171
|
166 |
+
Hoogelaandsters-2481-MoanMorn 30
|
167 |
+
Hoogelaandsters-2486-MoanMorn 84
|
168 |
+
Hoogelaandsters-2490-MoanMorn 135
|
169 |
+
Hoogelaandsters-2494-MoanMorn 164
|
170 |
+
Hoogelaandsters-2499-MoanMorn 53
|
171 |
+
Hoogelaandsters-2503-MoanMorn 16
|
172 |
+
Hoogelaandsters-2507-MoanMorn 82
|
173 |
+
Hoogelaandsters-2511-MoanMorn 91
|
174 |
+
Hoogelaandsters-2515-MoanMorn 49
|
175 |
+
Hoogelaandsters-2519-MoanMorn 70
|
176 |
+
Hoogelaandsters-2523-MoanMorn 37
|
177 |
+
Hoogelaandsters-2527-MoanMorn 116
|
178 |
+
Hoogelaandsters-2531-MoanMorn 32
|
179 |
+
Hoogelaandsters-2535-MoanMorn 43
|
180 |
+
Hoogelaandsters-2540-MoanMorn 74
|
181 |
+
Hoogelaandsters-2544-MoanMorn 49
|
182 |
+
Hoogelaandsters-2548-MoanMorn 121
|
183 |
+
Hoogelaandsters-2552-MoanMorn 92
|
184 |
+
Hoogelaandsters-2462-MoanMorn 103
|
185 |
+
Hoogelaandsters-2466-MoanMorn 38
|
186 |
+
Hoogelaandsters-2470-MoanMorn 24
|
187 |
+
Hoogelaandsters-2474-MoanMorn 33
|
188 |
+
Hoogelaandsters-2478-MoanMorn 43
|
189 |
+
Hoogelaandsters-2482-MoanMorn 18
|
190 |
+
Hoogelaandsters-2487-MoanMorn 175
|
191 |
+
Hoogelaandsters-2491-MoanMorn 115
|
192 |
+
Hoogelaandsters-2495-MoanMorn 77
|
193 |
+
Hoogelaandsters-2500-MoanMorn 66
|
194 |
+
Hoogelaandsters-2504-MoanMorn 65
|
195 |
+
Hoogelaandsters-2508-MoanMorn 91
|
196 |
+
Hoogelaandsters-2512-MoanMorn 230
|
197 |
+
Hoogelaandsters-2516-MoanMorn 40
|
198 |
+
Hoogelaandsters-2520-MoanMorn 168
|
199 |
+
Hoogelaandsters-2524-MoanMorn 134
|
200 |
+
Hoogelaandsters-2528-MoanMorn 154
|
201 |
+
Hoogelaandsters-2532-MoanMorn 60
|
202 |
+
Hoogelaandsters-2537-MoanMorn 292
|
203 |
+
Hoogelaandsters-2541-MoanMorn 71
|
204 |
+
Hoogelaandsters-2545-MoanMorn 62
|
205 |
+
Hoogelaandsters-2549-MoanMorn 123
|
206 |
+
Hoogelaandsters-2463-MoanMorn 250
|
207 |
+
Hoogelaandsters-2467-MoanMorn 63
|
208 |
+
Hoogelaandsters-2471-MoanMorn 51
|
209 |
+
Hoogelaandsters-2475-MoanMorn 59
|
210 |
+
Hoogelaandsters-2479-MoanMorn 47
|
211 |
+
Hoogelaandsters-2483-MoanMorn 9
|
212 |
+
Hoogelaandsters-2488-MoanMorn 33
|
213 |
+
Hoogelaandsters-2492-MoanMorn 173
|
214 |
+
Hoogelaandsters-2497-MoanMorn 95
|
215 |
+
Hoogelaandsters-2501-MoanMorn 66
|
216 |
+
Hoogelaandsters-2505-MoanMorn 89
|
217 |
+
Hoogelaandsters-2509-MoanMorn 82
|
218 |
+
Hoogelaandsters-2513-MoanMorn 68
|
219 |
+
Hoogelaandsters-2517-MoanMorn 54
|
220 |
+
Hoogelaandsters-2521-MoanMorn 44
|
221 |
+
Hoogelaandsters-2525-MoanMorn 39
|
222 |
+
Hoogelaandsters-2529-MoanMorn 116
|
223 |
+
Hoogelaandsters-2533-MoanMorn 106
|
224 |
+
Hoogelaandsters-2538-MoanMorn 71
|
225 |
+
Hoogelaandsters-2542-MoanMorn 162
|
226 |
+
Hoogelaandsters-2546-MoanMorn 63
|
227 |
+
Hoogelaandsters-2550-MoanMorn 56
|
228 |
+
Hoogelaandsters-2464-MoanMorn 59
|
229 |
+
Hoogelaandsters-2468-MoanMorn 146
|
230 |
+
Hoogelaandsters-2472-MoanMorn 76
|
231 |
+
Hoogelaandsters-2476-MoanMorn 74
|
232 |
+
Hoogelaandsters-2480-MoanMorn 76
|
233 |
+
Hoogelaandsters-2485-MoanMorn 49
|
234 |
+
Hoogelaandsters-2489-MoanMorn 90
|
235 |
+
Hoogelaandsters-2493-MoanMorn 36
|
236 |
+
Hoogelaandsters-2498-MoanMorn 67
|
237 |
+
Hoogelaandsters-2502-MoanMorn 71
|
238 |
+
Hoogelaandsters-2506-MoanMorn 44
|
239 |
+
Hoogelaandsters-2510-MoanMorn 134
|
240 |
+
Hoogelaandsters-2514-MoanMorn 139
|
241 |
+
Hoogelaandsters-2518-MoanMorn 217
|
242 |
+
Hoogelaandsters-2522-MoanMorn 44
|
243 |
+
Hoogelaandsters-2526-MoanMorn 102
|
244 |
+
Hoogelaandsters-2530-MoanMorn 96
|
245 |
+
Hoogelaandsters-2534-MoanMorn 92
|
246 |
+
Hoogelaandsters-2539-MoanMorn 86
|
247 |
+
Hoogelaandsters-2543-MoanMorn 249
|
248 |
+
Hoogelaandsters-2547-MoanMorn 102
|
249 |
+
Hoogelaandsters-2551-MoanMorn 97
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/batch_keys
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
text
|
2 |
+
speech
|
3 |
+
sids
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/feats_lengths_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15ffdfea3d7f1876d6a022d37c05b82e4b1fce8aefbb321bd0cddd482ac406c8
|
3 |
+
size 778
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/feats_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb9a150225e097511ae2eaa906b3c3fe455256237be5df75b824e8c2ae27d3e5
|
3 |
+
size 1402
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/sids_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-3047-MoanMorn 1
|
2 |
+
Hoogelaandsters-3322-OpBuus 1
|
3 |
+
Hoogelaandsters-3115-MoanMorn 1
|
4 |
+
Hoogelaandsters-3184-MoanMorn 1
|
5 |
+
Hoogelaandsters-3251-MoanMorn 1
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/speech_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-3047-MoanMorn 152884
|
2 |
+
Hoogelaandsters-3322-OpBuus 41382
|
3 |
+
Hoogelaandsters-3115-MoanMorn 54997
|
4 |
+
Hoogelaandsters-3184-MoanMorn 112079
|
5 |
+
Hoogelaandsters-3251-MoanMorn 176275
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/stats_keys
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
feats
|
2 |
+
feats_lengths
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.10/valid/text_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-3047-MoanMorn 84
|
2 |
+
Hoogelaandsters-3322-OpBuus 21
|
3 |
+
Hoogelaandsters-3115-MoanMorn 32
|
4 |
+
Hoogelaandsters-3184-MoanMorn 60
|
5 |
+
Hoogelaandsters-3251-MoanMorn 113
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11.log
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.gan_tts_train --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.11.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.11.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
2 |
+
# Started at Fri Dec 1 15:58:34 UTC 2023
|
3 |
+
#
|
4 |
+
/data2/p280965/tts/espnet/tools/venv/bin/python3 /data2/p280965/tts/espnet/espnet2/bin/gan_tts_train.py --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.11.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.11.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
5 |
+
[wieling-3-a100] 2023-12-01 15:58:40,493 (gan_tts:293) INFO: Vocabulary size: 46
|
6 |
+
[wieling-3-a100] 2023-12-01 15:58:40,627 (encoder:174) INFO: encoder self-attention layer type = relative self-attention
|
7 |
+
/data2/p280965/tts/espnet/tools/venv/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
|
8 |
+
warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
|
9 |
+
/data2/p280965/tts/espnet/espnet2/gan_tts/vits/monotonic_align/__init__.py:19: UserWarning: Cython version is not available. Fallback to 'EXPERIMETAL' numba version. If you want to use the cython version, please build it as follows: `cd espnet2/gan_tts/vits/monotonic_align; python setup.py build_ext --inplace`
|
10 |
+
warnings.warn(
|
11 |
+
[wieling-3-a100] 2023-12-01 15:58:41,832 (abs_task:1268) INFO: pytorch.version=2.1.0+cu121, cuda.available=True, cudnn.version=8902, cudnn.benchmark=False, cudnn.deterministic=False
|
12 |
+
[wieling-3-a100] 2023-12-01 15:58:41,847 (abs_task:1269) INFO: Model structure:
|
13 |
+
ESPnetGANTTSModel(
|
14 |
+
(feats_extract): LogMelFbank(
|
15 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
16 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=80, fmax=7600, htk=False)
|
17 |
+
)
|
18 |
+
(tts): VITS(
|
19 |
+
(generator): VITSGenerator(
|
20 |
+
(text_encoder): TextEncoder(
|
21 |
+
(emb): Embedding(46, 192)
|
22 |
+
(encoder): Encoder(
|
23 |
+
(embed): Sequential(
|
24 |
+
(0): RelPositionalEncoding(
|
25 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(encoders): MultiSequential(
|
29 |
+
(0): EncoderLayer(
|
30 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
31 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
32 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
33 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
34 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
37 |
+
)
|
38 |
+
(feed_forward): MultiLayeredConv1d(
|
39 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
40 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
41 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
42 |
+
)
|
43 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
44 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
45 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
46 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
47 |
+
)
|
48 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
50 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
51 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
52 |
+
)
|
53 |
+
(1): EncoderLayer(
|
54 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
55 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
56 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
57 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
58 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
61 |
+
)
|
62 |
+
(feed_forward): MultiLayeredConv1d(
|
63 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
64 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
65 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
66 |
+
)
|
67 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
68 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
69 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
70 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
74 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
75 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
76 |
+
)
|
77 |
+
(2): EncoderLayer(
|
78 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
79 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
80 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
81 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
82 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
85 |
+
)
|
86 |
+
(feed_forward): MultiLayeredConv1d(
|
87 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
88 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
92 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
93 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
98 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
99 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
100 |
+
)
|
101 |
+
(3): EncoderLayer(
|
102 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
103 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
104 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
105 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
106 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
109 |
+
)
|
110 |
+
(feed_forward): MultiLayeredConv1d(
|
111 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
112 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
113 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
114 |
+
)
|
115 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
116 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
117 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
118 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
119 |
+
)
|
120 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
122 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
123 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
124 |
+
)
|
125 |
+
(4): EncoderLayer(
|
126 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
127 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
128 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
129 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
130 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
133 |
+
)
|
134 |
+
(feed_forward): MultiLayeredConv1d(
|
135 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
136 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
137 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
138 |
+
)
|
139 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
140 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
141 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
142 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
143 |
+
)
|
144 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
146 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
147 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
148 |
+
)
|
149 |
+
(5): EncoderLayer(
|
150 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
151 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
152 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
153 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
154 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
157 |
+
)
|
158 |
+
(feed_forward): MultiLayeredConv1d(
|
159 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
160 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
161 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
162 |
+
)
|
163 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
164 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
165 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
166 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
167 |
+
)
|
168 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
171 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
172 |
+
)
|
173 |
+
)
|
174 |
+
(after_norm): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
175 |
+
)
|
176 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
177 |
+
)
|
178 |
+
(decoder): HiFiGANGenerator(
|
179 |
+
(input_conv): Conv1d(192, 512, kernel_size=(7,), stride=(1,), padding=(3,))
|
180 |
+
(upsamples): ModuleList(
|
181 |
+
(0): Sequential(
|
182 |
+
(0): LeakyReLU(negative_slope=0.1)
|
183 |
+
(1): ConvTranspose1d(512, 256, kernel_size=(16,), stride=(8,), padding=(4,))
|
184 |
+
)
|
185 |
+
(1): Sequential(
|
186 |
+
(0): LeakyReLU(negative_slope=0.1)
|
187 |
+
(1): ConvTranspose1d(256, 128, kernel_size=(16,), stride=(8,), padding=(4,))
|
188 |
+
)
|
189 |
+
(2): Sequential(
|
190 |
+
(0): LeakyReLU(negative_slope=0.1)
|
191 |
+
(1): ConvTranspose1d(128, 64, kernel_size=(4,), stride=(2,), padding=(1,))
|
192 |
+
)
|
193 |
+
(3): Sequential(
|
194 |
+
(0): LeakyReLU(negative_slope=0.1)
|
195 |
+
(1): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(2,), padding=(1,))
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(blocks): ModuleList(
|
199 |
+
(0): ResidualBlock(
|
200 |
+
(convs1): ModuleList(
|
201 |
+
(0): Sequential(
|
202 |
+
(0): LeakyReLU(negative_slope=0.1)
|
203 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
204 |
+
)
|
205 |
+
(1): Sequential(
|
206 |
+
(0): LeakyReLU(negative_slope=0.1)
|
207 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
208 |
+
)
|
209 |
+
(2): Sequential(
|
210 |
+
(0): LeakyReLU(negative_slope=0.1)
|
211 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(convs2): ModuleList(
|
215 |
+
(0-2): 3 x Sequential(
|
216 |
+
(0): LeakyReLU(negative_slope=0.1)
|
217 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
218 |
+
)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(1): ResidualBlock(
|
222 |
+
(convs1): ModuleList(
|
223 |
+
(0): Sequential(
|
224 |
+
(0): LeakyReLU(negative_slope=0.1)
|
225 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
226 |
+
)
|
227 |
+
(1): Sequential(
|
228 |
+
(0): LeakyReLU(negative_slope=0.1)
|
229 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
230 |
+
)
|
231 |
+
(2): Sequential(
|
232 |
+
(0): LeakyReLU(negative_slope=0.1)
|
233 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
234 |
+
)
|
235 |
+
)
|
236 |
+
(convs2): ModuleList(
|
237 |
+
(0-2): 3 x Sequential(
|
238 |
+
(0): LeakyReLU(negative_slope=0.1)
|
239 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
240 |
+
)
|
241 |
+
)
|
242 |
+
)
|
243 |
+
(2): ResidualBlock(
|
244 |
+
(convs1): ModuleList(
|
245 |
+
(0): Sequential(
|
246 |
+
(0): LeakyReLU(negative_slope=0.1)
|
247 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
248 |
+
)
|
249 |
+
(1): Sequential(
|
250 |
+
(0): LeakyReLU(negative_slope=0.1)
|
251 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
252 |
+
)
|
253 |
+
(2): Sequential(
|
254 |
+
(0): LeakyReLU(negative_slope=0.1)
|
255 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(convs2): ModuleList(
|
259 |
+
(0-2): 3 x Sequential(
|
260 |
+
(0): LeakyReLU(negative_slope=0.1)
|
261 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
262 |
+
)
|
263 |
+
)
|
264 |
+
)
|
265 |
+
(3): ResidualBlock(
|
266 |
+
(convs1): ModuleList(
|
267 |
+
(0): Sequential(
|
268 |
+
(0): LeakyReLU(negative_slope=0.1)
|
269 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
270 |
+
)
|
271 |
+
(1): Sequential(
|
272 |
+
(0): LeakyReLU(negative_slope=0.1)
|
273 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
274 |
+
)
|
275 |
+
(2): Sequential(
|
276 |
+
(0): LeakyReLU(negative_slope=0.1)
|
277 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
278 |
+
)
|
279 |
+
)
|
280 |
+
(convs2): ModuleList(
|
281 |
+
(0-2): 3 x Sequential(
|
282 |
+
(0): LeakyReLU(negative_slope=0.1)
|
283 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
284 |
+
)
|
285 |
+
)
|
286 |
+
)
|
287 |
+
(4): ResidualBlock(
|
288 |
+
(convs1): ModuleList(
|
289 |
+
(0): Sequential(
|
290 |
+
(0): LeakyReLU(negative_slope=0.1)
|
291 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
292 |
+
)
|
293 |
+
(1): Sequential(
|
294 |
+
(0): LeakyReLU(negative_slope=0.1)
|
295 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
296 |
+
)
|
297 |
+
(2): Sequential(
|
298 |
+
(0): LeakyReLU(negative_slope=0.1)
|
299 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
300 |
+
)
|
301 |
+
)
|
302 |
+
(convs2): ModuleList(
|
303 |
+
(0-2): 3 x Sequential(
|
304 |
+
(0): LeakyReLU(negative_slope=0.1)
|
305 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
306 |
+
)
|
307 |
+
)
|
308 |
+
)
|
309 |
+
(5): ResidualBlock(
|
310 |
+
(convs1): ModuleList(
|
311 |
+
(0): Sequential(
|
312 |
+
(0): LeakyReLU(negative_slope=0.1)
|
313 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
314 |
+
)
|
315 |
+
(1): Sequential(
|
316 |
+
(0): LeakyReLU(negative_slope=0.1)
|
317 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
318 |
+
)
|
319 |
+
(2): Sequential(
|
320 |
+
(0): LeakyReLU(negative_slope=0.1)
|
321 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
322 |
+
)
|
323 |
+
)
|
324 |
+
(convs2): ModuleList(
|
325 |
+
(0-2): 3 x Sequential(
|
326 |
+
(0): LeakyReLU(negative_slope=0.1)
|
327 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
328 |
+
)
|
329 |
+
)
|
330 |
+
)
|
331 |
+
(6): ResidualBlock(
|
332 |
+
(convs1): ModuleList(
|
333 |
+
(0): Sequential(
|
334 |
+
(0): LeakyReLU(negative_slope=0.1)
|
335 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
336 |
+
)
|
337 |
+
(1): Sequential(
|
338 |
+
(0): LeakyReLU(negative_slope=0.1)
|
339 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
340 |
+
)
|
341 |
+
(2): Sequential(
|
342 |
+
(0): LeakyReLU(negative_slope=0.1)
|
343 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
344 |
+
)
|
345 |
+
)
|
346 |
+
(convs2): ModuleList(
|
347 |
+
(0-2): 3 x Sequential(
|
348 |
+
(0): LeakyReLU(negative_slope=0.1)
|
349 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
350 |
+
)
|
351 |
+
)
|
352 |
+
)
|
353 |
+
(7): ResidualBlock(
|
354 |
+
(convs1): ModuleList(
|
355 |
+
(0): Sequential(
|
356 |
+
(0): LeakyReLU(negative_slope=0.1)
|
357 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
358 |
+
)
|
359 |
+
(1): Sequential(
|
360 |
+
(0): LeakyReLU(negative_slope=0.1)
|
361 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
362 |
+
)
|
363 |
+
(2): Sequential(
|
364 |
+
(0): LeakyReLU(negative_slope=0.1)
|
365 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
366 |
+
)
|
367 |
+
)
|
368 |
+
(convs2): ModuleList(
|
369 |
+
(0-2): 3 x Sequential(
|
370 |
+
(0): LeakyReLU(negative_slope=0.1)
|
371 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
372 |
+
)
|
373 |
+
)
|
374 |
+
)
|
375 |
+
(8): ResidualBlock(
|
376 |
+
(convs1): ModuleList(
|
377 |
+
(0): Sequential(
|
378 |
+
(0): LeakyReLU(negative_slope=0.1)
|
379 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
380 |
+
)
|
381 |
+
(1): Sequential(
|
382 |
+
(0): LeakyReLU(negative_slope=0.1)
|
383 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
384 |
+
)
|
385 |
+
(2): Sequential(
|
386 |
+
(0): LeakyReLU(negative_slope=0.1)
|
387 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
388 |
+
)
|
389 |
+
)
|
390 |
+
(convs2): ModuleList(
|
391 |
+
(0-2): 3 x Sequential(
|
392 |
+
(0): LeakyReLU(negative_slope=0.1)
|
393 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
394 |
+
)
|
395 |
+
)
|
396 |
+
)
|
397 |
+
(9): ResidualBlock(
|
398 |
+
(convs1): ModuleList(
|
399 |
+
(0): Sequential(
|
400 |
+
(0): LeakyReLU(negative_slope=0.1)
|
401 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
402 |
+
)
|
403 |
+
(1): Sequential(
|
404 |
+
(0): LeakyReLU(negative_slope=0.1)
|
405 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
406 |
+
)
|
407 |
+
(2): Sequential(
|
408 |
+
(0): LeakyReLU(negative_slope=0.1)
|
409 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
410 |
+
)
|
411 |
+
)
|
412 |
+
(convs2): ModuleList(
|
413 |
+
(0-2): 3 x Sequential(
|
414 |
+
(0): LeakyReLU(negative_slope=0.1)
|
415 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
416 |
+
)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(10): ResidualBlock(
|
420 |
+
(convs1): ModuleList(
|
421 |
+
(0): Sequential(
|
422 |
+
(0): LeakyReLU(negative_slope=0.1)
|
423 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
424 |
+
)
|
425 |
+
(1): Sequential(
|
426 |
+
(0): LeakyReLU(negative_slope=0.1)
|
427 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
428 |
+
)
|
429 |
+
(2): Sequential(
|
430 |
+
(0): LeakyReLU(negative_slope=0.1)
|
431 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(convs2): ModuleList(
|
435 |
+
(0-2): 3 x Sequential(
|
436 |
+
(0): LeakyReLU(negative_slope=0.1)
|
437 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
438 |
+
)
|
439 |
+
)
|
440 |
+
)
|
441 |
+
(11): ResidualBlock(
|
442 |
+
(convs1): ModuleList(
|
443 |
+
(0): Sequential(
|
444 |
+
(0): LeakyReLU(negative_slope=0.1)
|
445 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
446 |
+
)
|
447 |
+
(1): Sequential(
|
448 |
+
(0): LeakyReLU(negative_slope=0.1)
|
449 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
450 |
+
)
|
451 |
+
(2): Sequential(
|
452 |
+
(0): LeakyReLU(negative_slope=0.1)
|
453 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
454 |
+
)
|
455 |
+
)
|
456 |
+
(convs2): ModuleList(
|
457 |
+
(0-2): 3 x Sequential(
|
458 |
+
(0): LeakyReLU(negative_slope=0.1)
|
459 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
460 |
+
)
|
461 |
+
)
|
462 |
+
)
|
463 |
+
)
|
464 |
+
(output_conv): Sequential(
|
465 |
+
(0): LeakyReLU(negative_slope=0.01)
|
466 |
+
(1): Conv1d(32, 1, kernel_size=(7,), stride=(1,), padding=(3,))
|
467 |
+
(2): Tanh()
|
468 |
+
)
|
469 |
+
(global_conv): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
470 |
+
)
|
471 |
+
(posterior_encoder): PosteriorEncoder(
|
472 |
+
(input_conv): Conv1d(80, 192, kernel_size=(1,), stride=(1,))
|
473 |
+
(encoder): WaveNet(
|
474 |
+
(conv_layers): ModuleList(
|
475 |
+
(0-15): 16 x ResidualBlock(
|
476 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
477 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
478 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
479 |
+
)
|
480 |
+
)
|
481 |
+
)
|
482 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
483 |
+
)
|
484 |
+
(flow): ResidualAffineCouplingBlock(
|
485 |
+
(flows): ModuleList(
|
486 |
+
(0): ResidualAffineCouplingLayer(
|
487 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
488 |
+
(encoder): WaveNet(
|
489 |
+
(conv_layers): ModuleList(
|
490 |
+
(0-3): 4 x ResidualBlock(
|
491 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
492 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
493 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
494 |
+
)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
498 |
+
)
|
499 |
+
(1): FlipFlow()
|
500 |
+
(2): ResidualAffineCouplingLayer(
|
501 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
502 |
+
(encoder): WaveNet(
|
503 |
+
(conv_layers): ModuleList(
|
504 |
+
(0-3): 4 x ResidualBlock(
|
505 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
506 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
507 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
508 |
+
)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
512 |
+
)
|
513 |
+
(3): FlipFlow()
|
514 |
+
(4): ResidualAffineCouplingLayer(
|
515 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
516 |
+
(encoder): WaveNet(
|
517 |
+
(conv_layers): ModuleList(
|
518 |
+
(0-3): 4 x ResidualBlock(
|
519 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
520 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
521 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
522 |
+
)
|
523 |
+
)
|
524 |
+
)
|
525 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
526 |
+
)
|
527 |
+
(5): FlipFlow()
|
528 |
+
(6): ResidualAffineCouplingLayer(
|
529 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
530 |
+
(encoder): WaveNet(
|
531 |
+
(conv_layers): ModuleList(
|
532 |
+
(0-3): 4 x ResidualBlock(
|
533 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
534 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
535 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
536 |
+
)
|
537 |
+
)
|
538 |
+
)
|
539 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
540 |
+
)
|
541 |
+
(7): FlipFlow()
|
542 |
+
)
|
543 |
+
)
|
544 |
+
(duration_predictor): StochasticDurationPredictor(
|
545 |
+
(pre): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
546 |
+
(dds): DilatedDepthSeparableConv(
|
547 |
+
(convs): ModuleList(
|
548 |
+
(0): Sequential(
|
549 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
550 |
+
(1): Transpose()
|
551 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
552 |
+
(3): Transpose()
|
553 |
+
(4): GELU(approximate='none')
|
554 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
555 |
+
(6): Transpose()
|
556 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
557 |
+
(8): Transpose()
|
558 |
+
(9): GELU(approximate='none')
|
559 |
+
(10): Dropout(p=0.5, inplace=False)
|
560 |
+
)
|
561 |
+
(1): Sequential(
|
562 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
563 |
+
(1): Transpose()
|
564 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
565 |
+
(3): Transpose()
|
566 |
+
(4): GELU(approximate='none')
|
567 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
568 |
+
(6): Transpose()
|
569 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
570 |
+
(8): Transpose()
|
571 |
+
(9): GELU(approximate='none')
|
572 |
+
(10): Dropout(p=0.5, inplace=False)
|
573 |
+
)
|
574 |
+
(2): Sequential(
|
575 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
576 |
+
(1): Transpose()
|
577 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
578 |
+
(3): Transpose()
|
579 |
+
(4): GELU(approximate='none')
|
580 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
581 |
+
(6): Transpose()
|
582 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
583 |
+
(8): Transpose()
|
584 |
+
(9): GELU(approximate='none')
|
585 |
+
(10): Dropout(p=0.5, inplace=False)
|
586 |
+
)
|
587 |
+
)
|
588 |
+
)
|
589 |
+
(proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
590 |
+
(log_flow): LogFlow()
|
591 |
+
(flows): ModuleList(
|
592 |
+
(0): ElementwiseAffineFlow()
|
593 |
+
(1): ConvFlow(
|
594 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
595 |
+
(dds_conv): DilatedDepthSeparableConv(
|
596 |
+
(convs): ModuleList(
|
597 |
+
(0): Sequential(
|
598 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
599 |
+
(1): Transpose()
|
600 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
601 |
+
(3): Transpose()
|
602 |
+
(4): GELU(approximate='none')
|
603 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
604 |
+
(6): Transpose()
|
605 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
606 |
+
(8): Transpose()
|
607 |
+
(9): GELU(approximate='none')
|
608 |
+
(10): Dropout(p=0.0, inplace=False)
|
609 |
+
)
|
610 |
+
(1): Sequential(
|
611 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
612 |
+
(1): Transpose()
|
613 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
614 |
+
(3): Transpose()
|
615 |
+
(4): GELU(approximate='none')
|
616 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
617 |
+
(6): Transpose()
|
618 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
619 |
+
(8): Transpose()
|
620 |
+
(9): GELU(approximate='none')
|
621 |
+
(10): Dropout(p=0.0, inplace=False)
|
622 |
+
)
|
623 |
+
(2): Sequential(
|
624 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
625 |
+
(1): Transpose()
|
626 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
627 |
+
(3): Transpose()
|
628 |
+
(4): GELU(approximate='none')
|
629 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
630 |
+
(6): Transpose()
|
631 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
632 |
+
(8): Transpose()
|
633 |
+
(9): GELU(approximate='none')
|
634 |
+
(10): Dropout(p=0.0, inplace=False)
|
635 |
+
)
|
636 |
+
)
|
637 |
+
)
|
638 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
639 |
+
)
|
640 |
+
(2): FlipFlow()
|
641 |
+
(3): ConvFlow(
|
642 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
643 |
+
(dds_conv): DilatedDepthSeparableConv(
|
644 |
+
(convs): ModuleList(
|
645 |
+
(0): Sequential(
|
646 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
647 |
+
(1): Transpose()
|
648 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
649 |
+
(3): Transpose()
|
650 |
+
(4): GELU(approximate='none')
|
651 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
652 |
+
(6): Transpose()
|
653 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
654 |
+
(8): Transpose()
|
655 |
+
(9): GELU(approximate='none')
|
656 |
+
(10): Dropout(p=0.0, inplace=False)
|
657 |
+
)
|
658 |
+
(1): Sequential(
|
659 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
660 |
+
(1): Transpose()
|
661 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
662 |
+
(3): Transpose()
|
663 |
+
(4): GELU(approximate='none')
|
664 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
665 |
+
(6): Transpose()
|
666 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
667 |
+
(8): Transpose()
|
668 |
+
(9): GELU(approximate='none')
|
669 |
+
(10): Dropout(p=0.0, inplace=False)
|
670 |
+
)
|
671 |
+
(2): Sequential(
|
672 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
673 |
+
(1): Transpose()
|
674 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
675 |
+
(3): Transpose()
|
676 |
+
(4): GELU(approximate='none')
|
677 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
678 |
+
(6): Transpose()
|
679 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
680 |
+
(8): Transpose()
|
681 |
+
(9): GELU(approximate='none')
|
682 |
+
(10): Dropout(p=0.0, inplace=False)
|
683 |
+
)
|
684 |
+
)
|
685 |
+
)
|
686 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
687 |
+
)
|
688 |
+
(4): FlipFlow()
|
689 |
+
(5): ConvFlow(
|
690 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
691 |
+
(dds_conv): DilatedDepthSeparableConv(
|
692 |
+
(convs): ModuleList(
|
693 |
+
(0): Sequential(
|
694 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
695 |
+
(1): Transpose()
|
696 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
697 |
+
(3): Transpose()
|
698 |
+
(4): GELU(approximate='none')
|
699 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
700 |
+
(6): Transpose()
|
701 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
702 |
+
(8): Transpose()
|
703 |
+
(9): GELU(approximate='none')
|
704 |
+
(10): Dropout(p=0.0, inplace=False)
|
705 |
+
)
|
706 |
+
(1): Sequential(
|
707 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
708 |
+
(1): Transpose()
|
709 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
710 |
+
(3): Transpose()
|
711 |
+
(4): GELU(approximate='none')
|
712 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
713 |
+
(6): Transpose()
|
714 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
715 |
+
(8): Transpose()
|
716 |
+
(9): GELU(approximate='none')
|
717 |
+
(10): Dropout(p=0.0, inplace=False)
|
718 |
+
)
|
719 |
+
(2): Sequential(
|
720 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
721 |
+
(1): Transpose()
|
722 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
723 |
+
(3): Transpose()
|
724 |
+
(4): GELU(approximate='none')
|
725 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
726 |
+
(6): Transpose()
|
727 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
728 |
+
(8): Transpose()
|
729 |
+
(9): GELU(approximate='none')
|
730 |
+
(10): Dropout(p=0.0, inplace=False)
|
731 |
+
)
|
732 |
+
)
|
733 |
+
)
|
734 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
735 |
+
)
|
736 |
+
(6): FlipFlow()
|
737 |
+
(7): ConvFlow(
|
738 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
739 |
+
(dds_conv): DilatedDepthSeparableConv(
|
740 |
+
(convs): ModuleList(
|
741 |
+
(0): Sequential(
|
742 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
743 |
+
(1): Transpose()
|
744 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
745 |
+
(3): Transpose()
|
746 |
+
(4): GELU(approximate='none')
|
747 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
748 |
+
(6): Transpose()
|
749 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
750 |
+
(8): Transpose()
|
751 |
+
(9): GELU(approximate='none')
|
752 |
+
(10): Dropout(p=0.0, inplace=False)
|
753 |
+
)
|
754 |
+
(1): Sequential(
|
755 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
756 |
+
(1): Transpose()
|
757 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
758 |
+
(3): Transpose()
|
759 |
+
(4): GELU(approximate='none')
|
760 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
761 |
+
(6): Transpose()
|
762 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
763 |
+
(8): Transpose()
|
764 |
+
(9): GELU(approximate='none')
|
765 |
+
(10): Dropout(p=0.0, inplace=False)
|
766 |
+
)
|
767 |
+
(2): Sequential(
|
768 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
769 |
+
(1): Transpose()
|
770 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
771 |
+
(3): Transpose()
|
772 |
+
(4): GELU(approximate='none')
|
773 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
774 |
+
(6): Transpose()
|
775 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
776 |
+
(8): Transpose()
|
777 |
+
(9): GELU(approximate='none')
|
778 |
+
(10): Dropout(p=0.0, inplace=False)
|
779 |
+
)
|
780 |
+
)
|
781 |
+
)
|
782 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
783 |
+
)
|
784 |
+
(8): FlipFlow()
|
785 |
+
)
|
786 |
+
(post_pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
787 |
+
(post_dds): DilatedDepthSeparableConv(
|
788 |
+
(convs): ModuleList(
|
789 |
+
(0): Sequential(
|
790 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
791 |
+
(1): Transpose()
|
792 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
793 |
+
(3): Transpose()
|
794 |
+
(4): GELU(approximate='none')
|
795 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
796 |
+
(6): Transpose()
|
797 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
798 |
+
(8): Transpose()
|
799 |
+
(9): GELU(approximate='none')
|
800 |
+
(10): Dropout(p=0.5, inplace=False)
|
801 |
+
)
|
802 |
+
(1): Sequential(
|
803 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
804 |
+
(1): Transpose()
|
805 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
806 |
+
(3): Transpose()
|
807 |
+
(4): GELU(approximate='none')
|
808 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
809 |
+
(6): Transpose()
|
810 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
811 |
+
(8): Transpose()
|
812 |
+
(9): GELU(approximate='none')
|
813 |
+
(10): Dropout(p=0.5, inplace=False)
|
814 |
+
)
|
815 |
+
(2): Sequential(
|
816 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
817 |
+
(1): Transpose()
|
818 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
819 |
+
(3): Transpose()
|
820 |
+
(4): GELU(approximate='none')
|
821 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
822 |
+
(6): Transpose()
|
823 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
824 |
+
(8): Transpose()
|
825 |
+
(9): GELU(approximate='none')
|
826 |
+
(10): Dropout(p=0.5, inplace=False)
|
827 |
+
)
|
828 |
+
)
|
829 |
+
)
|
830 |
+
(post_proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
831 |
+
(post_flows): ModuleList(
|
832 |
+
(0): ElementwiseAffineFlow()
|
833 |
+
(1): ConvFlow(
|
834 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
835 |
+
(dds_conv): DilatedDepthSeparableConv(
|
836 |
+
(convs): ModuleList(
|
837 |
+
(0): Sequential(
|
838 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
839 |
+
(1): Transpose()
|
840 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
841 |
+
(3): Transpose()
|
842 |
+
(4): GELU(approximate='none')
|
843 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
844 |
+
(6): Transpose()
|
845 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
846 |
+
(8): Transpose()
|
847 |
+
(9): GELU(approximate='none')
|
848 |
+
(10): Dropout(p=0.0, inplace=False)
|
849 |
+
)
|
850 |
+
(1): Sequential(
|
851 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
852 |
+
(1): Transpose()
|
853 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
854 |
+
(3): Transpose()
|
855 |
+
(4): GELU(approximate='none')
|
856 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
857 |
+
(6): Transpose()
|
858 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
859 |
+
(8): Transpose()
|
860 |
+
(9): GELU(approximate='none')
|
861 |
+
(10): Dropout(p=0.0, inplace=False)
|
862 |
+
)
|
863 |
+
(2): Sequential(
|
864 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
865 |
+
(1): Transpose()
|
866 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
867 |
+
(3): Transpose()
|
868 |
+
(4): GELU(approximate='none')
|
869 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
870 |
+
(6): Transpose()
|
871 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
872 |
+
(8): Transpose()
|
873 |
+
(9): GELU(approximate='none')
|
874 |
+
(10): Dropout(p=0.0, inplace=False)
|
875 |
+
)
|
876 |
+
)
|
877 |
+
)
|
878 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
879 |
+
)
|
880 |
+
(2): FlipFlow()
|
881 |
+
(3): ConvFlow(
|
882 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
883 |
+
(dds_conv): DilatedDepthSeparableConv(
|
884 |
+
(convs): ModuleList(
|
885 |
+
(0): Sequential(
|
886 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
887 |
+
(1): Transpose()
|
888 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
889 |
+
(3): Transpose()
|
890 |
+
(4): GELU(approximate='none')
|
891 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
892 |
+
(6): Transpose()
|
893 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
894 |
+
(8): Transpose()
|
895 |
+
(9): GELU(approximate='none')
|
896 |
+
(10): Dropout(p=0.0, inplace=False)
|
897 |
+
)
|
898 |
+
(1): Sequential(
|
899 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
900 |
+
(1): Transpose()
|
901 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
902 |
+
(3): Transpose()
|
903 |
+
(4): GELU(approximate='none')
|
904 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
905 |
+
(6): Transpose()
|
906 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
907 |
+
(8): Transpose()
|
908 |
+
(9): GELU(approximate='none')
|
909 |
+
(10): Dropout(p=0.0, inplace=False)
|
910 |
+
)
|
911 |
+
(2): Sequential(
|
912 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
913 |
+
(1): Transpose()
|
914 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
915 |
+
(3): Transpose()
|
916 |
+
(4): GELU(approximate='none')
|
917 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
918 |
+
(6): Transpose()
|
919 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
920 |
+
(8): Transpose()
|
921 |
+
(9): GELU(approximate='none')
|
922 |
+
(10): Dropout(p=0.0, inplace=False)
|
923 |
+
)
|
924 |
+
)
|
925 |
+
)
|
926 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
927 |
+
)
|
928 |
+
(4): FlipFlow()
|
929 |
+
(5): ConvFlow(
|
930 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
931 |
+
(dds_conv): DilatedDepthSeparableConv(
|
932 |
+
(convs): ModuleList(
|
933 |
+
(0): Sequential(
|
934 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
935 |
+
(1): Transpose()
|
936 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
937 |
+
(3): Transpose()
|
938 |
+
(4): GELU(approximate='none')
|
939 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
940 |
+
(6): Transpose()
|
941 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
942 |
+
(8): Transpose()
|
943 |
+
(9): GELU(approximate='none')
|
944 |
+
(10): Dropout(p=0.0, inplace=False)
|
945 |
+
)
|
946 |
+
(1): Sequential(
|
947 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
948 |
+
(1): Transpose()
|
949 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
950 |
+
(3): Transpose()
|
951 |
+
(4): GELU(approximate='none')
|
952 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
953 |
+
(6): Transpose()
|
954 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
955 |
+
(8): Transpose()
|
956 |
+
(9): GELU(approximate='none')
|
957 |
+
(10): Dropout(p=0.0, inplace=False)
|
958 |
+
)
|
959 |
+
(2): Sequential(
|
960 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
961 |
+
(1): Transpose()
|
962 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
963 |
+
(3): Transpose()
|
964 |
+
(4): GELU(approximate='none')
|
965 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
966 |
+
(6): Transpose()
|
967 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
968 |
+
(8): Transpose()
|
969 |
+
(9): GELU(approximate='none')
|
970 |
+
(10): Dropout(p=0.0, inplace=False)
|
971 |
+
)
|
972 |
+
)
|
973 |
+
)
|
974 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
975 |
+
)
|
976 |
+
(6): FlipFlow()
|
977 |
+
(7): ConvFlow(
|
978 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
979 |
+
(dds_conv): DilatedDepthSeparableConv(
|
980 |
+
(convs): ModuleList(
|
981 |
+
(0): Sequential(
|
982 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
983 |
+
(1): Transpose()
|
984 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
985 |
+
(3): Transpose()
|
986 |
+
(4): GELU(approximate='none')
|
987 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
988 |
+
(6): Transpose()
|
989 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
990 |
+
(8): Transpose()
|
991 |
+
(9): GELU(approximate='none')
|
992 |
+
(10): Dropout(p=0.0, inplace=False)
|
993 |
+
)
|
994 |
+
(1): Sequential(
|
995 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
996 |
+
(1): Transpose()
|
997 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
998 |
+
(3): Transpose()
|
999 |
+
(4): GELU(approximate='none')
|
1000 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1001 |
+
(6): Transpose()
|
1002 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1003 |
+
(8): Transpose()
|
1004 |
+
(9): GELU(approximate='none')
|
1005 |
+
(10): Dropout(p=0.0, inplace=False)
|
1006 |
+
)
|
1007 |
+
(2): Sequential(
|
1008 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
1009 |
+
(1): Transpose()
|
1010 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1011 |
+
(3): Transpose()
|
1012 |
+
(4): GELU(approximate='none')
|
1013 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1014 |
+
(6): Transpose()
|
1015 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1016 |
+
(8): Transpose()
|
1017 |
+
(9): GELU(approximate='none')
|
1018 |
+
(10): Dropout(p=0.0, inplace=False)
|
1019 |
+
)
|
1020 |
+
)
|
1021 |
+
)
|
1022 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
1023 |
+
)
|
1024 |
+
(8): FlipFlow()
|
1025 |
+
)
|
1026 |
+
(global_conv): Conv1d(256, 192, kernel_size=(1,), stride=(1,))
|
1027 |
+
)
|
1028 |
+
(global_emb): Embedding(4, 256)
|
1029 |
+
)
|
1030 |
+
(discriminator): HiFiGANMultiScaleMultiPeriodDiscriminator(
|
1031 |
+
(msd): HiFiGANMultiScaleDiscriminator(
|
1032 |
+
(discriminators): ModuleList(
|
1033 |
+
(0): HiFiGANScaleDiscriminator(
|
1034 |
+
(layers): ModuleList(
|
1035 |
+
(0): Sequential(
|
1036 |
+
(0): Conv1d(1, 128, kernel_size=(15,), stride=(1,), padding=(7,))
|
1037 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1038 |
+
)
|
1039 |
+
(1): Sequential(
|
1040 |
+
(0): Conv1d(128, 128, kernel_size=(41,), stride=(2,), padding=(20,), groups=4)
|
1041 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1042 |
+
)
|
1043 |
+
(2): Sequential(
|
1044 |
+
(0): Conv1d(128, 256, kernel_size=(41,), stride=(2,), padding=(20,), groups=16)
|
1045 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1046 |
+
)
|
1047 |
+
(3): Sequential(
|
1048 |
+
(0): Conv1d(256, 512, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1049 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1050 |
+
)
|
1051 |
+
(4): Sequential(
|
1052 |
+
(0): Conv1d(512, 1024, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1053 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1054 |
+
)
|
1055 |
+
(5): Sequential(
|
1056 |
+
(0): Conv1d(1024, 1024, kernel_size=(41,), stride=(1,), padding=(20,), groups=16)
|
1057 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1058 |
+
)
|
1059 |
+
(6): Sequential(
|
1060 |
+
(0): Conv1d(1024, 1024, kernel_size=(5,), stride=(1,), padding=(2,))
|
1061 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1062 |
+
)
|
1063 |
+
(7): Conv1d(1024, 1, kernel_size=(3,), stride=(1,), padding=(1,))
|
1064 |
+
)
|
1065 |
+
)
|
1066 |
+
)
|
1067 |
+
)
|
1068 |
+
(mpd): HiFiGANMultiPeriodDiscriminator(
|
1069 |
+
(discriminators): ModuleList(
|
1070 |
+
(0-4): 5 x HiFiGANPeriodDiscriminator(
|
1071 |
+
(convs): ModuleList(
|
1072 |
+
(0): Sequential(
|
1073 |
+
(0): Conv2d(1, 32, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1074 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1075 |
+
)
|
1076 |
+
(1): Sequential(
|
1077 |
+
(0): Conv2d(32, 128, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1078 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1079 |
+
)
|
1080 |
+
(2): Sequential(
|
1081 |
+
(0): Conv2d(128, 512, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1082 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1083 |
+
)
|
1084 |
+
(3): Sequential(
|
1085 |
+
(0): Conv2d(512, 1024, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1086 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1087 |
+
)
|
1088 |
+
(4): Sequential(
|
1089 |
+
(0): Conv2d(1024, 1024, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))
|
1090 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1091 |
+
)
|
1092 |
+
)
|
1093 |
+
(output_conv): Conv2d(1024, 1, kernel_size=(2, 1), stride=(1, 1), padding=(1, 0))
|
1094 |
+
)
|
1095 |
+
)
|
1096 |
+
)
|
1097 |
+
)
|
1098 |
+
(generator_adv_loss): GeneratorAdversarialLoss()
|
1099 |
+
(discriminator_adv_loss): DiscriminatorAdversarialLoss()
|
1100 |
+
(feat_match_loss): FeatureMatchLoss()
|
1101 |
+
(mel_loss): MelSpectrogramLoss(
|
1102 |
+
(wav_to_mel): LogMelFbank(
|
1103 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
1104 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=0, fmax=11025.0, htk=False)
|
1105 |
+
)
|
1106 |
+
)
|
1107 |
+
(kl_loss): KLDivergenceLoss()
|
1108 |
+
)
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
Model summary:
|
1112 |
+
Class Name: ESPnetGANTTSModel
|
1113 |
+
Total Number of model parameters: 96.24 M
|
1114 |
+
Number of trainable parameters: 96.24 M (100.0%)
|
1115 |
+
Size: 384.96 MB
|
1116 |
+
Type: torch.float32
|
1117 |
+
[wieling-3-a100] 2023-12-01 15:58:41,847 (abs_task:1272) INFO: Optimizer:
|
1118 |
+
AdamW (
|
1119 |
+
Parameter Group 0
|
1120 |
+
amsgrad: False
|
1121 |
+
betas: [0.8, 0.99]
|
1122 |
+
capturable: False
|
1123 |
+
differentiable: False
|
1124 |
+
eps: 1e-09
|
1125 |
+
foreach: None
|
1126 |
+
fused: None
|
1127 |
+
initial_lr: 0.0003
|
1128 |
+
lr: 0.0003
|
1129 |
+
maximize: False
|
1130 |
+
weight_decay: 0.0
|
1131 |
+
)
|
1132 |
+
[wieling-3-a100] 2023-12-01 15:58:41,847 (abs_task:1273) INFO: Scheduler: <torch.optim.lr_scheduler.ExponentialLR object at 0x7f9de23eb8b0>
|
1133 |
+
[wieling-3-a100] 2023-12-01 15:58:41,847 (abs_task:1272) INFO: Optimizer2:
|
1134 |
+
AdamW (
|
1135 |
+
Parameter Group 0
|
1136 |
+
amsgrad: False
|
1137 |
+
betas: [0.8, 0.99]
|
1138 |
+
capturable: False
|
1139 |
+
differentiable: False
|
1140 |
+
eps: 1e-09
|
1141 |
+
foreach: None
|
1142 |
+
fused: None
|
1143 |
+
initial_lr: 0.0003
|
1144 |
+
lr: 0.0003
|
1145 |
+
maximize: False
|
1146 |
+
weight_decay: 0.0
|
1147 |
+
)
|
1148 |
+
[wieling-3-a100] 2023-12-01 15:58:41,847 (abs_task:1273) INFO: Scheduler2: <torch.optim.lr_scheduler.ExponentialLR object at 0x7f9de23eb850>
|
1149 |
+
[wieling-3-a100] 2023-12-01 15:58:41,848 (abs_task:1282) INFO: Saving the configuration in exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/config.yaml
|
1150 |
+
[wieling-3-a100] 2023-12-01 15:58:41,866 (abs_task:1293) INFO: Namespace(config='conf/train_vits.yaml', print_config=False, log_level='INFO', drop_last_iter=False, dry_run=False, iterator_type='sequence', valid_iterator_type=None, output_dir='exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11', ngpu=0, seed=67823, num_workers=4, num_att_plot=3, dist_backend='nccl', dist_init_method='env://', dist_world_size=None, dist_rank=None, local_rank=None, dist_master_addr=None, dist_master_port=None, dist_launcher=None, multiprocessing_distributed=False, unused_parameters=True, sharded_ddp=False, cudnn_enabled=True, cudnn_benchmark=False, cudnn_deterministic=False, collect_stats=True, write_collected_feats=False, max_epoch=1000, patience=None, val_scheduler_criterion=('valid', 'loss'), early_stopping_criterion=('valid', 'loss', 'min'), best_model_criterion=[['train', 'total_count', 'max']], keep_nbest_models=10, nbest_averaging_interval=0, grad_clip=-1, grad_clip_type=2.0, grad_noise=False, accum_grad=1, no_forward_run=False, resume=False, train_dtype='float32', use_amp=False, log_interval=50, use_matplotlib=True, use_tensorboard=True, create_graph_in_tensorboard=False, use_wandb=True, wandb_project='GROTTS', wandb_id=None, wandb_entity=None, wandb_name='VITS_lr_3.0e-4', wandb_model_log_interval=-1, detect_anomaly=False, use_lora=False, save_lora_only=True, lora_conf={}, pretrain_path=None, init_param=['downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv'], ignore_init_mismatch=False, freeze_param=[], num_iters_per_epoch=1000, batch_size=40, valid_batch_size=None, batch_bins=10000000, valid_batch_bins=None, train_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.11.scp'], valid_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.11.scp'], batch_type='numel', valid_batch_type=None, fold_length=[], sort_in_batch='descending', shuffle_within_batch=False, sort_batch='descending', multiple_iterator=False, chunk_length=500, chunk_shift_ratio=0.5, num_cache_chunks=1024, chunk_excluded_key_prefixes=[], chunk_default_fs=None, train_data_path_and_name_and_type=[('dump/raw/train_nodev/text', 'text', 'text'), ('dump/raw/train_nodev/wav.scp', 'speech', 'sound'), ('dump/raw/train_nodev/utt2sid', 'sids', 'text_int')], valid_data_path_and_name_and_type=[('dump/raw/train_dev/text', 'text', 'text'), ('dump/raw/train_dev/wav.scp', 'speech', 'sound'), ('dump/raw/train_dev/utt2sid', 'sids', 'text_int')], allow_variable_data_keys=False, max_cache_size=0.0, max_cache_fd=32, allow_multi_rates=False, valid_max_cache_size=None, exclude_weight_decay=False, exclude_weight_decay_conf={}, optim='adamw', optim_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler='exponentiallr', scheduler_conf={'gamma': 0.999875}, optim2='adamw', optim2_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler2='exponentiallr', scheduler2_conf={'gamma': 0.999875}, generator_first=False, token_list=['<blank>', '<unk>', '<space>', 'e', 'n', 'a', 'o', 't', 'i', 'r', 'd', 's', 'k', 'l', 'm', 'u', 'g', 'h', 'w', 'v', '.', 'z', 'b', 'p', ',', 'j', 'c', 'f', '‘', '’', ':', '?', 'ö', "'", '!', '-', ';', 'ò', 'è', 'ì', 'é', 'y', 'ë', 'x', 'q', '<sos/eos>'], odim=None, model_conf={}, use_preprocessor=True, token_type='char', bpemodel=None, non_linguistic_symbols=None, cleaner=None, g2p=None, feats_extract='fbank', feats_extract_conf={'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'fs': 22050, 'fmin': 80, 'fmax': 7600, 'n_mels': 80}, normalize=None, normalize_conf={}, tts='vits', tts_conf={'generator_type': 'vits_generator', 'generator_params': {'hidden_channels': 192, 'spks': 4, 'global_channels': 256, 'segment_size': 32, 'text_encoder_attention_heads': 2, 'text_encoder_ffn_expand': 4, 'text_encoder_blocks': 6, 'text_encoder_positionwise_layer_type': 'conv1d', 'text_encoder_positionwise_conv_kernel_size': 3, 'text_encoder_positional_encoding_layer_type': 'rel_pos', 'text_encoder_self_attention_layer_type': 'rel_selfattn', 'text_encoder_activation_type': 'swish', 'text_encoder_normalize_before': True, 'text_encoder_dropout_rate': 0.1, 'text_encoder_positional_dropout_rate': 0.0, 'text_encoder_attention_dropout_rate': 0.1, 'use_macaron_style_in_text_encoder': True, 'use_conformer_conv_in_text_encoder': False, 'text_encoder_conformer_kernel_size': -1, 'decoder_kernel_size': 7, 'decoder_channels': 512, 'decoder_upsample_scales': [8, 8, 2, 2], 'decoder_upsample_kernel_sizes': [16, 16, 4, 4], 'decoder_resblock_kernel_sizes': [3, 7, 11], 'decoder_resblock_dilations': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'use_weight_norm_in_decoder': True, 'posterior_encoder_kernel_size': 5, 'posterior_encoder_layers': 16, 'posterior_encoder_stacks': 1, 'posterior_encoder_base_dilation': 1, 'posterior_encoder_dropout_rate': 0.0, 'use_weight_norm_in_posterior_encoder': True, 'flow_flows': 4, 'flow_kernel_size': 5, 'flow_base_dilation': 1, 'flow_layers': 4, 'flow_dropout_rate': 0.0, 'use_weight_norm_in_flow': True, 'use_only_mean_in_flow': True, 'stochastic_duration_predictor_kernel_size': 3, 'stochastic_duration_predictor_dropout_rate': 0.5, 'stochastic_duration_predictor_flows': 4, 'stochastic_duration_predictor_dds_conv_layers': 3, 'vocabs': 46, 'aux_channels': 80}, 'discriminator_type': 'hifigan_multi_scale_multi_period_discriminator', 'discriminator_params': {'scales': 1, 'scale_downsample_pooling': 'AvgPool1d', 'scale_downsample_pooling_params': {'kernel_size': 4, 'stride': 2, 'padding': 2}, 'scale_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [15, 41, 5, 3], 'channels': 128, 'max_downsample_channels': 1024, 'max_groups': 16, 'bias': True, 'downsample_scales': [2, 2, 4, 4, 1], 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': False, 'use_spectral_norm': False}, 'follow_official_norm': False, 'periods': [2, 3, 5, 7, 11], 'period_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [5, 3], 'channels': 32, 'downsample_scales': [3, 3, 3, 3, 1], 'max_downsample_channels': 1024, 'bias': True, 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': True, 'use_spectral_norm': False}}, 'generator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'discriminator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'feat_match_loss_params': {'average_by_discriminators': False, 'average_by_layers': False, 'include_final_outputs': True}, 'mel_loss_params': {'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'window': 'hann', 'n_mels': 80, 'fmin': 0, 'fmax': None, 'log_base': None}, 'lambda_adv': 1.0, 'lambda_mel': 45.0, 'lambda_feat_match': 2.0, 'lambda_dur': 1.0, 'lambda_kl': 1.0, 'sampling_rate': 22050, 'cache_generator_outputs': True}, pitch_extract=None, pitch_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'f0max': 400, 'f0min': 80}, pitch_normalize=None, pitch_normalize_conf={}, energy_extract=None, energy_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None}, energy_normalize=None, energy_normalize_conf={}, required=['output_dir', 'token_list'], version='202310', distributed=False)
|
1151 |
+
# Accounting: time=18 threads=1
|
1152 |
+
# Ended (code 0) at Fri Dec 1 15:58:52 UTC 2023, elapsed time 18 seconds
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/config.yaml
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config: conf/train_vits.yaml
|
2 |
+
print_config: false
|
3 |
+
log_level: INFO
|
4 |
+
drop_last_iter: false
|
5 |
+
dry_run: false
|
6 |
+
iterator_type: sequence
|
7 |
+
valid_iterator_type: null
|
8 |
+
output_dir: exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11
|
9 |
+
ngpu: 0
|
10 |
+
seed: 67823
|
11 |
+
num_workers: 4
|
12 |
+
num_att_plot: 3
|
13 |
+
dist_backend: nccl
|
14 |
+
dist_init_method: env://
|
15 |
+
dist_world_size: null
|
16 |
+
dist_rank: null
|
17 |
+
local_rank: null
|
18 |
+
dist_master_addr: null
|
19 |
+
dist_master_port: null
|
20 |
+
dist_launcher: null
|
21 |
+
multiprocessing_distributed: false
|
22 |
+
unused_parameters: true
|
23 |
+
sharded_ddp: false
|
24 |
+
cudnn_enabled: true
|
25 |
+
cudnn_benchmark: false
|
26 |
+
cudnn_deterministic: false
|
27 |
+
collect_stats: true
|
28 |
+
write_collected_feats: false
|
29 |
+
max_epoch: 1000
|
30 |
+
patience: null
|
31 |
+
val_scheduler_criterion:
|
32 |
+
- valid
|
33 |
+
- loss
|
34 |
+
early_stopping_criterion:
|
35 |
+
- valid
|
36 |
+
- loss
|
37 |
+
- min
|
38 |
+
best_model_criterion:
|
39 |
+
- - train
|
40 |
+
- total_count
|
41 |
+
- max
|
42 |
+
keep_nbest_models: 10
|
43 |
+
nbest_averaging_interval: 0
|
44 |
+
grad_clip: -1
|
45 |
+
grad_clip_type: 2.0
|
46 |
+
grad_noise: false
|
47 |
+
accum_grad: 1
|
48 |
+
no_forward_run: false
|
49 |
+
resume: false
|
50 |
+
train_dtype: float32
|
51 |
+
use_amp: false
|
52 |
+
log_interval: 50
|
53 |
+
use_matplotlib: true
|
54 |
+
use_tensorboard: true
|
55 |
+
create_graph_in_tensorboard: false
|
56 |
+
use_wandb: true
|
57 |
+
wandb_project: GROTTS
|
58 |
+
wandb_id: null
|
59 |
+
wandb_entity: null
|
60 |
+
wandb_name: VITS_lr_3.0e-4
|
61 |
+
wandb_model_log_interval: -1
|
62 |
+
detect_anomaly: false
|
63 |
+
use_lora: false
|
64 |
+
save_lora_only: true
|
65 |
+
lora_conf: {}
|
66 |
+
pretrain_path: null
|
67 |
+
init_param:
|
68 |
+
- downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv
|
69 |
+
ignore_init_mismatch: false
|
70 |
+
freeze_param: []
|
71 |
+
num_iters_per_epoch: 1000
|
72 |
+
batch_size: 40
|
73 |
+
valid_batch_size: null
|
74 |
+
batch_bins: 10000000
|
75 |
+
valid_batch_bins: null
|
76 |
+
train_shape_file:
|
77 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.11.scp
|
78 |
+
valid_shape_file:
|
79 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.11.scp
|
80 |
+
batch_type: numel
|
81 |
+
valid_batch_type: null
|
82 |
+
fold_length: []
|
83 |
+
sort_in_batch: descending
|
84 |
+
shuffle_within_batch: false
|
85 |
+
sort_batch: descending
|
86 |
+
multiple_iterator: false
|
87 |
+
chunk_length: 500
|
88 |
+
chunk_shift_ratio: 0.5
|
89 |
+
num_cache_chunks: 1024
|
90 |
+
chunk_excluded_key_prefixes: []
|
91 |
+
chunk_default_fs: null
|
92 |
+
train_data_path_and_name_and_type:
|
93 |
+
- - dump/raw/train_nodev/text
|
94 |
+
- text
|
95 |
+
- text
|
96 |
+
- - dump/raw/train_nodev/wav.scp
|
97 |
+
- speech
|
98 |
+
- sound
|
99 |
+
- - dump/raw/train_nodev/utt2sid
|
100 |
+
- sids
|
101 |
+
- text_int
|
102 |
+
valid_data_path_and_name_and_type:
|
103 |
+
- - dump/raw/train_dev/text
|
104 |
+
- text
|
105 |
+
- text
|
106 |
+
- - dump/raw/train_dev/wav.scp
|
107 |
+
- speech
|
108 |
+
- sound
|
109 |
+
- - dump/raw/train_dev/utt2sid
|
110 |
+
- sids
|
111 |
+
- text_int
|
112 |
+
allow_variable_data_keys: false
|
113 |
+
max_cache_size: 0.0
|
114 |
+
max_cache_fd: 32
|
115 |
+
allow_multi_rates: false
|
116 |
+
valid_max_cache_size: null
|
117 |
+
exclude_weight_decay: false
|
118 |
+
exclude_weight_decay_conf: {}
|
119 |
+
optim: adamw
|
120 |
+
optim_conf:
|
121 |
+
lr: 0.0003
|
122 |
+
betas:
|
123 |
+
- 0.8
|
124 |
+
- 0.99
|
125 |
+
eps: 1.0e-09
|
126 |
+
weight_decay: 0.0
|
127 |
+
scheduler: exponentiallr
|
128 |
+
scheduler_conf:
|
129 |
+
gamma: 0.999875
|
130 |
+
optim2: adamw
|
131 |
+
optim2_conf:
|
132 |
+
lr: 0.0003
|
133 |
+
betas:
|
134 |
+
- 0.8
|
135 |
+
- 0.99
|
136 |
+
eps: 1.0e-09
|
137 |
+
weight_decay: 0.0
|
138 |
+
scheduler2: exponentiallr
|
139 |
+
scheduler2_conf:
|
140 |
+
gamma: 0.999875
|
141 |
+
generator_first: false
|
142 |
+
token_list:
|
143 |
+
- <blank>
|
144 |
+
- <unk>
|
145 |
+
- <space>
|
146 |
+
- e
|
147 |
+
- n
|
148 |
+
- a
|
149 |
+
- o
|
150 |
+
- t
|
151 |
+
- i
|
152 |
+
- r
|
153 |
+
- d
|
154 |
+
- s
|
155 |
+
- k
|
156 |
+
- l
|
157 |
+
- m
|
158 |
+
- u
|
159 |
+
- g
|
160 |
+
- h
|
161 |
+
- w
|
162 |
+
- v
|
163 |
+
- .
|
164 |
+
- z
|
165 |
+
- b
|
166 |
+
- p
|
167 |
+
- ','
|
168 |
+
- j
|
169 |
+
- c
|
170 |
+
- f
|
171 |
+
- ‘
|
172 |
+
- ’
|
173 |
+
- ':'
|
174 |
+
- '?'
|
175 |
+
- ö
|
176 |
+
- ''''
|
177 |
+
- '!'
|
178 |
+
- '-'
|
179 |
+
- ;
|
180 |
+
- ò
|
181 |
+
- è
|
182 |
+
- ì
|
183 |
+
- é
|
184 |
+
- y
|
185 |
+
- ë
|
186 |
+
- x
|
187 |
+
- q
|
188 |
+
- <sos/eos>
|
189 |
+
odim: null
|
190 |
+
model_conf: {}
|
191 |
+
use_preprocessor: true
|
192 |
+
token_type: char
|
193 |
+
bpemodel: null
|
194 |
+
non_linguistic_symbols: null
|
195 |
+
cleaner: null
|
196 |
+
g2p: null
|
197 |
+
feats_extract: fbank
|
198 |
+
feats_extract_conf:
|
199 |
+
n_fft: 1024
|
200 |
+
hop_length: 256
|
201 |
+
win_length: null
|
202 |
+
fs: 22050
|
203 |
+
fmin: 80
|
204 |
+
fmax: 7600
|
205 |
+
n_mels: 80
|
206 |
+
normalize: null
|
207 |
+
normalize_conf: {}
|
208 |
+
tts: vits
|
209 |
+
tts_conf:
|
210 |
+
generator_type: vits_generator
|
211 |
+
generator_params:
|
212 |
+
hidden_channels: 192
|
213 |
+
spks: 4
|
214 |
+
global_channels: 256
|
215 |
+
segment_size: 32
|
216 |
+
text_encoder_attention_heads: 2
|
217 |
+
text_encoder_ffn_expand: 4
|
218 |
+
text_encoder_blocks: 6
|
219 |
+
text_encoder_positionwise_layer_type: conv1d
|
220 |
+
text_encoder_positionwise_conv_kernel_size: 3
|
221 |
+
text_encoder_positional_encoding_layer_type: rel_pos
|
222 |
+
text_encoder_self_attention_layer_type: rel_selfattn
|
223 |
+
text_encoder_activation_type: swish
|
224 |
+
text_encoder_normalize_before: true
|
225 |
+
text_encoder_dropout_rate: 0.1
|
226 |
+
text_encoder_positional_dropout_rate: 0.0
|
227 |
+
text_encoder_attention_dropout_rate: 0.1
|
228 |
+
use_macaron_style_in_text_encoder: true
|
229 |
+
use_conformer_conv_in_text_encoder: false
|
230 |
+
text_encoder_conformer_kernel_size: -1
|
231 |
+
decoder_kernel_size: 7
|
232 |
+
decoder_channels: 512
|
233 |
+
decoder_upsample_scales:
|
234 |
+
- 8
|
235 |
+
- 8
|
236 |
+
- 2
|
237 |
+
- 2
|
238 |
+
decoder_upsample_kernel_sizes:
|
239 |
+
- 16
|
240 |
+
- 16
|
241 |
+
- 4
|
242 |
+
- 4
|
243 |
+
decoder_resblock_kernel_sizes:
|
244 |
+
- 3
|
245 |
+
- 7
|
246 |
+
- 11
|
247 |
+
decoder_resblock_dilations:
|
248 |
+
- - 1
|
249 |
+
- 3
|
250 |
+
- 5
|
251 |
+
- - 1
|
252 |
+
- 3
|
253 |
+
- 5
|
254 |
+
- - 1
|
255 |
+
- 3
|
256 |
+
- 5
|
257 |
+
use_weight_norm_in_decoder: true
|
258 |
+
posterior_encoder_kernel_size: 5
|
259 |
+
posterior_encoder_layers: 16
|
260 |
+
posterior_encoder_stacks: 1
|
261 |
+
posterior_encoder_base_dilation: 1
|
262 |
+
posterior_encoder_dropout_rate: 0.0
|
263 |
+
use_weight_norm_in_posterior_encoder: true
|
264 |
+
flow_flows: 4
|
265 |
+
flow_kernel_size: 5
|
266 |
+
flow_base_dilation: 1
|
267 |
+
flow_layers: 4
|
268 |
+
flow_dropout_rate: 0.0
|
269 |
+
use_weight_norm_in_flow: true
|
270 |
+
use_only_mean_in_flow: true
|
271 |
+
stochastic_duration_predictor_kernel_size: 3
|
272 |
+
stochastic_duration_predictor_dropout_rate: 0.5
|
273 |
+
stochastic_duration_predictor_flows: 4
|
274 |
+
stochastic_duration_predictor_dds_conv_layers: 3
|
275 |
+
vocabs: 46
|
276 |
+
aux_channels: 80
|
277 |
+
discriminator_type: hifigan_multi_scale_multi_period_discriminator
|
278 |
+
discriminator_params:
|
279 |
+
scales: 1
|
280 |
+
scale_downsample_pooling: AvgPool1d
|
281 |
+
scale_downsample_pooling_params:
|
282 |
+
kernel_size: 4
|
283 |
+
stride: 2
|
284 |
+
padding: 2
|
285 |
+
scale_discriminator_params:
|
286 |
+
in_channels: 1
|
287 |
+
out_channels: 1
|
288 |
+
kernel_sizes:
|
289 |
+
- 15
|
290 |
+
- 41
|
291 |
+
- 5
|
292 |
+
- 3
|
293 |
+
channels: 128
|
294 |
+
max_downsample_channels: 1024
|
295 |
+
max_groups: 16
|
296 |
+
bias: true
|
297 |
+
downsample_scales:
|
298 |
+
- 2
|
299 |
+
- 2
|
300 |
+
- 4
|
301 |
+
- 4
|
302 |
+
- 1
|
303 |
+
nonlinear_activation: LeakyReLU
|
304 |
+
nonlinear_activation_params:
|
305 |
+
negative_slope: 0.1
|
306 |
+
use_weight_norm: false
|
307 |
+
use_spectral_norm: false
|
308 |
+
follow_official_norm: false
|
309 |
+
periods:
|
310 |
+
- 2
|
311 |
+
- 3
|
312 |
+
- 5
|
313 |
+
- 7
|
314 |
+
- 11
|
315 |
+
period_discriminator_params:
|
316 |
+
in_channels: 1
|
317 |
+
out_channels: 1
|
318 |
+
kernel_sizes:
|
319 |
+
- 5
|
320 |
+
- 3
|
321 |
+
channels: 32
|
322 |
+
downsample_scales:
|
323 |
+
- 3
|
324 |
+
- 3
|
325 |
+
- 3
|
326 |
+
- 3
|
327 |
+
- 1
|
328 |
+
max_downsample_channels: 1024
|
329 |
+
bias: true
|
330 |
+
nonlinear_activation: LeakyReLU
|
331 |
+
nonlinear_activation_params:
|
332 |
+
negative_slope: 0.1
|
333 |
+
use_weight_norm: true
|
334 |
+
use_spectral_norm: false
|
335 |
+
generator_adv_loss_params:
|
336 |
+
average_by_discriminators: false
|
337 |
+
loss_type: mse
|
338 |
+
discriminator_adv_loss_params:
|
339 |
+
average_by_discriminators: false
|
340 |
+
loss_type: mse
|
341 |
+
feat_match_loss_params:
|
342 |
+
average_by_discriminators: false
|
343 |
+
average_by_layers: false
|
344 |
+
include_final_outputs: true
|
345 |
+
mel_loss_params:
|
346 |
+
fs: 22050
|
347 |
+
n_fft: 1024
|
348 |
+
hop_length: 256
|
349 |
+
win_length: null
|
350 |
+
window: hann
|
351 |
+
n_mels: 80
|
352 |
+
fmin: 0
|
353 |
+
fmax: null
|
354 |
+
log_base: null
|
355 |
+
lambda_adv: 1.0
|
356 |
+
lambda_mel: 45.0
|
357 |
+
lambda_feat_match: 2.0
|
358 |
+
lambda_dur: 1.0
|
359 |
+
lambda_kl: 1.0
|
360 |
+
sampling_rate: 22050
|
361 |
+
cache_generator_outputs: true
|
362 |
+
pitch_extract: null
|
363 |
+
pitch_extract_conf:
|
364 |
+
fs: 22050
|
365 |
+
n_fft: 1024
|
366 |
+
hop_length: 256
|
367 |
+
f0max: 400
|
368 |
+
f0min: 80
|
369 |
+
pitch_normalize: null
|
370 |
+
pitch_normalize_conf: {}
|
371 |
+
energy_extract: null
|
372 |
+
energy_extract_conf:
|
373 |
+
fs: 22050
|
374 |
+
n_fft: 1024
|
375 |
+
hop_length: 256
|
376 |
+
win_length: null
|
377 |
+
energy_normalize: null
|
378 |
+
energy_normalize_conf: {}
|
379 |
+
required:
|
380 |
+
- output_dir
|
381 |
+
- token_list
|
382 |
+
version: '202310'
|
383 |
+
distributed: false
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/batch_keys
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
text
|
2 |
+
speech
|
3 |
+
sids
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/feats_lengths_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8fe5b424d637b31235fd2b5fab1dd19d7aae7171c7ba6a8652d681775beb1a09
|
3 |
+
size 778
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/feats_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b6b29e56a828f743a9e1137c738e65a6c821a5e18d1c4c8c801663798432712
|
3 |
+
size 1402
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/sids_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-2553-MoanMorn 1
|
2 |
+
Hoogelaandsters-2557-MoanMorn 1
|
3 |
+
Hoogelaandsters-2562-MoanMorn 1
|
4 |
+
Hoogelaandsters-2567-MoanMorn 1
|
5 |
+
Hoogelaandsters-2571-MoanMorn 1
|
6 |
+
Hoogelaandsters-2575-MoanMorn 1
|
7 |
+
Hoogelaandsters-2579-MoanMorn 1
|
8 |
+
Hoogelaandsters-2583-MoanMorn 1
|
9 |
+
Hoogelaandsters-2587-MoanMorn 1
|
10 |
+
Hoogelaandsters-2592-MoanMorn 1
|
11 |
+
Hoogelaandsters-2596-MoanMorn 1
|
12 |
+
Hoogelaandsters-2600-MoanMorn 1
|
13 |
+
Hoogelaandsters-2604-MoanMorn 1
|
14 |
+
Hoogelaandsters-2608-MoanMorn 1
|
15 |
+
Hoogelaandsters-2612-MoanMorn 1
|
16 |
+
Hoogelaandsters-2616-MoanMorn 1
|
17 |
+
Hoogelaandsters-2620-MoanMorn 1
|
18 |
+
Hoogelaandsters-2624-MoanMorn 1
|
19 |
+
Hoogelaandsters-2628-MoanMorn 1
|
20 |
+
Hoogelaandsters-2633-MoanMorn 1
|
21 |
+
Hoogelaandsters-2637-MoanMorn 1
|
22 |
+
Hoogelaandsters-2641-MoanMorn 1
|
23 |
+
Hoogelaandsters-2645-MoanMorn 1
|
24 |
+
Hoogelaandsters-2649-MoanMorn 1
|
25 |
+
Hoogelaandsters-2653-MoanMorn 1
|
26 |
+
Hoogelaandsters-2657-MoanMorn 1
|
27 |
+
Hoogelaandsters-2661-MoanMorn 1
|
28 |
+
Hoogelaandsters-2665-MoanMorn 1
|
29 |
+
Hoogelaandsters-2669-MoanMorn 1
|
30 |
+
Hoogelaandsters-2673-MoanMorn 1
|
31 |
+
Hoogelaandsters-2678-MoanMorn 1
|
32 |
+
Hoogelaandsters-2682-MoanMorn 1
|
33 |
+
Hoogelaandsters-2686-MoanMorn 1
|
34 |
+
Hoogelaandsters-2690-MoanMorn 1
|
35 |
+
Hoogelaandsters-2694-MoanMorn 1
|
36 |
+
Hoogelaandsters-2699-MoanMorn 1
|
37 |
+
Hoogelaandsters-2703-MoanMorn 1
|
38 |
+
Hoogelaandsters-2707-MoanMorn 1
|
39 |
+
Hoogelaandsters-2711-MoanMorn 1
|
40 |
+
Hoogelaandsters-2715-MoanMorn 1
|
41 |
+
Hoogelaandsters-2554-MoanMorn 1
|
42 |
+
Hoogelaandsters-2558-MoanMorn 1
|
43 |
+
Hoogelaandsters-2564-MoanMorn 1
|
44 |
+
Hoogelaandsters-2568-MoanMorn 1
|
45 |
+
Hoogelaandsters-2572-MoanMorn 1
|
46 |
+
Hoogelaandsters-2576-MoanMorn 1
|
47 |
+
Hoogelaandsters-2580-MoanMorn 1
|
48 |
+
Hoogelaandsters-2584-MoanMorn 1
|
49 |
+
Hoogelaandsters-2588-MoanMorn 1
|
50 |
+
Hoogelaandsters-2593-MoanMorn 1
|
51 |
+
Hoogelaandsters-2597-MoanMorn 1
|
52 |
+
Hoogelaandsters-2601-MoanMorn 1
|
53 |
+
Hoogelaandsters-2605-MoanMorn 1
|
54 |
+
Hoogelaandsters-2609-MoanMorn 1
|
55 |
+
Hoogelaandsters-2613-MoanMorn 1
|
56 |
+
Hoogelaandsters-2617-MoanMorn 1
|
57 |
+
Hoogelaandsters-2621-MoanMorn 1
|
58 |
+
Hoogelaandsters-2625-MoanMorn 1
|
59 |
+
Hoogelaandsters-2629-MoanMorn 1
|
60 |
+
Hoogelaandsters-2634-MoanMorn 1
|
61 |
+
Hoogelaandsters-2638-MoanMorn 1
|
62 |
+
Hoogelaandsters-2642-MoanMorn 1
|
63 |
+
Hoogelaandsters-2646-MoanMorn 1
|
64 |
+
Hoogelaandsters-2650-MoanMorn 1
|
65 |
+
Hoogelaandsters-2654-MoanMorn 1
|
66 |
+
Hoogelaandsters-2658-MoanMorn 1
|
67 |
+
Hoogelaandsters-2662-MoanMorn 1
|
68 |
+
Hoogelaandsters-2666-MoanMorn 1
|
69 |
+
Hoogelaandsters-2670-MoanMorn 1
|
70 |
+
Hoogelaandsters-2674-MoanMorn 1
|
71 |
+
Hoogelaandsters-2679-MoanMorn 1
|
72 |
+
Hoogelaandsters-2683-MoanMorn 1
|
73 |
+
Hoogelaandsters-2687-MoanMorn 1
|
74 |
+
Hoogelaandsters-2691-MoanMorn 1
|
75 |
+
Hoogelaandsters-2695-MoanMorn 1
|
76 |
+
Hoogelaandsters-2700-MoanMorn 1
|
77 |
+
Hoogelaandsters-2704-MoanMorn 1
|
78 |
+
Hoogelaandsters-2708-MoanMorn 1
|
79 |
+
Hoogelaandsters-2712-MoanMorn 1
|
80 |
+
Hoogelaandsters-2716-MoanMorn 1
|
81 |
+
Hoogelaandsters-2555-MoanMorn 1
|
82 |
+
Hoogelaandsters-2559-MoanMorn 1
|
83 |
+
Hoogelaandsters-2565-MoanMorn 1
|
84 |
+
Hoogelaandsters-2569-MoanMorn 1
|
85 |
+
Hoogelaandsters-2573-MoanMorn 1
|
86 |
+
Hoogelaandsters-2577-MoanMorn 1
|
87 |
+
Hoogelaandsters-2581-MoanMorn 1
|
88 |
+
Hoogelaandsters-2585-MoanMorn 1
|
89 |
+
Hoogelaandsters-2589-MoanMorn 1
|
90 |
+
Hoogelaandsters-2594-MoanMorn 1
|
91 |
+
Hoogelaandsters-2598-MoanMorn 1
|
92 |
+
Hoogelaandsters-2602-MoanMorn 1
|
93 |
+
Hoogelaandsters-2606-MoanMorn 1
|
94 |
+
Hoogelaandsters-2610-MoanMorn 1
|
95 |
+
Hoogelaandsters-2614-MoanMorn 1
|
96 |
+
Hoogelaandsters-2618-MoanMorn 1
|
97 |
+
Hoogelaandsters-2622-MoanMorn 1
|
98 |
+
Hoogelaandsters-2626-MoanMorn 1
|
99 |
+
Hoogelaandsters-2631-MoanMorn 1
|
100 |
+
Hoogelaandsters-2635-MoanMorn 1
|
101 |
+
Hoogelaandsters-2639-MoanMorn 1
|
102 |
+
Hoogelaandsters-2643-MoanMorn 1
|
103 |
+
Hoogelaandsters-2647-MoanMorn 1
|
104 |
+
Hoogelaandsters-2651-MoanMorn 1
|
105 |
+
Hoogelaandsters-2655-MoanMorn 1
|
106 |
+
Hoogelaandsters-2659-MoanMorn 1
|
107 |
+
Hoogelaandsters-2663-MoanMorn 1
|
108 |
+
Hoogelaandsters-2667-MoanMorn 1
|
109 |
+
Hoogelaandsters-2671-MoanMorn 1
|
110 |
+
Hoogelaandsters-2675-MoanMorn 1
|
111 |
+
Hoogelaandsters-2680-MoanMorn 1
|
112 |
+
Hoogelaandsters-2684-MoanMorn 1
|
113 |
+
Hoogelaandsters-2688-MoanMorn 1
|
114 |
+
Hoogelaandsters-2692-MoanMorn 1
|
115 |
+
Hoogelaandsters-2696-MoanMorn 1
|
116 |
+
Hoogelaandsters-2701-MoanMorn 1
|
117 |
+
Hoogelaandsters-2705-MoanMorn 1
|
118 |
+
Hoogelaandsters-2709-MoanMorn 1
|
119 |
+
Hoogelaandsters-2713-MoanMorn 1
|
120 |
+
Hoogelaandsters-2717-MoanMorn 1
|
121 |
+
Hoogelaandsters-2556-MoanMorn 1
|
122 |
+
Hoogelaandsters-2560-MoanMorn 1
|
123 |
+
Hoogelaandsters-2566-MoanMorn 1
|
124 |
+
Hoogelaandsters-2570-MoanMorn 1
|
125 |
+
Hoogelaandsters-2574-MoanMorn 1
|
126 |
+
Hoogelaandsters-2578-MoanMorn 1
|
127 |
+
Hoogelaandsters-2582-MoanMorn 1
|
128 |
+
Hoogelaandsters-2586-MoanMorn 1
|
129 |
+
Hoogelaandsters-2590-MoanMorn 1
|
130 |
+
Hoogelaandsters-2595-MoanMorn 1
|
131 |
+
Hoogelaandsters-2599-MoanMorn 1
|
132 |
+
Hoogelaandsters-2603-MoanMorn 1
|
133 |
+
Hoogelaandsters-2607-MoanMorn 1
|
134 |
+
Hoogelaandsters-2611-MoanMorn 1
|
135 |
+
Hoogelaandsters-2615-MoanMorn 1
|
136 |
+
Hoogelaandsters-2619-MoanMorn 1
|
137 |
+
Hoogelaandsters-2623-MoanMorn 1
|
138 |
+
Hoogelaandsters-2627-MoanMorn 1
|
139 |
+
Hoogelaandsters-2632-MoanMorn 1
|
140 |
+
Hoogelaandsters-2636-MoanMorn 1
|
141 |
+
Hoogelaandsters-2640-MoanMorn 1
|
142 |
+
Hoogelaandsters-2644-MoanMorn 1
|
143 |
+
Hoogelaandsters-2648-MoanMorn 1
|
144 |
+
Hoogelaandsters-2652-MoanMorn 1
|
145 |
+
Hoogelaandsters-2656-MoanMorn 1
|
146 |
+
Hoogelaandsters-2660-MoanMorn 1
|
147 |
+
Hoogelaandsters-2664-MoanMorn 1
|
148 |
+
Hoogelaandsters-2668-MoanMorn 1
|
149 |
+
Hoogelaandsters-2672-MoanMorn 1
|
150 |
+
Hoogelaandsters-2677-MoanMorn 1
|
151 |
+
Hoogelaandsters-2681-MoanMorn 1
|
152 |
+
Hoogelaandsters-2685-MoanMorn 1
|
153 |
+
Hoogelaandsters-2689-MoanMorn 1
|
154 |
+
Hoogelaandsters-2693-MoanMorn 1
|
155 |
+
Hoogelaandsters-2698-MoanMorn 1
|
156 |
+
Hoogelaandsters-2702-MoanMorn 1
|
157 |
+
Hoogelaandsters-2706-MoanMorn 1
|
158 |
+
Hoogelaandsters-2710-MoanMorn 1
|
159 |
+
Hoogelaandsters-2714-MoanMorn 1
|
160 |
+
Hoogelaandsters-2718-MoanMorn 1
|
161 |
+
Hoogelaandsters-2719-MoanMorn 1
|
162 |
+
Hoogelaandsters-2723-MoanMorn 1
|
163 |
+
Hoogelaandsters-2727-MoanMorn 1
|
164 |
+
Hoogelaandsters-2731-MoanMorn 1
|
165 |
+
Hoogelaandsters-2735-MoanMorn 1
|
166 |
+
Hoogelaandsters-2740-MoanMorn 1
|
167 |
+
Hoogelaandsters-2744-MoanMorn 1
|
168 |
+
Hoogelaandsters-2748-MoanMorn 1
|
169 |
+
Hoogelaandsters-2752-MoanMorn 1
|
170 |
+
Hoogelaandsters-2756-MoanMorn 1
|
171 |
+
Hoogelaandsters-2760-MoanMorn 1
|
172 |
+
Hoogelaandsters-2765-MoanMorn 1
|
173 |
+
Hoogelaandsters-2769-MoanMorn 1
|
174 |
+
Hoogelaandsters-2773-MoanMorn 1
|
175 |
+
Hoogelaandsters-2777-MoanMorn 1
|
176 |
+
Hoogelaandsters-2781-MoanMorn 1
|
177 |
+
Hoogelaandsters-2785-MoanMorn 1
|
178 |
+
Hoogelaandsters-2789-MoanMorn 1
|
179 |
+
Hoogelaandsters-2793-MoanMorn 1
|
180 |
+
Hoogelaandsters-2797-MoanMorn 1
|
181 |
+
Hoogelaandsters-2802-MoanMorn 1
|
182 |
+
Hoogelaandsters-2810-MoanMorn 1
|
183 |
+
Hoogelaandsters-2814-MoanMorn 1
|
184 |
+
Hoogelaandsters-2720-MoanMorn 1
|
185 |
+
Hoogelaandsters-2724-MoanMorn 1
|
186 |
+
Hoogelaandsters-2728-MoanMorn 1
|
187 |
+
Hoogelaandsters-2732-MoanMorn 1
|
188 |
+
Hoogelaandsters-2736-MoanMorn 1
|
189 |
+
Hoogelaandsters-2741-MoanMorn 1
|
190 |
+
Hoogelaandsters-2745-MoanMorn 1
|
191 |
+
Hoogelaandsters-2749-MoanMorn 1
|
192 |
+
Hoogelaandsters-2753-MoanMorn 1
|
193 |
+
Hoogelaandsters-2757-MoanMorn 1
|
194 |
+
Hoogelaandsters-2761-MoanMorn 1
|
195 |
+
Hoogelaandsters-2766-MoanMorn 1
|
196 |
+
Hoogelaandsters-2770-MoanMorn 1
|
197 |
+
Hoogelaandsters-2774-MoanMorn 1
|
198 |
+
Hoogelaandsters-2778-MoanMorn 1
|
199 |
+
Hoogelaandsters-2782-MoanMorn 1
|
200 |
+
Hoogelaandsters-2786-MoanMorn 1
|
201 |
+
Hoogelaandsters-2790-MoanMorn 1
|
202 |
+
Hoogelaandsters-2794-MoanMorn 1
|
203 |
+
Hoogelaandsters-2799-MoanMorn 1
|
204 |
+
Hoogelaandsters-2807-MoanMorn 1
|
205 |
+
Hoogelaandsters-2811-MoanMorn 1
|
206 |
+
Hoogelaandsters-2721-MoanMorn 1
|
207 |
+
Hoogelaandsters-2725-MoanMorn 1
|
208 |
+
Hoogelaandsters-2729-MoanMorn 1
|
209 |
+
Hoogelaandsters-2733-MoanMorn 1
|
210 |
+
Hoogelaandsters-2737-MoanMorn 1
|
211 |
+
Hoogelaandsters-2742-MoanMorn 1
|
212 |
+
Hoogelaandsters-2746-MoanMorn 1
|
213 |
+
Hoogelaandsters-2750-MoanMorn 1
|
214 |
+
Hoogelaandsters-2754-MoanMorn 1
|
215 |
+
Hoogelaandsters-2758-MoanMorn 1
|
216 |
+
Hoogelaandsters-2762-MoanMorn 1
|
217 |
+
Hoogelaandsters-2767-MoanMorn 1
|
218 |
+
Hoogelaandsters-2771-MoanMorn 1
|
219 |
+
Hoogelaandsters-2775-MoanMorn 1
|
220 |
+
Hoogelaandsters-2779-MoanMorn 1
|
221 |
+
Hoogelaandsters-2783-MoanMorn 1
|
222 |
+
Hoogelaandsters-2787-MoanMorn 1
|
223 |
+
Hoogelaandsters-2791-MoanMorn 1
|
224 |
+
Hoogelaandsters-2795-MoanMorn 1
|
225 |
+
Hoogelaandsters-2800-MoanMorn 1
|
226 |
+
Hoogelaandsters-2808-MoanMorn 1
|
227 |
+
Hoogelaandsters-2812-MoanMorn 1
|
228 |
+
Hoogelaandsters-2722-MoanMorn 1
|
229 |
+
Hoogelaandsters-2726-MoanMorn 1
|
230 |
+
Hoogelaandsters-2730-MoanMorn 1
|
231 |
+
Hoogelaandsters-2734-MoanMorn 1
|
232 |
+
Hoogelaandsters-2738-MoanMorn 1
|
233 |
+
Hoogelaandsters-2743-MoanMorn 1
|
234 |
+
Hoogelaandsters-2747-MoanMorn 1
|
235 |
+
Hoogelaandsters-2751-MoanMorn 1
|
236 |
+
Hoogelaandsters-2755-MoanMorn 1
|
237 |
+
Hoogelaandsters-2759-MoanMorn 1
|
238 |
+
Hoogelaandsters-2763-MoanMorn 1
|
239 |
+
Hoogelaandsters-2768-MoanMorn 1
|
240 |
+
Hoogelaandsters-2772-MoanMorn 1
|
241 |
+
Hoogelaandsters-2776-MoanMorn 1
|
242 |
+
Hoogelaandsters-2780-MoanMorn 1
|
243 |
+
Hoogelaandsters-2784-MoanMorn 1
|
244 |
+
Hoogelaandsters-2788-MoanMorn 1
|
245 |
+
Hoogelaandsters-2792-MoanMorn 1
|
246 |
+
Hoogelaandsters-2796-MoanMorn 1
|
247 |
+
Hoogelaandsters-2801-MoanMorn 1
|
248 |
+
Hoogelaandsters-2809-MoanMorn 1
|
249 |
+
Hoogelaandsters-2813-MoanMorn 1
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/speech_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-2553-MoanMorn 102968
|
2 |
+
Hoogelaandsters-2557-MoanMorn 132784
|
3 |
+
Hoogelaandsters-2562-MoanMorn 45382
|
4 |
+
Hoogelaandsters-2567-MoanMorn 179756
|
5 |
+
Hoogelaandsters-2571-MoanMorn 154171
|
6 |
+
Hoogelaandsters-2575-MoanMorn 226928
|
7 |
+
Hoogelaandsters-2579-MoanMorn 396289
|
8 |
+
Hoogelaandsters-2583-MoanMorn 57484
|
9 |
+
Hoogelaandsters-2587-MoanMorn 63091
|
10 |
+
Hoogelaandsters-2592-MoanMorn 281058
|
11 |
+
Hoogelaandsters-2596-MoanMorn 399175
|
12 |
+
Hoogelaandsters-2600-MoanMorn 339081
|
13 |
+
Hoogelaandsters-2604-MoanMorn 98893
|
14 |
+
Hoogelaandsters-2608-MoanMorn 65152
|
15 |
+
Hoogelaandsters-2612-MoanMorn 57739
|
16 |
+
Hoogelaandsters-2616-MoanMorn 143051
|
17 |
+
Hoogelaandsters-2620-MoanMorn 151777
|
18 |
+
Hoogelaandsters-2624-MoanMorn 186646
|
19 |
+
Hoogelaandsters-2628-MoanMorn 159049
|
20 |
+
Hoogelaandsters-2633-MoanMorn 205382
|
21 |
+
Hoogelaandsters-2637-MoanMorn 95216
|
22 |
+
Hoogelaandsters-2641-MoanMorn 194325
|
23 |
+
Hoogelaandsters-2645-MoanMorn 105721
|
24 |
+
Hoogelaandsters-2649-MoanMorn 329583
|
25 |
+
Hoogelaandsters-2653-MoanMorn 83826
|
26 |
+
Hoogelaandsters-2657-MoanMorn 64112
|
27 |
+
Hoogelaandsters-2661-MoanMorn 111091
|
28 |
+
Hoogelaandsters-2665-MoanMorn 40805
|
29 |
+
Hoogelaandsters-2669-MoanMorn 179279
|
30 |
+
Hoogelaandsters-2673-MoanMorn 102519
|
31 |
+
Hoogelaandsters-2678-MoanMorn 104510
|
32 |
+
Hoogelaandsters-2682-MoanMorn 36691
|
33 |
+
Hoogelaandsters-2686-MoanMorn 381632
|
34 |
+
Hoogelaandsters-2690-MoanMorn 121206
|
35 |
+
Hoogelaandsters-2694-MoanMorn 112389
|
36 |
+
Hoogelaandsters-2699-MoanMorn 65936
|
37 |
+
Hoogelaandsters-2703-MoanMorn 121981
|
38 |
+
Hoogelaandsters-2707-MoanMorn 141227
|
39 |
+
Hoogelaandsters-2711-MoanMorn 165911
|
40 |
+
Hoogelaandsters-2715-MoanMorn 344118
|
41 |
+
Hoogelaandsters-2554-MoanMorn 110765
|
42 |
+
Hoogelaandsters-2558-MoanMorn 82847
|
43 |
+
Hoogelaandsters-2564-MoanMorn 59270
|
44 |
+
Hoogelaandsters-2568-MoanMorn 189950
|
45 |
+
Hoogelaandsters-2572-MoanMorn 147342
|
46 |
+
Hoogelaandsters-2576-MoanMorn 220274
|
47 |
+
Hoogelaandsters-2580-MoanMorn 354925
|
48 |
+
Hoogelaandsters-2584-MoanMorn 142341
|
49 |
+
Hoogelaandsters-2588-MoanMorn 127062
|
50 |
+
Hoogelaandsters-2593-MoanMorn 137165
|
51 |
+
Hoogelaandsters-2597-MoanMorn 396984
|
52 |
+
Hoogelaandsters-2601-MoanMorn 89865
|
53 |
+
Hoogelaandsters-2605-MoanMorn 70560
|
54 |
+
Hoogelaandsters-2609-MoanMorn 216938
|
55 |
+
Hoogelaandsters-2613-MoanMorn 140629
|
56 |
+
Hoogelaandsters-2617-MoanMorn 120813
|
57 |
+
Hoogelaandsters-2621-MoanMorn 92039
|
58 |
+
Hoogelaandsters-2625-MoanMorn 81238
|
59 |
+
Hoogelaandsters-2629-MoanMorn 64944
|
60 |
+
Hoogelaandsters-2634-MoanMorn 111251
|
61 |
+
Hoogelaandsters-2638-MoanMorn 167512
|
62 |
+
Hoogelaandsters-2642-MoanMorn 367904
|
63 |
+
Hoogelaandsters-2646-MoanMorn 46324
|
64 |
+
Hoogelaandsters-2650-MoanMorn 79285
|
65 |
+
Hoogelaandsters-2654-MoanMorn 47784
|
66 |
+
Hoogelaandsters-2658-MoanMorn 297483
|
67 |
+
Hoogelaandsters-2662-MoanMorn 37814
|
68 |
+
Hoogelaandsters-2666-MoanMorn 162690
|
69 |
+
Hoogelaandsters-2670-MoanMorn 103191
|
70 |
+
Hoogelaandsters-2674-MoanMorn 92654
|
71 |
+
Hoogelaandsters-2679-MoanMorn 197560
|
72 |
+
Hoogelaandsters-2683-MoanMorn 87616
|
73 |
+
Hoogelaandsters-2687-MoanMorn 100706
|
74 |
+
Hoogelaandsters-2691-MoanMorn 102971
|
75 |
+
Hoogelaandsters-2695-MoanMorn 52497
|
76 |
+
Hoogelaandsters-2700-MoanMorn 160658
|
77 |
+
Hoogelaandsters-2704-MoanMorn 129668
|
78 |
+
Hoogelaandsters-2708-MoanMorn 128206
|
79 |
+
Hoogelaandsters-2712-MoanMorn 88044
|
80 |
+
Hoogelaandsters-2716-MoanMorn 60322
|
81 |
+
Hoogelaandsters-2555-MoanMorn 287540
|
82 |
+
Hoogelaandsters-2559-MoanMorn 330822
|
83 |
+
Hoogelaandsters-2565-MoanMorn 258697
|
84 |
+
Hoogelaandsters-2569-MoanMorn 122475
|
85 |
+
Hoogelaandsters-2573-MoanMorn 280673
|
86 |
+
Hoogelaandsters-2577-MoanMorn 144473
|
87 |
+
Hoogelaandsters-2581-MoanMorn 141996
|
88 |
+
Hoogelaandsters-2585-MoanMorn 212081
|
89 |
+
Hoogelaandsters-2589-MoanMorn 185519
|
90 |
+
Hoogelaandsters-2594-MoanMorn 50803
|
91 |
+
Hoogelaandsters-2598-MoanMorn 149919
|
92 |
+
Hoogelaandsters-2602-MoanMorn 38852
|
93 |
+
Hoogelaandsters-2606-MoanMorn 120520
|
94 |
+
Hoogelaandsters-2610-MoanMorn 154787
|
95 |
+
Hoogelaandsters-2614-MoanMorn 68877
|
96 |
+
Hoogelaandsters-2618-MoanMorn 152273
|
97 |
+
Hoogelaandsters-2622-MoanMorn 110079
|
98 |
+
Hoogelaandsters-2626-MoanMorn 82118
|
99 |
+
Hoogelaandsters-2631-MoanMorn 197675
|
100 |
+
Hoogelaandsters-2635-MoanMorn 165061
|
101 |
+
Hoogelaandsters-2639-MoanMorn 169140
|
102 |
+
Hoogelaandsters-2643-MoanMorn 38432
|
103 |
+
Hoogelaandsters-2647-MoanMorn 230497
|
104 |
+
Hoogelaandsters-2651-MoanMorn 155389
|
105 |
+
Hoogelaandsters-2655-MoanMorn 265827
|
106 |
+
Hoogelaandsters-2659-MoanMorn 156964
|
107 |
+
Hoogelaandsters-2663-MoanMorn 118006
|
108 |
+
Hoogelaandsters-2667-MoanMorn 180077
|
109 |
+
Hoogelaandsters-2671-MoanMorn 187349
|
110 |
+
Hoogelaandsters-2675-MoanMorn 100155
|
111 |
+
Hoogelaandsters-2680-MoanMorn 108959
|
112 |
+
Hoogelaandsters-2684-MoanMorn 129830
|
113 |
+
Hoogelaandsters-2688-MoanMorn 87494
|
114 |
+
Hoogelaandsters-2692-MoanMorn 139736
|
115 |
+
Hoogelaandsters-2696-MoanMorn 122070
|
116 |
+
Hoogelaandsters-2701-MoanMorn 319907
|
117 |
+
Hoogelaandsters-2705-MoanMorn 89592
|
118 |
+
Hoogelaandsters-2709-MoanMorn 81790
|
119 |
+
Hoogelaandsters-2713-MoanMorn 62093
|
120 |
+
Hoogelaandsters-2717-MoanMorn 105123
|
121 |
+
Hoogelaandsters-2556-MoanMorn 115423
|
122 |
+
Hoogelaandsters-2560-MoanMorn 82091
|
123 |
+
Hoogelaandsters-2566-MoanMorn 163000
|
124 |
+
Hoogelaandsters-2570-MoanMorn 274954
|
125 |
+
Hoogelaandsters-2574-MoanMorn 158271
|
126 |
+
Hoogelaandsters-2578-MoanMorn 98639
|
127 |
+
Hoogelaandsters-2582-MoanMorn 108427
|
128 |
+
Hoogelaandsters-2586-MoanMorn 130138
|
129 |
+
Hoogelaandsters-2590-MoanMorn 210595
|
130 |
+
Hoogelaandsters-2595-MoanMorn 385675
|
131 |
+
Hoogelaandsters-2599-MoanMorn 159944
|
132 |
+
Hoogelaandsters-2603-MoanMorn 71226
|
133 |
+
Hoogelaandsters-2607-MoanMorn 154605
|
134 |
+
Hoogelaandsters-2611-MoanMorn 306866
|
135 |
+
Hoogelaandsters-2615-MoanMorn 103504
|
136 |
+
Hoogelaandsters-2619-MoanMorn 119682
|
137 |
+
Hoogelaandsters-2623-MoanMorn 195466
|
138 |
+
Hoogelaandsters-2627-MoanMorn 81931
|
139 |
+
Hoogelaandsters-2632-MoanMorn 230483
|
140 |
+
Hoogelaandsters-2636-MoanMorn 175105
|
141 |
+
Hoogelaandsters-2640-MoanMorn 52143
|
142 |
+
Hoogelaandsters-2644-MoanMorn 81376
|
143 |
+
Hoogelaandsters-2648-MoanMorn 311615
|
144 |
+
Hoogelaandsters-2652-MoanMorn 66501
|
145 |
+
Hoogelaandsters-2656-MoanMorn 110732
|
146 |
+
Hoogelaandsters-2660-MoanMorn 218546
|
147 |
+
Hoogelaandsters-2664-MoanMorn 434104
|
148 |
+
Hoogelaandsters-2668-MoanMorn 234849
|
149 |
+
Hoogelaandsters-2672-MoanMorn 67330
|
150 |
+
Hoogelaandsters-2677-MoanMorn 217662
|
151 |
+
Hoogelaandsters-2681-MoanMorn 96112
|
152 |
+
Hoogelaandsters-2685-MoanMorn 242708
|
153 |
+
Hoogelaandsters-2689-MoanMorn 114105
|
154 |
+
Hoogelaandsters-2693-MoanMorn 173509
|
155 |
+
Hoogelaandsters-2698-MoanMorn 255138
|
156 |
+
Hoogelaandsters-2702-MoanMorn 182133
|
157 |
+
Hoogelaandsters-2706-MoanMorn 92569
|
158 |
+
Hoogelaandsters-2710-MoanMorn 52726
|
159 |
+
Hoogelaandsters-2714-MoanMorn 119379
|
160 |
+
Hoogelaandsters-2718-MoanMorn 249613
|
161 |
+
Hoogelaandsters-2719-MoanMorn 207030
|
162 |
+
Hoogelaandsters-2723-MoanMorn 164027
|
163 |
+
Hoogelaandsters-2727-MoanMorn 131255
|
164 |
+
Hoogelaandsters-2731-MoanMorn 138091
|
165 |
+
Hoogelaandsters-2735-MoanMorn 131698
|
166 |
+
Hoogelaandsters-2740-MoanMorn 261244
|
167 |
+
Hoogelaandsters-2744-MoanMorn 219641
|
168 |
+
Hoogelaandsters-2748-MoanMorn 357717
|
169 |
+
Hoogelaandsters-2752-MoanMorn 167116
|
170 |
+
Hoogelaandsters-2756-MoanMorn 129072
|
171 |
+
Hoogelaandsters-2760-MoanMorn 69985
|
172 |
+
Hoogelaandsters-2765-MoanMorn 365140
|
173 |
+
Hoogelaandsters-2769-MoanMorn 171180
|
174 |
+
Hoogelaandsters-2773-MoanMorn 145536
|
175 |
+
Hoogelaandsters-2777-MoanMorn 303805
|
176 |
+
Hoogelaandsters-2781-MoanMorn 341668
|
177 |
+
Hoogelaandsters-2785-MoanMorn 208293
|
178 |
+
Hoogelaandsters-2789-MoanMorn 225033
|
179 |
+
Hoogelaandsters-2793-MoanMorn 189487
|
180 |
+
Hoogelaandsters-2797-MoanMorn 243739
|
181 |
+
Hoogelaandsters-2802-MoanMorn 95392
|
182 |
+
Hoogelaandsters-2810-MoanMorn 158738
|
183 |
+
Hoogelaandsters-2814-MoanMorn 120438
|
184 |
+
Hoogelaandsters-2720-MoanMorn 85956
|
185 |
+
Hoogelaandsters-2724-MoanMorn 170079
|
186 |
+
Hoogelaandsters-2728-MoanMorn 299268
|
187 |
+
Hoogelaandsters-2732-MoanMorn 285525
|
188 |
+
Hoogelaandsters-2736-MoanMorn 110971
|
189 |
+
Hoogelaandsters-2741-MoanMorn 83711
|
190 |
+
Hoogelaandsters-2745-MoanMorn 144678
|
191 |
+
Hoogelaandsters-2749-MoanMorn 67738
|
192 |
+
Hoogelaandsters-2753-MoanMorn 196508
|
193 |
+
Hoogelaandsters-2757-MoanMorn 215266
|
194 |
+
Hoogelaandsters-2761-MoanMorn 75337
|
195 |
+
Hoogelaandsters-2766-MoanMorn 64602
|
196 |
+
Hoogelaandsters-2770-MoanMorn 395729
|
197 |
+
Hoogelaandsters-2774-MoanMorn 49597
|
198 |
+
Hoogelaandsters-2778-MoanMorn 131446
|
199 |
+
Hoogelaandsters-2782-MoanMorn 61127
|
200 |
+
Hoogelaandsters-2786-MoanMorn 254529
|
201 |
+
Hoogelaandsters-2790-MoanMorn 126016
|
202 |
+
Hoogelaandsters-2794-MoanMorn 94688
|
203 |
+
Hoogelaandsters-2799-MoanMorn 30315
|
204 |
+
Hoogelaandsters-2807-MoanMorn 40291
|
205 |
+
Hoogelaandsters-2811-MoanMorn 103372
|
206 |
+
Hoogelaandsters-2721-MoanMorn 70010
|
207 |
+
Hoogelaandsters-2725-MoanMorn 142302
|
208 |
+
Hoogelaandsters-2729-MoanMorn 218066
|
209 |
+
Hoogelaandsters-2733-MoanMorn 113371
|
210 |
+
Hoogelaandsters-2737-MoanMorn 51787
|
211 |
+
Hoogelaandsters-2742-MoanMorn 115021
|
212 |
+
Hoogelaandsters-2746-MoanMorn 102278
|
213 |
+
Hoogelaandsters-2750-MoanMorn 113960
|
214 |
+
Hoogelaandsters-2754-MoanMorn 127820
|
215 |
+
Hoogelaandsters-2758-MoanMorn 132424
|
216 |
+
Hoogelaandsters-2762-MoanMorn 267801
|
217 |
+
Hoogelaandsters-2767-MoanMorn 175120
|
218 |
+
Hoogelaandsters-2771-MoanMorn 190916
|
219 |
+
Hoogelaandsters-2775-MoanMorn 220794
|
220 |
+
Hoogelaandsters-2779-MoanMorn 53626
|
221 |
+
Hoogelaandsters-2783-MoanMorn 90153
|
222 |
+
Hoogelaandsters-2787-MoanMorn 130704
|
223 |
+
Hoogelaandsters-2791-MoanMorn 47366
|
224 |
+
Hoogelaandsters-2795-MoanMorn 255622
|
225 |
+
Hoogelaandsters-2800-MoanMorn 81850
|
226 |
+
Hoogelaandsters-2808-MoanMorn 80081
|
227 |
+
Hoogelaandsters-2812-MoanMorn 73333
|
228 |
+
Hoogelaandsters-2722-MoanMorn 199048
|
229 |
+
Hoogelaandsters-2726-MoanMorn 68327
|
230 |
+
Hoogelaandsters-2730-MoanMorn 103049
|
231 |
+
Hoogelaandsters-2734-MoanMorn 55949
|
232 |
+
Hoogelaandsters-2738-MoanMorn 168007
|
233 |
+
Hoogelaandsters-2743-MoanMorn 101916
|
234 |
+
Hoogelaandsters-2747-MoanMorn 235788
|
235 |
+
Hoogelaandsters-2751-MoanMorn 63234
|
236 |
+
Hoogelaandsters-2755-MoanMorn 268211
|
237 |
+
Hoogelaandsters-2759-MoanMorn 121221
|
238 |
+
Hoogelaandsters-2763-MoanMorn 300360
|
239 |
+
Hoogelaandsters-2768-MoanMorn 96182
|
240 |
+
Hoogelaandsters-2772-MoanMorn 131793
|
241 |
+
Hoogelaandsters-2776-MoanMorn 179261
|
242 |
+
Hoogelaandsters-2780-MoanMorn 306314
|
243 |
+
Hoogelaandsters-2784-MoanMorn 347307
|
244 |
+
Hoogelaandsters-2788-MoanMorn 136168
|
245 |
+
Hoogelaandsters-2792-MoanMorn 168299
|
246 |
+
Hoogelaandsters-2796-MoanMorn 124545
|
247 |
+
Hoogelaandsters-2801-MoanMorn 102298
|
248 |
+
Hoogelaandsters-2809-MoanMorn 168456
|
249 |
+
Hoogelaandsters-2813-MoanMorn 101606
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/stats_keys
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
feats
|
2 |
+
feats_lengths
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/train/text_shape
ADDED
@@ -0,0 +1,249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Hoogelaandsters-2553-MoanMorn 58
|
2 |
+
Hoogelaandsters-2557-MoanMorn 77
|
3 |
+
Hoogelaandsters-2562-MoanMorn 23
|
4 |
+
Hoogelaandsters-2567-MoanMorn 106
|
5 |
+
Hoogelaandsters-2571-MoanMorn 85
|
6 |
+
Hoogelaandsters-2575-MoanMorn 124
|
7 |
+
Hoogelaandsters-2579-MoanMorn 244
|
8 |
+
Hoogelaandsters-2583-MoanMorn 34
|
9 |
+
Hoogelaandsters-2587-MoanMorn 25
|
10 |
+
Hoogelaandsters-2592-MoanMorn 176
|
11 |
+
Hoogelaandsters-2596-MoanMorn 254
|
12 |
+
Hoogelaandsters-2600-MoanMorn 230
|
13 |
+
Hoogelaandsters-2604-MoanMorn 43
|
14 |
+
Hoogelaandsters-2608-MoanMorn 22
|
15 |
+
Hoogelaandsters-2612-MoanMorn 24
|
16 |
+
Hoogelaandsters-2616-MoanMorn 80
|
17 |
+
Hoogelaandsters-2620-MoanMorn 101
|
18 |
+
Hoogelaandsters-2624-MoanMorn 108
|
19 |
+
Hoogelaandsters-2628-MoanMorn 103
|
20 |
+
Hoogelaandsters-2633-MoanMorn 147
|
21 |
+
Hoogelaandsters-2637-MoanMorn 56
|
22 |
+
Hoogelaandsters-2641-MoanMorn 116
|
23 |
+
Hoogelaandsters-2645-MoanMorn 62
|
24 |
+
Hoogelaandsters-2649-MoanMorn 200
|
25 |
+
Hoogelaandsters-2653-MoanMorn 53
|
26 |
+
Hoogelaandsters-2657-MoanMorn 20
|
27 |
+
Hoogelaandsters-2661-MoanMorn 58
|
28 |
+
Hoogelaandsters-2665-MoanMorn 27
|
29 |
+
Hoogelaandsters-2669-MoanMorn 122
|
30 |
+
Hoogelaandsters-2673-MoanMorn 64
|
31 |
+
Hoogelaandsters-2678-MoanMorn 73
|
32 |
+
Hoogelaandsters-2682-MoanMorn 20
|
33 |
+
Hoogelaandsters-2686-MoanMorn 244
|
34 |
+
Hoogelaandsters-2690-MoanMorn 66
|
35 |
+
Hoogelaandsters-2694-MoanMorn 79
|
36 |
+
Hoogelaandsters-2699-MoanMorn 38
|
37 |
+
Hoogelaandsters-2703-MoanMorn 62
|
38 |
+
Hoogelaandsters-2707-MoanMorn 74
|
39 |
+
Hoogelaandsters-2711-MoanMorn 73
|
40 |
+
Hoogelaandsters-2715-MoanMorn 193
|
41 |
+
Hoogelaandsters-2554-MoanMorn 57
|
42 |
+
Hoogelaandsters-2558-MoanMorn 46
|
43 |
+
Hoogelaandsters-2564-MoanMorn 29
|
44 |
+
Hoogelaandsters-2568-MoanMorn 107
|
45 |
+
Hoogelaandsters-2572-MoanMorn 78
|
46 |
+
Hoogelaandsters-2576-MoanMorn 137
|
47 |
+
Hoogelaandsters-2580-MoanMorn 227
|
48 |
+
Hoogelaandsters-2584-MoanMorn 84
|
49 |
+
Hoogelaandsters-2588-MoanMorn 96
|
50 |
+
Hoogelaandsters-2593-MoanMorn 97
|
51 |
+
Hoogelaandsters-2597-MoanMorn 252
|
52 |
+
Hoogelaandsters-2601-MoanMorn 51
|
53 |
+
Hoogelaandsters-2605-MoanMorn 46
|
54 |
+
Hoogelaandsters-2609-MoanMorn 165
|
55 |
+
Hoogelaandsters-2613-MoanMorn 89
|
56 |
+
Hoogelaandsters-2617-MoanMorn 66
|
57 |
+
Hoogelaandsters-2621-MoanMorn 53
|
58 |
+
Hoogelaandsters-2625-MoanMorn 48
|
59 |
+
Hoogelaandsters-2629-MoanMorn 39
|
60 |
+
Hoogelaandsters-2634-MoanMorn 65
|
61 |
+
Hoogelaandsters-2638-MoanMorn 78
|
62 |
+
Hoogelaandsters-2642-MoanMorn 219
|
63 |
+
Hoogelaandsters-2646-MoanMorn 31
|
64 |
+
Hoogelaandsters-2650-MoanMorn 23
|
65 |
+
Hoogelaandsters-2654-MoanMorn 25
|
66 |
+
Hoogelaandsters-2658-MoanMorn 183
|
67 |
+
Hoogelaandsters-2662-MoanMorn 15
|
68 |
+
Hoogelaandsters-2666-MoanMorn 82
|
69 |
+
Hoogelaandsters-2670-MoanMorn 54
|
70 |
+
Hoogelaandsters-2674-MoanMorn 45
|
71 |
+
Hoogelaandsters-2679-MoanMorn 115
|
72 |
+
Hoogelaandsters-2683-MoanMorn 48
|
73 |
+
Hoogelaandsters-2687-MoanMorn 52
|
74 |
+
Hoogelaandsters-2691-MoanMorn 66
|
75 |
+
Hoogelaandsters-2695-MoanMorn 32
|
76 |
+
Hoogelaandsters-2700-MoanMorn 90
|
77 |
+
Hoogelaandsters-2704-MoanMorn 86
|
78 |
+
Hoogelaandsters-2708-MoanMorn 85
|
79 |
+
Hoogelaandsters-2712-MoanMorn 52
|
80 |
+
Hoogelaandsters-2716-MoanMorn 34
|
81 |
+
Hoogelaandsters-2555-MoanMorn 158
|
82 |
+
Hoogelaandsters-2559-MoanMorn 213
|
83 |
+
Hoogelaandsters-2565-MoanMorn 154
|
84 |
+
Hoogelaandsters-2569-MoanMorn 70
|
85 |
+
Hoogelaandsters-2573-MoanMorn 159
|
86 |
+
Hoogelaandsters-2577-MoanMorn 77
|
87 |
+
Hoogelaandsters-2581-MoanMorn 82
|
88 |
+
Hoogelaandsters-2585-MoanMorn 123
|
89 |
+
Hoogelaandsters-2589-MoanMorn 125
|
90 |
+
Hoogelaandsters-2594-MoanMorn 36
|
91 |
+
Hoogelaandsters-2598-MoanMorn 97
|
92 |
+
Hoogelaandsters-2602-MoanMorn 15
|
93 |
+
Hoogelaandsters-2606-MoanMorn 79
|
94 |
+
Hoogelaandsters-2610-MoanMorn 86
|
95 |
+
Hoogelaandsters-2614-MoanMorn 35
|
96 |
+
Hoogelaandsters-2618-MoanMorn 98
|
97 |
+
Hoogelaandsters-2622-MoanMorn 61
|
98 |
+
Hoogelaandsters-2626-MoanMorn 57
|
99 |
+
Hoogelaandsters-2631-MoanMorn 127
|
100 |
+
Hoogelaandsters-2635-MoanMorn 114
|
101 |
+
Hoogelaandsters-2639-MoanMorn 85
|
102 |
+
Hoogelaandsters-2643-MoanMorn 16
|
103 |
+
Hoogelaandsters-2647-MoanMorn 139
|
104 |
+
Hoogelaandsters-2651-MoanMorn 87
|
105 |
+
Hoogelaandsters-2655-MoanMorn 152
|
106 |
+
Hoogelaandsters-2659-MoanMorn 103
|
107 |
+
Hoogelaandsters-2663-MoanMorn 60
|
108 |
+
Hoogelaandsters-2667-MoanMorn 128
|
109 |
+
Hoogelaandsters-2671-MoanMorn 104
|
110 |
+
Hoogelaandsters-2675-MoanMorn 52
|
111 |
+
Hoogelaandsters-2680-MoanMorn 69
|
112 |
+
Hoogelaandsters-2684-MoanMorn 94
|
113 |
+
Hoogelaandsters-2688-MoanMorn 53
|
114 |
+
Hoogelaandsters-2692-MoanMorn 75
|
115 |
+
Hoogelaandsters-2696-MoanMorn 64
|
116 |
+
Hoogelaandsters-2701-MoanMorn 184
|
117 |
+
Hoogelaandsters-2705-MoanMorn 58
|
118 |
+
Hoogelaandsters-2709-MoanMorn 49
|
119 |
+
Hoogelaandsters-2713-MoanMorn 36
|
120 |
+
Hoogelaandsters-2717-MoanMorn 60
|
121 |
+
Hoogelaandsters-2556-MoanMorn 61
|
122 |
+
Hoogelaandsters-2560-MoanMorn 40
|
123 |
+
Hoogelaandsters-2566-MoanMorn 91
|
124 |
+
Hoogelaandsters-2570-MoanMorn 138
|
125 |
+
Hoogelaandsters-2574-MoanMorn 85
|
126 |
+
Hoogelaandsters-2578-MoanMorn 53
|
127 |
+
Hoogelaandsters-2582-MoanMorn 74
|
128 |
+
Hoogelaandsters-2586-MoanMorn 67
|
129 |
+
Hoogelaandsters-2590-MoanMorn 151
|
130 |
+
Hoogelaandsters-2595-MoanMorn 267
|
131 |
+
Hoogelaandsters-2599-MoanMorn 104
|
132 |
+
Hoogelaandsters-2603-MoanMorn 39
|
133 |
+
Hoogelaandsters-2607-MoanMorn 86
|
134 |
+
Hoogelaandsters-2611-MoanMorn 193
|
135 |
+
Hoogelaandsters-2615-MoanMorn 73
|
136 |
+
Hoogelaandsters-2619-MoanMorn 78
|
137 |
+
Hoogelaandsters-2623-MoanMorn 113
|
138 |
+
Hoogelaandsters-2627-MoanMorn 40
|
139 |
+
Hoogelaandsters-2632-MoanMorn 153
|
140 |
+
Hoogelaandsters-2636-MoanMorn 123
|
141 |
+
Hoogelaandsters-2640-MoanMorn 32
|
142 |
+
Hoogelaandsters-2644-MoanMorn 48
|
143 |
+
Hoogelaandsters-2648-MoanMorn 171
|
144 |
+
Hoogelaandsters-2652-MoanMorn 27
|
145 |
+
Hoogelaandsters-2656-MoanMorn 80
|
146 |
+
Hoogelaandsters-2660-MoanMorn 126
|
147 |
+
Hoogelaandsters-2664-MoanMorn 282
|
148 |
+
Hoogelaandsters-2668-MoanMorn 143
|
149 |
+
Hoogelaandsters-2672-MoanMorn 35
|
150 |
+
Hoogelaandsters-2677-MoanMorn 150
|
151 |
+
Hoogelaandsters-2681-MoanMorn 72
|
152 |
+
Hoogelaandsters-2685-MoanMorn 142
|
153 |
+
Hoogelaandsters-2689-MoanMorn 76
|
154 |
+
Hoogelaandsters-2693-MoanMorn 115
|
155 |
+
Hoogelaandsters-2698-MoanMorn 145
|
156 |
+
Hoogelaandsters-2702-MoanMorn 108
|
157 |
+
Hoogelaandsters-2706-MoanMorn 56
|
158 |
+
Hoogelaandsters-2710-MoanMorn 34
|
159 |
+
Hoogelaandsters-2714-MoanMorn 63
|
160 |
+
Hoogelaandsters-2718-MoanMorn 164
|
161 |
+
Hoogelaandsters-2719-MoanMorn 129
|
162 |
+
Hoogelaandsters-2723-MoanMorn 125
|
163 |
+
Hoogelaandsters-2727-MoanMorn 93
|
164 |
+
Hoogelaandsters-2731-MoanMorn 89
|
165 |
+
Hoogelaandsters-2735-MoanMorn 86
|
166 |
+
Hoogelaandsters-2740-MoanMorn 151
|
167 |
+
Hoogelaandsters-2744-MoanMorn 153
|
168 |
+
Hoogelaandsters-2748-MoanMorn 197
|
169 |
+
Hoogelaandsters-2752-MoanMorn 102
|
170 |
+
Hoogelaandsters-2756-MoanMorn 75
|
171 |
+
Hoogelaandsters-2760-MoanMorn 33
|
172 |
+
Hoogelaandsters-2765-MoanMorn 257
|
173 |
+
Hoogelaandsters-2769-MoanMorn 86
|
174 |
+
Hoogelaandsters-2773-MoanMorn 85
|
175 |
+
Hoogelaandsters-2777-MoanMorn 169
|
176 |
+
Hoogelaandsters-2781-MoanMorn 244
|
177 |
+
Hoogelaandsters-2785-MoanMorn 133
|
178 |
+
Hoogelaandsters-2789-MoanMorn 132
|
179 |
+
Hoogelaandsters-2793-MoanMorn 94
|
180 |
+
Hoogelaandsters-2797-MoanMorn 151
|
181 |
+
Hoogelaandsters-2802-MoanMorn 45
|
182 |
+
Hoogelaandsters-2810-MoanMorn 105
|
183 |
+
Hoogelaandsters-2814-MoanMorn 61
|
184 |
+
Hoogelaandsters-2720-MoanMorn 54
|
185 |
+
Hoogelaandsters-2724-MoanMorn 95
|
186 |
+
Hoogelaandsters-2728-MoanMorn 195
|
187 |
+
Hoogelaandsters-2732-MoanMorn 171
|
188 |
+
Hoogelaandsters-2736-MoanMorn 64
|
189 |
+
Hoogelaandsters-2741-MoanMorn 52
|
190 |
+
Hoogelaandsters-2745-MoanMorn 89
|
191 |
+
Hoogelaandsters-2749-MoanMorn 37
|
192 |
+
Hoogelaandsters-2753-MoanMorn 108
|
193 |
+
Hoogelaandsters-2757-MoanMorn 118
|
194 |
+
Hoogelaandsters-2761-MoanMorn 44
|
195 |
+
Hoogelaandsters-2766-MoanMorn 32
|
196 |
+
Hoogelaandsters-2770-MoanMorn 252
|
197 |
+
Hoogelaandsters-2774-MoanMorn 26
|
198 |
+
Hoogelaandsters-2778-MoanMorn 81
|
199 |
+
Hoogelaandsters-2782-MoanMorn 29
|
200 |
+
Hoogelaandsters-2786-MoanMorn 144
|
201 |
+
Hoogelaandsters-2790-MoanMorn 74
|
202 |
+
Hoogelaandsters-2794-MoanMorn 46
|
203 |
+
Hoogelaandsters-2799-MoanMorn 17
|
204 |
+
Hoogelaandsters-2807-MoanMorn 24
|
205 |
+
Hoogelaandsters-2811-MoanMorn 60
|
206 |
+
Hoogelaandsters-2721-MoanMorn 43
|
207 |
+
Hoogelaandsters-2725-MoanMorn 112
|
208 |
+
Hoogelaandsters-2729-MoanMorn 143
|
209 |
+
Hoogelaandsters-2733-MoanMorn 84
|
210 |
+
Hoogelaandsters-2737-MoanMorn 36
|
211 |
+
Hoogelaandsters-2742-MoanMorn 64
|
212 |
+
Hoogelaandsters-2746-MoanMorn 65
|
213 |
+
Hoogelaandsters-2750-MoanMorn 59
|
214 |
+
Hoogelaandsters-2754-MoanMorn 74
|
215 |
+
Hoogelaandsters-2758-MoanMorn 72
|
216 |
+
Hoogelaandsters-2762-MoanMorn 160
|
217 |
+
Hoogelaandsters-2767-MoanMorn 108
|
218 |
+
Hoogelaandsters-2771-MoanMorn 102
|
219 |
+
Hoogelaandsters-2775-MoanMorn 126
|
220 |
+
Hoogelaandsters-2779-MoanMorn 35
|
221 |
+
Hoogelaandsters-2783-MoanMorn 48
|
222 |
+
Hoogelaandsters-2787-MoanMorn 83
|
223 |
+
Hoogelaandsters-2791-MoanMorn 21
|
224 |
+
Hoogelaandsters-2795-MoanMorn 178
|
225 |
+
Hoogelaandsters-2800-MoanMorn 43
|
226 |
+
Hoogelaandsters-2808-MoanMorn 49
|
227 |
+
Hoogelaandsters-2812-MoanMorn 40
|
228 |
+
Hoogelaandsters-2722-MoanMorn 123
|
229 |
+
Hoogelaandsters-2726-MoanMorn 46
|
230 |
+
Hoogelaandsters-2730-MoanMorn 65
|
231 |
+
Hoogelaandsters-2734-MoanMorn 29
|
232 |
+
Hoogelaandsters-2738-MoanMorn 102
|
233 |
+
Hoogelaandsters-2743-MoanMorn 63
|
234 |
+
Hoogelaandsters-2747-MoanMorn 140
|
235 |
+
Hoogelaandsters-2751-MoanMorn 34
|
236 |
+
Hoogelaandsters-2755-MoanMorn 170
|
237 |
+
Hoogelaandsters-2759-MoanMorn 89
|
238 |
+
Hoogelaandsters-2763-MoanMorn 170
|
239 |
+
Hoogelaandsters-2768-MoanMorn 57
|
240 |
+
Hoogelaandsters-2772-MoanMorn 82
|
241 |
+
Hoogelaandsters-2776-MoanMorn 108
|
242 |
+
Hoogelaandsters-2780-MoanMorn 203
|
243 |
+
Hoogelaandsters-2784-MoanMorn 219
|
244 |
+
Hoogelaandsters-2788-MoanMorn 86
|
245 |
+
Hoogelaandsters-2792-MoanMorn 115
|
246 |
+
Hoogelaandsters-2796-MoanMorn 72
|
247 |
+
Hoogelaandsters-2801-MoanMorn 75
|
248 |
+
Hoogelaandsters-2809-MoanMorn 82
|
249 |
+
Hoogelaandsters-2813-MoanMorn 56
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/batch_keys
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
text
|
2 |
+
speech
|
3 |
+
sids
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/feats_lengths_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d91f08590d0800f915c76c97f826494001a888019e15e8cb5906b40df85e42f5
|
3 |
+
size 778
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/feats_stats.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bcc2334a15eb36d64c9c834c251b257c11f2f3609d48e3b645a451272efd35f
|
3 |
+
size 1402
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/sids_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Oldambsters-0001-AigenOardegheden 1
|
2 |
+
Oldambsters-0215-AigenOardegheden 1
|
3 |
+
Oldambsters-0054-AigenOardegheden 1
|
4 |
+
Oldambsters-0106-AigenOardegheden 1
|
5 |
+
Oldambsters-0160-AigenOardegheden 1
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/speech_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Oldambsters-0001-AigenOardegheden 115718
|
2 |
+
Oldambsters-0215-AigenOardegheden 156715
|
3 |
+
Oldambsters-0054-AigenOardegheden 129824
|
4 |
+
Oldambsters-0106-AigenOardegheden 70560
|
5 |
+
Oldambsters-0160-AigenOardegheden 50803
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/stats_keys
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
feats
|
2 |
+
feats_lengths
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.11/valid/text_shape
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Oldambsters-0001-AigenOardegheden 89
|
2 |
+
Oldambsters-0215-AigenOardegheden 110
|
3 |
+
Oldambsters-0054-AigenOardegheden 7
|
4 |
+
Oldambsters-0106-AigenOardegheden 44
|
5 |
+
Oldambsters-0160-AigenOardegheden 34
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12.log
ADDED
@@ -0,0 +1,1152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python3 -m espnet2.bin.gan_tts_train --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.12.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.12.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
2 |
+
# Started at Fri Dec 1 15:58:34 UTC 2023
|
3 |
+
#
|
4 |
+
/data2/p280965/tts/espnet/tools/venv/bin/python3 /data2/p280965/tts/espnet/espnet2/bin/gan_tts_train.py --collect_stats true --write_collected_feats false --use_preprocessor true --token_type char --token_list dump/token_list/char/tokens.txt --non_linguistic_symbols none --cleaner none --g2p none --normalize none --pitch_normalize none --energy_normalize none --train_data_path_and_name_and_type dump/raw/train_nodev/text,text,text --train_data_path_and_name_and_type dump/raw/train_nodev/wav.scp,speech,sound --valid_data_path_and_name_and_type dump/raw/train_dev/text,text,text --valid_data_path_and_name_and_type dump/raw/train_dev/wav.scp,speech,sound --train_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.12.scp --valid_shape_file exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.12.scp --output_dir exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12 --config conf/train_vits.yaml --feats_extract fbank --feats_extract_conf n_fft=1024 --feats_extract_conf hop_length=256 --feats_extract_conf win_length=null --feats_extract_conf fs=22050 --feats_extract_conf fmin=80 --feats_extract_conf fmax=7600 --feats_extract_conf n_mels=80 --pitch_extract_conf fs=22050 --pitch_extract_conf n_fft=1024 --pitch_extract_conf hop_length=256 --pitch_extract_conf f0max=400 --pitch_extract_conf f0min=80 --energy_extract_conf fs=22050 --energy_extract_conf n_fft=1024 --energy_extract_conf hop_length=256 --energy_extract_conf win_length=null --train_data_path_and_name_and_type dump/raw/train_nodev/utt2sid,sids,text_int --valid_data_path_and_name_and_type dump/raw/train_dev/utt2sid,sids,text_int --use_wandb true --wandb_project GROTTS --wandb_name VITS_lr_3.0e-4 --init_param downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv --batch_size 40 --batch_bins 10000000
|
5 |
+
[wieling-3-a100] 2023-12-01 15:58:40,886 (gan_tts:293) INFO: Vocabulary size: 46
|
6 |
+
[wieling-3-a100] 2023-12-01 15:58:41,003 (encoder:174) INFO: encoder self-attention layer type = relative self-attention
|
7 |
+
/data2/p280965/tts/espnet/tools/venv/lib/python3.9/site-packages/torch/nn/utils/weight_norm.py:30: UserWarning: torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.
|
8 |
+
warnings.warn("torch.nn.utils.weight_norm is deprecated in favor of torch.nn.utils.parametrizations.weight_norm.")
|
9 |
+
/data2/p280965/tts/espnet/espnet2/gan_tts/vits/monotonic_align/__init__.py:19: UserWarning: Cython version is not available. Fallback to 'EXPERIMETAL' numba version. If you want to use the cython version, please build it as follows: `cd espnet2/gan_tts/vits/monotonic_align; python setup.py build_ext --inplace`
|
10 |
+
warnings.warn(
|
11 |
+
[wieling-3-a100] 2023-12-01 15:58:42,381 (abs_task:1268) INFO: pytorch.version=2.1.0+cu121, cuda.available=True, cudnn.version=8902, cudnn.benchmark=False, cudnn.deterministic=False
|
12 |
+
[wieling-3-a100] 2023-12-01 15:58:42,453 (abs_task:1269) INFO: Model structure:
|
13 |
+
ESPnetGANTTSModel(
|
14 |
+
(feats_extract): LogMelFbank(
|
15 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
16 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=80, fmax=7600, htk=False)
|
17 |
+
)
|
18 |
+
(tts): VITS(
|
19 |
+
(generator): VITSGenerator(
|
20 |
+
(text_encoder): TextEncoder(
|
21 |
+
(emb): Embedding(46, 192)
|
22 |
+
(encoder): Encoder(
|
23 |
+
(embed): Sequential(
|
24 |
+
(0): RelPositionalEncoding(
|
25 |
+
(dropout): Dropout(p=0.0, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(encoders): MultiSequential(
|
29 |
+
(0): EncoderLayer(
|
30 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
31 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
32 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
33 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
34 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
37 |
+
)
|
38 |
+
(feed_forward): MultiLayeredConv1d(
|
39 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
40 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
41 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
42 |
+
)
|
43 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
44 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
45 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
46 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
47 |
+
)
|
48 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
49 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
50 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
51 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
52 |
+
)
|
53 |
+
(1): EncoderLayer(
|
54 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
55 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
56 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
57 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
58 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
59 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
60 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
61 |
+
)
|
62 |
+
(feed_forward): MultiLayeredConv1d(
|
63 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
64 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
65 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
66 |
+
)
|
67 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
68 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
69 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
70 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
71 |
+
)
|
72 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
73 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
74 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
75 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
76 |
+
)
|
77 |
+
(2): EncoderLayer(
|
78 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
79 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
80 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
81 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
82 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
85 |
+
)
|
86 |
+
(feed_forward): MultiLayeredConv1d(
|
87 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
88 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
90 |
+
)
|
91 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
92 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
93 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
95 |
+
)
|
96 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
97 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
98 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
99 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
100 |
+
)
|
101 |
+
(3): EncoderLayer(
|
102 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
103 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
104 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
105 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
106 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
107 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
108 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
109 |
+
)
|
110 |
+
(feed_forward): MultiLayeredConv1d(
|
111 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
112 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
113 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
114 |
+
)
|
115 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
116 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
117 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
118 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
119 |
+
)
|
120 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
121 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
122 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
123 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
124 |
+
)
|
125 |
+
(4): EncoderLayer(
|
126 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
127 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
128 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
129 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
130 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
131 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
132 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
133 |
+
)
|
134 |
+
(feed_forward): MultiLayeredConv1d(
|
135 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
136 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
137 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
138 |
+
)
|
139 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
140 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
141 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
142 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
143 |
+
)
|
144 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
145 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
146 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
147 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
148 |
+
)
|
149 |
+
(5): EncoderLayer(
|
150 |
+
(self_attn): RelPositionMultiHeadedAttention(
|
151 |
+
(linear_q): Linear(in_features=192, out_features=192, bias=True)
|
152 |
+
(linear_k): Linear(in_features=192, out_features=192, bias=True)
|
153 |
+
(linear_v): Linear(in_features=192, out_features=192, bias=True)
|
154 |
+
(linear_out): Linear(in_features=192, out_features=192, bias=True)
|
155 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
156 |
+
(linear_pos): Linear(in_features=192, out_features=192, bias=False)
|
157 |
+
)
|
158 |
+
(feed_forward): MultiLayeredConv1d(
|
159 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
160 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
161 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
162 |
+
)
|
163 |
+
(feed_forward_macaron): MultiLayeredConv1d(
|
164 |
+
(w_1): Conv1d(192, 768, kernel_size=(3,), stride=(1,), padding=(1,))
|
165 |
+
(w_2): Conv1d(768, 192, kernel_size=(3,), stride=(1,), padding=(1,))
|
166 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
167 |
+
)
|
168 |
+
(norm_ff): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
169 |
+
(norm_mha): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
170 |
+
(norm_ff_macaron): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
171 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
172 |
+
)
|
173 |
+
)
|
174 |
+
(after_norm): LayerNorm((192,), eps=1e-12, elementwise_affine=True)
|
175 |
+
)
|
176 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
177 |
+
)
|
178 |
+
(decoder): HiFiGANGenerator(
|
179 |
+
(input_conv): Conv1d(192, 512, kernel_size=(7,), stride=(1,), padding=(3,))
|
180 |
+
(upsamples): ModuleList(
|
181 |
+
(0): Sequential(
|
182 |
+
(0): LeakyReLU(negative_slope=0.1)
|
183 |
+
(1): ConvTranspose1d(512, 256, kernel_size=(16,), stride=(8,), padding=(4,))
|
184 |
+
)
|
185 |
+
(1): Sequential(
|
186 |
+
(0): LeakyReLU(negative_slope=0.1)
|
187 |
+
(1): ConvTranspose1d(256, 128, kernel_size=(16,), stride=(8,), padding=(4,))
|
188 |
+
)
|
189 |
+
(2): Sequential(
|
190 |
+
(0): LeakyReLU(negative_slope=0.1)
|
191 |
+
(1): ConvTranspose1d(128, 64, kernel_size=(4,), stride=(2,), padding=(1,))
|
192 |
+
)
|
193 |
+
(3): Sequential(
|
194 |
+
(0): LeakyReLU(negative_slope=0.1)
|
195 |
+
(1): ConvTranspose1d(64, 32, kernel_size=(4,), stride=(2,), padding=(1,))
|
196 |
+
)
|
197 |
+
)
|
198 |
+
(blocks): ModuleList(
|
199 |
+
(0): ResidualBlock(
|
200 |
+
(convs1): ModuleList(
|
201 |
+
(0): Sequential(
|
202 |
+
(0): LeakyReLU(negative_slope=0.1)
|
203 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
204 |
+
)
|
205 |
+
(1): Sequential(
|
206 |
+
(0): LeakyReLU(negative_slope=0.1)
|
207 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
208 |
+
)
|
209 |
+
(2): Sequential(
|
210 |
+
(0): LeakyReLU(negative_slope=0.1)
|
211 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
212 |
+
)
|
213 |
+
)
|
214 |
+
(convs2): ModuleList(
|
215 |
+
(0-2): 3 x Sequential(
|
216 |
+
(0): LeakyReLU(negative_slope=0.1)
|
217 |
+
(1): Conv1d(256, 256, kernel_size=(3,), stride=(1,), padding=(1,))
|
218 |
+
)
|
219 |
+
)
|
220 |
+
)
|
221 |
+
(1): ResidualBlock(
|
222 |
+
(convs1): ModuleList(
|
223 |
+
(0): Sequential(
|
224 |
+
(0): LeakyReLU(negative_slope=0.1)
|
225 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
226 |
+
)
|
227 |
+
(1): Sequential(
|
228 |
+
(0): LeakyReLU(negative_slope=0.1)
|
229 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
230 |
+
)
|
231 |
+
(2): Sequential(
|
232 |
+
(0): LeakyReLU(negative_slope=0.1)
|
233 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
234 |
+
)
|
235 |
+
)
|
236 |
+
(convs2): ModuleList(
|
237 |
+
(0-2): 3 x Sequential(
|
238 |
+
(0): LeakyReLU(negative_slope=0.1)
|
239 |
+
(1): Conv1d(256, 256, kernel_size=(7,), stride=(1,), padding=(3,))
|
240 |
+
)
|
241 |
+
)
|
242 |
+
)
|
243 |
+
(2): ResidualBlock(
|
244 |
+
(convs1): ModuleList(
|
245 |
+
(0): Sequential(
|
246 |
+
(0): LeakyReLU(negative_slope=0.1)
|
247 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
248 |
+
)
|
249 |
+
(1): Sequential(
|
250 |
+
(0): LeakyReLU(negative_slope=0.1)
|
251 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
252 |
+
)
|
253 |
+
(2): Sequential(
|
254 |
+
(0): LeakyReLU(negative_slope=0.1)
|
255 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
256 |
+
)
|
257 |
+
)
|
258 |
+
(convs2): ModuleList(
|
259 |
+
(0-2): 3 x Sequential(
|
260 |
+
(0): LeakyReLU(negative_slope=0.1)
|
261 |
+
(1): Conv1d(256, 256, kernel_size=(11,), stride=(1,), padding=(5,))
|
262 |
+
)
|
263 |
+
)
|
264 |
+
)
|
265 |
+
(3): ResidualBlock(
|
266 |
+
(convs1): ModuleList(
|
267 |
+
(0): Sequential(
|
268 |
+
(0): LeakyReLU(negative_slope=0.1)
|
269 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
270 |
+
)
|
271 |
+
(1): Sequential(
|
272 |
+
(0): LeakyReLU(negative_slope=0.1)
|
273 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
274 |
+
)
|
275 |
+
(2): Sequential(
|
276 |
+
(0): LeakyReLU(negative_slope=0.1)
|
277 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
278 |
+
)
|
279 |
+
)
|
280 |
+
(convs2): ModuleList(
|
281 |
+
(0-2): 3 x Sequential(
|
282 |
+
(0): LeakyReLU(negative_slope=0.1)
|
283 |
+
(1): Conv1d(128, 128, kernel_size=(3,), stride=(1,), padding=(1,))
|
284 |
+
)
|
285 |
+
)
|
286 |
+
)
|
287 |
+
(4): ResidualBlock(
|
288 |
+
(convs1): ModuleList(
|
289 |
+
(0): Sequential(
|
290 |
+
(0): LeakyReLU(negative_slope=0.1)
|
291 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
292 |
+
)
|
293 |
+
(1): Sequential(
|
294 |
+
(0): LeakyReLU(negative_slope=0.1)
|
295 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
296 |
+
)
|
297 |
+
(2): Sequential(
|
298 |
+
(0): LeakyReLU(negative_slope=0.1)
|
299 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
300 |
+
)
|
301 |
+
)
|
302 |
+
(convs2): ModuleList(
|
303 |
+
(0-2): 3 x Sequential(
|
304 |
+
(0): LeakyReLU(negative_slope=0.1)
|
305 |
+
(1): Conv1d(128, 128, kernel_size=(7,), stride=(1,), padding=(3,))
|
306 |
+
)
|
307 |
+
)
|
308 |
+
)
|
309 |
+
(5): ResidualBlock(
|
310 |
+
(convs1): ModuleList(
|
311 |
+
(0): Sequential(
|
312 |
+
(0): LeakyReLU(negative_slope=0.1)
|
313 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
314 |
+
)
|
315 |
+
(1): Sequential(
|
316 |
+
(0): LeakyReLU(negative_slope=0.1)
|
317 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
318 |
+
)
|
319 |
+
(2): Sequential(
|
320 |
+
(0): LeakyReLU(negative_slope=0.1)
|
321 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
322 |
+
)
|
323 |
+
)
|
324 |
+
(convs2): ModuleList(
|
325 |
+
(0-2): 3 x Sequential(
|
326 |
+
(0): LeakyReLU(negative_slope=0.1)
|
327 |
+
(1): Conv1d(128, 128, kernel_size=(11,), stride=(1,), padding=(5,))
|
328 |
+
)
|
329 |
+
)
|
330 |
+
)
|
331 |
+
(6): ResidualBlock(
|
332 |
+
(convs1): ModuleList(
|
333 |
+
(0): Sequential(
|
334 |
+
(0): LeakyReLU(negative_slope=0.1)
|
335 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
336 |
+
)
|
337 |
+
(1): Sequential(
|
338 |
+
(0): LeakyReLU(negative_slope=0.1)
|
339 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
340 |
+
)
|
341 |
+
(2): Sequential(
|
342 |
+
(0): LeakyReLU(negative_slope=0.1)
|
343 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
344 |
+
)
|
345 |
+
)
|
346 |
+
(convs2): ModuleList(
|
347 |
+
(0-2): 3 x Sequential(
|
348 |
+
(0): LeakyReLU(negative_slope=0.1)
|
349 |
+
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
|
350 |
+
)
|
351 |
+
)
|
352 |
+
)
|
353 |
+
(7): ResidualBlock(
|
354 |
+
(convs1): ModuleList(
|
355 |
+
(0): Sequential(
|
356 |
+
(0): LeakyReLU(negative_slope=0.1)
|
357 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
358 |
+
)
|
359 |
+
(1): Sequential(
|
360 |
+
(0): LeakyReLU(negative_slope=0.1)
|
361 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
362 |
+
)
|
363 |
+
(2): Sequential(
|
364 |
+
(0): LeakyReLU(negative_slope=0.1)
|
365 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
366 |
+
)
|
367 |
+
)
|
368 |
+
(convs2): ModuleList(
|
369 |
+
(0-2): 3 x Sequential(
|
370 |
+
(0): LeakyReLU(negative_slope=0.1)
|
371 |
+
(1): Conv1d(64, 64, kernel_size=(7,), stride=(1,), padding=(3,))
|
372 |
+
)
|
373 |
+
)
|
374 |
+
)
|
375 |
+
(8): ResidualBlock(
|
376 |
+
(convs1): ModuleList(
|
377 |
+
(0): Sequential(
|
378 |
+
(0): LeakyReLU(negative_slope=0.1)
|
379 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
380 |
+
)
|
381 |
+
(1): Sequential(
|
382 |
+
(0): LeakyReLU(negative_slope=0.1)
|
383 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
384 |
+
)
|
385 |
+
(2): Sequential(
|
386 |
+
(0): LeakyReLU(negative_slope=0.1)
|
387 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
388 |
+
)
|
389 |
+
)
|
390 |
+
(convs2): ModuleList(
|
391 |
+
(0-2): 3 x Sequential(
|
392 |
+
(0): LeakyReLU(negative_slope=0.1)
|
393 |
+
(1): Conv1d(64, 64, kernel_size=(11,), stride=(1,), padding=(5,))
|
394 |
+
)
|
395 |
+
)
|
396 |
+
)
|
397 |
+
(9): ResidualBlock(
|
398 |
+
(convs1): ModuleList(
|
399 |
+
(0): Sequential(
|
400 |
+
(0): LeakyReLU(negative_slope=0.1)
|
401 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
402 |
+
)
|
403 |
+
(1): Sequential(
|
404 |
+
(0): LeakyReLU(negative_slope=0.1)
|
405 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,))
|
406 |
+
)
|
407 |
+
(2): Sequential(
|
408 |
+
(0): LeakyReLU(negative_slope=0.1)
|
409 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(5,), dilation=(5,))
|
410 |
+
)
|
411 |
+
)
|
412 |
+
(convs2): ModuleList(
|
413 |
+
(0-2): 3 x Sequential(
|
414 |
+
(0): LeakyReLU(negative_slope=0.1)
|
415 |
+
(1): Conv1d(32, 32, kernel_size=(3,), stride=(1,), padding=(1,))
|
416 |
+
)
|
417 |
+
)
|
418 |
+
)
|
419 |
+
(10): ResidualBlock(
|
420 |
+
(convs1): ModuleList(
|
421 |
+
(0): Sequential(
|
422 |
+
(0): LeakyReLU(negative_slope=0.1)
|
423 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
424 |
+
)
|
425 |
+
(1): Sequential(
|
426 |
+
(0): LeakyReLU(negative_slope=0.1)
|
427 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(9,), dilation=(3,))
|
428 |
+
)
|
429 |
+
(2): Sequential(
|
430 |
+
(0): LeakyReLU(negative_slope=0.1)
|
431 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(15,), dilation=(5,))
|
432 |
+
)
|
433 |
+
)
|
434 |
+
(convs2): ModuleList(
|
435 |
+
(0-2): 3 x Sequential(
|
436 |
+
(0): LeakyReLU(negative_slope=0.1)
|
437 |
+
(1): Conv1d(32, 32, kernel_size=(7,), stride=(1,), padding=(3,))
|
438 |
+
)
|
439 |
+
)
|
440 |
+
)
|
441 |
+
(11): ResidualBlock(
|
442 |
+
(convs1): ModuleList(
|
443 |
+
(0): Sequential(
|
444 |
+
(0): LeakyReLU(negative_slope=0.1)
|
445 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
446 |
+
)
|
447 |
+
(1): Sequential(
|
448 |
+
(0): LeakyReLU(negative_slope=0.1)
|
449 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(15,), dilation=(3,))
|
450 |
+
)
|
451 |
+
(2): Sequential(
|
452 |
+
(0): LeakyReLU(negative_slope=0.1)
|
453 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(25,), dilation=(5,))
|
454 |
+
)
|
455 |
+
)
|
456 |
+
(convs2): ModuleList(
|
457 |
+
(0-2): 3 x Sequential(
|
458 |
+
(0): LeakyReLU(negative_slope=0.1)
|
459 |
+
(1): Conv1d(32, 32, kernel_size=(11,), stride=(1,), padding=(5,))
|
460 |
+
)
|
461 |
+
)
|
462 |
+
)
|
463 |
+
)
|
464 |
+
(output_conv): Sequential(
|
465 |
+
(0): LeakyReLU(negative_slope=0.01)
|
466 |
+
(1): Conv1d(32, 1, kernel_size=(7,), stride=(1,), padding=(3,))
|
467 |
+
(2): Tanh()
|
468 |
+
)
|
469 |
+
(global_conv): Conv1d(256, 512, kernel_size=(1,), stride=(1,))
|
470 |
+
)
|
471 |
+
(posterior_encoder): PosteriorEncoder(
|
472 |
+
(input_conv): Conv1d(80, 192, kernel_size=(1,), stride=(1,))
|
473 |
+
(encoder): WaveNet(
|
474 |
+
(conv_layers): ModuleList(
|
475 |
+
(0-15): 16 x ResidualBlock(
|
476 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
477 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
478 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
479 |
+
)
|
480 |
+
)
|
481 |
+
)
|
482 |
+
(proj): Conv1d(192, 384, kernel_size=(1,), stride=(1,))
|
483 |
+
)
|
484 |
+
(flow): ResidualAffineCouplingBlock(
|
485 |
+
(flows): ModuleList(
|
486 |
+
(0): ResidualAffineCouplingLayer(
|
487 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
488 |
+
(encoder): WaveNet(
|
489 |
+
(conv_layers): ModuleList(
|
490 |
+
(0-3): 4 x ResidualBlock(
|
491 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
492 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
493 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
494 |
+
)
|
495 |
+
)
|
496 |
+
)
|
497 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
498 |
+
)
|
499 |
+
(1): FlipFlow()
|
500 |
+
(2): ResidualAffineCouplingLayer(
|
501 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
502 |
+
(encoder): WaveNet(
|
503 |
+
(conv_layers): ModuleList(
|
504 |
+
(0-3): 4 x ResidualBlock(
|
505 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
506 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
507 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
508 |
+
)
|
509 |
+
)
|
510 |
+
)
|
511 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
512 |
+
)
|
513 |
+
(3): FlipFlow()
|
514 |
+
(4): ResidualAffineCouplingLayer(
|
515 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
516 |
+
(encoder): WaveNet(
|
517 |
+
(conv_layers): ModuleList(
|
518 |
+
(0-3): 4 x ResidualBlock(
|
519 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
520 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
521 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
522 |
+
)
|
523 |
+
)
|
524 |
+
)
|
525 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
526 |
+
)
|
527 |
+
(5): FlipFlow()
|
528 |
+
(6): ResidualAffineCouplingLayer(
|
529 |
+
(input_conv): Conv1d(96, 192, kernel_size=(1,), stride=(1,))
|
530 |
+
(encoder): WaveNet(
|
531 |
+
(conv_layers): ModuleList(
|
532 |
+
(0-3): 4 x ResidualBlock(
|
533 |
+
(conv): Conv1d(192, 384, kernel_size=(5,), stride=(1,), padding=(2,))
|
534 |
+
(conv1x1_glo): Conv1d1x1(256, 384, kernel_size=(1,), stride=(1,), bias=False)
|
535 |
+
(conv1x1_out): Conv1d1x1(192, 384, kernel_size=(1,), stride=(1,))
|
536 |
+
)
|
537 |
+
)
|
538 |
+
)
|
539 |
+
(proj): Conv1d(192, 96, kernel_size=(1,), stride=(1,))
|
540 |
+
)
|
541 |
+
(7): FlipFlow()
|
542 |
+
)
|
543 |
+
)
|
544 |
+
(duration_predictor): StochasticDurationPredictor(
|
545 |
+
(pre): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
546 |
+
(dds): DilatedDepthSeparableConv(
|
547 |
+
(convs): ModuleList(
|
548 |
+
(0): Sequential(
|
549 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
550 |
+
(1): Transpose()
|
551 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
552 |
+
(3): Transpose()
|
553 |
+
(4): GELU(approximate='none')
|
554 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
555 |
+
(6): Transpose()
|
556 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
557 |
+
(8): Transpose()
|
558 |
+
(9): GELU(approximate='none')
|
559 |
+
(10): Dropout(p=0.5, inplace=False)
|
560 |
+
)
|
561 |
+
(1): Sequential(
|
562 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
563 |
+
(1): Transpose()
|
564 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
565 |
+
(3): Transpose()
|
566 |
+
(4): GELU(approximate='none')
|
567 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
568 |
+
(6): Transpose()
|
569 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
570 |
+
(8): Transpose()
|
571 |
+
(9): GELU(approximate='none')
|
572 |
+
(10): Dropout(p=0.5, inplace=False)
|
573 |
+
)
|
574 |
+
(2): Sequential(
|
575 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
576 |
+
(1): Transpose()
|
577 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
578 |
+
(3): Transpose()
|
579 |
+
(4): GELU(approximate='none')
|
580 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
581 |
+
(6): Transpose()
|
582 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
583 |
+
(8): Transpose()
|
584 |
+
(9): GELU(approximate='none')
|
585 |
+
(10): Dropout(p=0.5, inplace=False)
|
586 |
+
)
|
587 |
+
)
|
588 |
+
)
|
589 |
+
(proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
590 |
+
(log_flow): LogFlow()
|
591 |
+
(flows): ModuleList(
|
592 |
+
(0): ElementwiseAffineFlow()
|
593 |
+
(1): ConvFlow(
|
594 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
595 |
+
(dds_conv): DilatedDepthSeparableConv(
|
596 |
+
(convs): ModuleList(
|
597 |
+
(0): Sequential(
|
598 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
599 |
+
(1): Transpose()
|
600 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
601 |
+
(3): Transpose()
|
602 |
+
(4): GELU(approximate='none')
|
603 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
604 |
+
(6): Transpose()
|
605 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
606 |
+
(8): Transpose()
|
607 |
+
(9): GELU(approximate='none')
|
608 |
+
(10): Dropout(p=0.0, inplace=False)
|
609 |
+
)
|
610 |
+
(1): Sequential(
|
611 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
612 |
+
(1): Transpose()
|
613 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
614 |
+
(3): Transpose()
|
615 |
+
(4): GELU(approximate='none')
|
616 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
617 |
+
(6): Transpose()
|
618 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
619 |
+
(8): Transpose()
|
620 |
+
(9): GELU(approximate='none')
|
621 |
+
(10): Dropout(p=0.0, inplace=False)
|
622 |
+
)
|
623 |
+
(2): Sequential(
|
624 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
625 |
+
(1): Transpose()
|
626 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
627 |
+
(3): Transpose()
|
628 |
+
(4): GELU(approximate='none')
|
629 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
630 |
+
(6): Transpose()
|
631 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
632 |
+
(8): Transpose()
|
633 |
+
(9): GELU(approximate='none')
|
634 |
+
(10): Dropout(p=0.0, inplace=False)
|
635 |
+
)
|
636 |
+
)
|
637 |
+
)
|
638 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
639 |
+
)
|
640 |
+
(2): FlipFlow()
|
641 |
+
(3): ConvFlow(
|
642 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
643 |
+
(dds_conv): DilatedDepthSeparableConv(
|
644 |
+
(convs): ModuleList(
|
645 |
+
(0): Sequential(
|
646 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
647 |
+
(1): Transpose()
|
648 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
649 |
+
(3): Transpose()
|
650 |
+
(4): GELU(approximate='none')
|
651 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
652 |
+
(6): Transpose()
|
653 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
654 |
+
(8): Transpose()
|
655 |
+
(9): GELU(approximate='none')
|
656 |
+
(10): Dropout(p=0.0, inplace=False)
|
657 |
+
)
|
658 |
+
(1): Sequential(
|
659 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
660 |
+
(1): Transpose()
|
661 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
662 |
+
(3): Transpose()
|
663 |
+
(4): GELU(approximate='none')
|
664 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
665 |
+
(6): Transpose()
|
666 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
667 |
+
(8): Transpose()
|
668 |
+
(9): GELU(approximate='none')
|
669 |
+
(10): Dropout(p=0.0, inplace=False)
|
670 |
+
)
|
671 |
+
(2): Sequential(
|
672 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
673 |
+
(1): Transpose()
|
674 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
675 |
+
(3): Transpose()
|
676 |
+
(4): GELU(approximate='none')
|
677 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
678 |
+
(6): Transpose()
|
679 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
680 |
+
(8): Transpose()
|
681 |
+
(9): GELU(approximate='none')
|
682 |
+
(10): Dropout(p=0.0, inplace=False)
|
683 |
+
)
|
684 |
+
)
|
685 |
+
)
|
686 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
687 |
+
)
|
688 |
+
(4): FlipFlow()
|
689 |
+
(5): ConvFlow(
|
690 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
691 |
+
(dds_conv): DilatedDepthSeparableConv(
|
692 |
+
(convs): ModuleList(
|
693 |
+
(0): Sequential(
|
694 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
695 |
+
(1): Transpose()
|
696 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
697 |
+
(3): Transpose()
|
698 |
+
(4): GELU(approximate='none')
|
699 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
700 |
+
(6): Transpose()
|
701 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
702 |
+
(8): Transpose()
|
703 |
+
(9): GELU(approximate='none')
|
704 |
+
(10): Dropout(p=0.0, inplace=False)
|
705 |
+
)
|
706 |
+
(1): Sequential(
|
707 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
708 |
+
(1): Transpose()
|
709 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
710 |
+
(3): Transpose()
|
711 |
+
(4): GELU(approximate='none')
|
712 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
713 |
+
(6): Transpose()
|
714 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
715 |
+
(8): Transpose()
|
716 |
+
(9): GELU(approximate='none')
|
717 |
+
(10): Dropout(p=0.0, inplace=False)
|
718 |
+
)
|
719 |
+
(2): Sequential(
|
720 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
721 |
+
(1): Transpose()
|
722 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
723 |
+
(3): Transpose()
|
724 |
+
(4): GELU(approximate='none')
|
725 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
726 |
+
(6): Transpose()
|
727 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
728 |
+
(8): Transpose()
|
729 |
+
(9): GELU(approximate='none')
|
730 |
+
(10): Dropout(p=0.0, inplace=False)
|
731 |
+
)
|
732 |
+
)
|
733 |
+
)
|
734 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
735 |
+
)
|
736 |
+
(6): FlipFlow()
|
737 |
+
(7): ConvFlow(
|
738 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
739 |
+
(dds_conv): DilatedDepthSeparableConv(
|
740 |
+
(convs): ModuleList(
|
741 |
+
(0): Sequential(
|
742 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
743 |
+
(1): Transpose()
|
744 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
745 |
+
(3): Transpose()
|
746 |
+
(4): GELU(approximate='none')
|
747 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
748 |
+
(6): Transpose()
|
749 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
750 |
+
(8): Transpose()
|
751 |
+
(9): GELU(approximate='none')
|
752 |
+
(10): Dropout(p=0.0, inplace=False)
|
753 |
+
)
|
754 |
+
(1): Sequential(
|
755 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
756 |
+
(1): Transpose()
|
757 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
758 |
+
(3): Transpose()
|
759 |
+
(4): GELU(approximate='none')
|
760 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
761 |
+
(6): Transpose()
|
762 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
763 |
+
(8): Transpose()
|
764 |
+
(9): GELU(approximate='none')
|
765 |
+
(10): Dropout(p=0.0, inplace=False)
|
766 |
+
)
|
767 |
+
(2): Sequential(
|
768 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
769 |
+
(1): Transpose()
|
770 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
771 |
+
(3): Transpose()
|
772 |
+
(4): GELU(approximate='none')
|
773 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
774 |
+
(6): Transpose()
|
775 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
776 |
+
(8): Transpose()
|
777 |
+
(9): GELU(approximate='none')
|
778 |
+
(10): Dropout(p=0.0, inplace=False)
|
779 |
+
)
|
780 |
+
)
|
781 |
+
)
|
782 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
783 |
+
)
|
784 |
+
(8): FlipFlow()
|
785 |
+
)
|
786 |
+
(post_pre): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
787 |
+
(post_dds): DilatedDepthSeparableConv(
|
788 |
+
(convs): ModuleList(
|
789 |
+
(0): Sequential(
|
790 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
791 |
+
(1): Transpose()
|
792 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
793 |
+
(3): Transpose()
|
794 |
+
(4): GELU(approximate='none')
|
795 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
796 |
+
(6): Transpose()
|
797 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
798 |
+
(8): Transpose()
|
799 |
+
(9): GELU(approximate='none')
|
800 |
+
(10): Dropout(p=0.5, inplace=False)
|
801 |
+
)
|
802 |
+
(1): Sequential(
|
803 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
804 |
+
(1): Transpose()
|
805 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
806 |
+
(3): Transpose()
|
807 |
+
(4): GELU(approximate='none')
|
808 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
809 |
+
(6): Transpose()
|
810 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
811 |
+
(8): Transpose()
|
812 |
+
(9): GELU(approximate='none')
|
813 |
+
(10): Dropout(p=0.5, inplace=False)
|
814 |
+
)
|
815 |
+
(2): Sequential(
|
816 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
817 |
+
(1): Transpose()
|
818 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
819 |
+
(3): Transpose()
|
820 |
+
(4): GELU(approximate='none')
|
821 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
822 |
+
(6): Transpose()
|
823 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
824 |
+
(8): Transpose()
|
825 |
+
(9): GELU(approximate='none')
|
826 |
+
(10): Dropout(p=0.5, inplace=False)
|
827 |
+
)
|
828 |
+
)
|
829 |
+
)
|
830 |
+
(post_proj): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
831 |
+
(post_flows): ModuleList(
|
832 |
+
(0): ElementwiseAffineFlow()
|
833 |
+
(1): ConvFlow(
|
834 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
835 |
+
(dds_conv): DilatedDepthSeparableConv(
|
836 |
+
(convs): ModuleList(
|
837 |
+
(0): Sequential(
|
838 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
839 |
+
(1): Transpose()
|
840 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
841 |
+
(3): Transpose()
|
842 |
+
(4): GELU(approximate='none')
|
843 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
844 |
+
(6): Transpose()
|
845 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
846 |
+
(8): Transpose()
|
847 |
+
(9): GELU(approximate='none')
|
848 |
+
(10): Dropout(p=0.0, inplace=False)
|
849 |
+
)
|
850 |
+
(1): Sequential(
|
851 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
852 |
+
(1): Transpose()
|
853 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
854 |
+
(3): Transpose()
|
855 |
+
(4): GELU(approximate='none')
|
856 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
857 |
+
(6): Transpose()
|
858 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
859 |
+
(8): Transpose()
|
860 |
+
(9): GELU(approximate='none')
|
861 |
+
(10): Dropout(p=0.0, inplace=False)
|
862 |
+
)
|
863 |
+
(2): Sequential(
|
864 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
865 |
+
(1): Transpose()
|
866 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
867 |
+
(3): Transpose()
|
868 |
+
(4): GELU(approximate='none')
|
869 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
870 |
+
(6): Transpose()
|
871 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
872 |
+
(8): Transpose()
|
873 |
+
(9): GELU(approximate='none')
|
874 |
+
(10): Dropout(p=0.0, inplace=False)
|
875 |
+
)
|
876 |
+
)
|
877 |
+
)
|
878 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
879 |
+
)
|
880 |
+
(2): FlipFlow()
|
881 |
+
(3): ConvFlow(
|
882 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
883 |
+
(dds_conv): DilatedDepthSeparableConv(
|
884 |
+
(convs): ModuleList(
|
885 |
+
(0): Sequential(
|
886 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
887 |
+
(1): Transpose()
|
888 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
889 |
+
(3): Transpose()
|
890 |
+
(4): GELU(approximate='none')
|
891 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
892 |
+
(6): Transpose()
|
893 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
894 |
+
(8): Transpose()
|
895 |
+
(9): GELU(approximate='none')
|
896 |
+
(10): Dropout(p=0.0, inplace=False)
|
897 |
+
)
|
898 |
+
(1): Sequential(
|
899 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
900 |
+
(1): Transpose()
|
901 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
902 |
+
(3): Transpose()
|
903 |
+
(4): GELU(approximate='none')
|
904 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
905 |
+
(6): Transpose()
|
906 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
907 |
+
(8): Transpose()
|
908 |
+
(9): GELU(approximate='none')
|
909 |
+
(10): Dropout(p=0.0, inplace=False)
|
910 |
+
)
|
911 |
+
(2): Sequential(
|
912 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
913 |
+
(1): Transpose()
|
914 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
915 |
+
(3): Transpose()
|
916 |
+
(4): GELU(approximate='none')
|
917 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
918 |
+
(6): Transpose()
|
919 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
920 |
+
(8): Transpose()
|
921 |
+
(9): GELU(approximate='none')
|
922 |
+
(10): Dropout(p=0.0, inplace=False)
|
923 |
+
)
|
924 |
+
)
|
925 |
+
)
|
926 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
927 |
+
)
|
928 |
+
(4): FlipFlow()
|
929 |
+
(5): ConvFlow(
|
930 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
931 |
+
(dds_conv): DilatedDepthSeparableConv(
|
932 |
+
(convs): ModuleList(
|
933 |
+
(0): Sequential(
|
934 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
935 |
+
(1): Transpose()
|
936 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
937 |
+
(3): Transpose()
|
938 |
+
(4): GELU(approximate='none')
|
939 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
940 |
+
(6): Transpose()
|
941 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
942 |
+
(8): Transpose()
|
943 |
+
(9): GELU(approximate='none')
|
944 |
+
(10): Dropout(p=0.0, inplace=False)
|
945 |
+
)
|
946 |
+
(1): Sequential(
|
947 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
948 |
+
(1): Transpose()
|
949 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
950 |
+
(3): Transpose()
|
951 |
+
(4): GELU(approximate='none')
|
952 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
953 |
+
(6): Transpose()
|
954 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
955 |
+
(8): Transpose()
|
956 |
+
(9): GELU(approximate='none')
|
957 |
+
(10): Dropout(p=0.0, inplace=False)
|
958 |
+
)
|
959 |
+
(2): Sequential(
|
960 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
961 |
+
(1): Transpose()
|
962 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
963 |
+
(3): Transpose()
|
964 |
+
(4): GELU(approximate='none')
|
965 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
966 |
+
(6): Transpose()
|
967 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
968 |
+
(8): Transpose()
|
969 |
+
(9): GELU(approximate='none')
|
970 |
+
(10): Dropout(p=0.0, inplace=False)
|
971 |
+
)
|
972 |
+
)
|
973 |
+
)
|
974 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
975 |
+
)
|
976 |
+
(6): FlipFlow()
|
977 |
+
(7): ConvFlow(
|
978 |
+
(input_conv): Conv1d(1, 192, kernel_size=(1,), stride=(1,))
|
979 |
+
(dds_conv): DilatedDepthSeparableConv(
|
980 |
+
(convs): ModuleList(
|
981 |
+
(0): Sequential(
|
982 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(1,), groups=192)
|
983 |
+
(1): Transpose()
|
984 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
985 |
+
(3): Transpose()
|
986 |
+
(4): GELU(approximate='none')
|
987 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
988 |
+
(6): Transpose()
|
989 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
990 |
+
(8): Transpose()
|
991 |
+
(9): GELU(approximate='none')
|
992 |
+
(10): Dropout(p=0.0, inplace=False)
|
993 |
+
)
|
994 |
+
(1): Sequential(
|
995 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(3,), dilation=(3,), groups=192)
|
996 |
+
(1): Transpose()
|
997 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
998 |
+
(3): Transpose()
|
999 |
+
(4): GELU(approximate='none')
|
1000 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1001 |
+
(6): Transpose()
|
1002 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1003 |
+
(8): Transpose()
|
1004 |
+
(9): GELU(approximate='none')
|
1005 |
+
(10): Dropout(p=0.0, inplace=False)
|
1006 |
+
)
|
1007 |
+
(2): Sequential(
|
1008 |
+
(0): Conv1d(192, 192, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,), groups=192)
|
1009 |
+
(1): Transpose()
|
1010 |
+
(2): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1011 |
+
(3): Transpose()
|
1012 |
+
(4): GELU(approximate='none')
|
1013 |
+
(5): Conv1d(192, 192, kernel_size=(1,), stride=(1,))
|
1014 |
+
(6): Transpose()
|
1015 |
+
(7): LayerNorm((192,), eps=1e-05, elementwise_affine=True)
|
1016 |
+
(8): Transpose()
|
1017 |
+
(9): GELU(approximate='none')
|
1018 |
+
(10): Dropout(p=0.0, inplace=False)
|
1019 |
+
)
|
1020 |
+
)
|
1021 |
+
)
|
1022 |
+
(proj): Conv1d(192, 29, kernel_size=(1,), stride=(1,))
|
1023 |
+
)
|
1024 |
+
(8): FlipFlow()
|
1025 |
+
)
|
1026 |
+
(global_conv): Conv1d(256, 192, kernel_size=(1,), stride=(1,))
|
1027 |
+
)
|
1028 |
+
(global_emb): Embedding(4, 256)
|
1029 |
+
)
|
1030 |
+
(discriminator): HiFiGANMultiScaleMultiPeriodDiscriminator(
|
1031 |
+
(msd): HiFiGANMultiScaleDiscriminator(
|
1032 |
+
(discriminators): ModuleList(
|
1033 |
+
(0): HiFiGANScaleDiscriminator(
|
1034 |
+
(layers): ModuleList(
|
1035 |
+
(0): Sequential(
|
1036 |
+
(0): Conv1d(1, 128, kernel_size=(15,), stride=(1,), padding=(7,))
|
1037 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1038 |
+
)
|
1039 |
+
(1): Sequential(
|
1040 |
+
(0): Conv1d(128, 128, kernel_size=(41,), stride=(2,), padding=(20,), groups=4)
|
1041 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1042 |
+
)
|
1043 |
+
(2): Sequential(
|
1044 |
+
(0): Conv1d(128, 256, kernel_size=(41,), stride=(2,), padding=(20,), groups=16)
|
1045 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1046 |
+
)
|
1047 |
+
(3): Sequential(
|
1048 |
+
(0): Conv1d(256, 512, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1049 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1050 |
+
)
|
1051 |
+
(4): Sequential(
|
1052 |
+
(0): Conv1d(512, 1024, kernel_size=(41,), stride=(4,), padding=(20,), groups=16)
|
1053 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1054 |
+
)
|
1055 |
+
(5): Sequential(
|
1056 |
+
(0): Conv1d(1024, 1024, kernel_size=(41,), stride=(1,), padding=(20,), groups=16)
|
1057 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1058 |
+
)
|
1059 |
+
(6): Sequential(
|
1060 |
+
(0): Conv1d(1024, 1024, kernel_size=(5,), stride=(1,), padding=(2,))
|
1061 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1062 |
+
)
|
1063 |
+
(7): Conv1d(1024, 1, kernel_size=(3,), stride=(1,), padding=(1,))
|
1064 |
+
)
|
1065 |
+
)
|
1066 |
+
)
|
1067 |
+
)
|
1068 |
+
(mpd): HiFiGANMultiPeriodDiscriminator(
|
1069 |
+
(discriminators): ModuleList(
|
1070 |
+
(0-4): 5 x HiFiGANPeriodDiscriminator(
|
1071 |
+
(convs): ModuleList(
|
1072 |
+
(0): Sequential(
|
1073 |
+
(0): Conv2d(1, 32, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1074 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1075 |
+
)
|
1076 |
+
(1): Sequential(
|
1077 |
+
(0): Conv2d(32, 128, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1078 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1079 |
+
)
|
1080 |
+
(2): Sequential(
|
1081 |
+
(0): Conv2d(128, 512, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1082 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1083 |
+
)
|
1084 |
+
(3): Sequential(
|
1085 |
+
(0): Conv2d(512, 1024, kernel_size=(5, 1), stride=(3, 1), padding=(2, 0))
|
1086 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1087 |
+
)
|
1088 |
+
(4): Sequential(
|
1089 |
+
(0): Conv2d(1024, 1024, kernel_size=(5, 1), stride=(1, 1), padding=(2, 0))
|
1090 |
+
(1): LeakyReLU(negative_slope=0.1)
|
1091 |
+
)
|
1092 |
+
)
|
1093 |
+
(output_conv): Conv2d(1024, 1, kernel_size=(2, 1), stride=(1, 1), padding=(1, 0))
|
1094 |
+
)
|
1095 |
+
)
|
1096 |
+
)
|
1097 |
+
)
|
1098 |
+
(generator_adv_loss): GeneratorAdversarialLoss()
|
1099 |
+
(discriminator_adv_loss): DiscriminatorAdversarialLoss()
|
1100 |
+
(feat_match_loss): FeatureMatchLoss()
|
1101 |
+
(mel_loss): MelSpectrogramLoss(
|
1102 |
+
(wav_to_mel): LogMelFbank(
|
1103 |
+
(stft): Stft(n_fft=1024, win_length=1024, hop_length=256, center=True, normalized=False, onesided=True)
|
1104 |
+
(logmel): LogMel(sr=22050, n_fft=1024, n_mels=80, fmin=0, fmax=11025.0, htk=False)
|
1105 |
+
)
|
1106 |
+
)
|
1107 |
+
(kl_loss): KLDivergenceLoss()
|
1108 |
+
)
|
1109 |
+
)
|
1110 |
+
|
1111 |
+
Model summary:
|
1112 |
+
Class Name: ESPnetGANTTSModel
|
1113 |
+
Total Number of model parameters: 96.24 M
|
1114 |
+
Number of trainable parameters: 96.24 M (100.0%)
|
1115 |
+
Size: 384.96 MB
|
1116 |
+
Type: torch.float32
|
1117 |
+
[wieling-3-a100] 2023-12-01 15:58:42,453 (abs_task:1272) INFO: Optimizer:
|
1118 |
+
AdamW (
|
1119 |
+
Parameter Group 0
|
1120 |
+
amsgrad: False
|
1121 |
+
betas: [0.8, 0.99]
|
1122 |
+
capturable: False
|
1123 |
+
differentiable: False
|
1124 |
+
eps: 1e-09
|
1125 |
+
foreach: None
|
1126 |
+
fused: None
|
1127 |
+
initial_lr: 0.0003
|
1128 |
+
lr: 0.0003
|
1129 |
+
maximize: False
|
1130 |
+
weight_decay: 0.0
|
1131 |
+
)
|
1132 |
+
[wieling-3-a100] 2023-12-01 15:58:42,453 (abs_task:1273) INFO: Scheduler: <torch.optim.lr_scheduler.ExponentialLR object at 0x7f03bc341880>
|
1133 |
+
[wieling-3-a100] 2023-12-01 15:58:42,453 (abs_task:1272) INFO: Optimizer2:
|
1134 |
+
AdamW (
|
1135 |
+
Parameter Group 0
|
1136 |
+
amsgrad: False
|
1137 |
+
betas: [0.8, 0.99]
|
1138 |
+
capturable: False
|
1139 |
+
differentiable: False
|
1140 |
+
eps: 1e-09
|
1141 |
+
foreach: None
|
1142 |
+
fused: None
|
1143 |
+
initial_lr: 0.0003
|
1144 |
+
lr: 0.0003
|
1145 |
+
maximize: False
|
1146 |
+
weight_decay: 0.0
|
1147 |
+
)
|
1148 |
+
[wieling-3-a100] 2023-12-01 15:58:42,454 (abs_task:1273) INFO: Scheduler2: <torch.optim.lr_scheduler.ExponentialLR object at 0x7f03bc341820>
|
1149 |
+
[wieling-3-a100] 2023-12-01 15:58:42,454 (abs_task:1282) INFO: Saving the configuration in exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12/config.yaml
|
1150 |
+
[wieling-3-a100] 2023-12-01 15:58:42,480 (abs_task:1293) INFO: Namespace(config='conf/train_vits.yaml', print_config=False, log_level='INFO', drop_last_iter=False, dry_run=False, iterator_type='sequence', valid_iterator_type=None, output_dir='exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12', ngpu=0, seed=67823, num_workers=4, num_att_plot=3, dist_backend='nccl', dist_init_method='env://', dist_world_size=None, dist_rank=None, local_rank=None, dist_master_addr=None, dist_master_port=None, dist_launcher=None, multiprocessing_distributed=False, unused_parameters=True, sharded_ddp=False, cudnn_enabled=True, cudnn_benchmark=False, cudnn_deterministic=False, collect_stats=True, write_collected_feats=False, max_epoch=1000, patience=None, val_scheduler_criterion=('valid', 'loss'), early_stopping_criterion=('valid', 'loss', 'min'), best_model_criterion=[['train', 'total_count', 'max']], keep_nbest_models=10, nbest_averaging_interval=0, grad_clip=-1, grad_clip_type=2.0, grad_noise=False, accum_grad=1, no_forward_run=False, resume=False, train_dtype='float32', use_amp=False, log_interval=50, use_matplotlib=True, use_tensorboard=True, create_graph_in_tensorboard=False, use_wandb=True, wandb_project='GROTTS', wandb_id=None, wandb_entity=None, wandb_name='VITS_lr_3.0e-4', wandb_model_log_interval=-1, detect_anomaly=False, use_lora=False, save_lora_only=True, lora_conf={}, pretrain_path=None, init_param=['downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv'], ignore_init_mismatch=False, freeze_param=[], num_iters_per_epoch=1000, batch_size=40, valid_batch_size=None, batch_bins=10000000, valid_batch_bins=None, train_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.12.scp'], valid_shape_file=['exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.12.scp'], batch_type='numel', valid_batch_type=None, fold_length=[], sort_in_batch='descending', shuffle_within_batch=False, sort_batch='descending', multiple_iterator=False, chunk_length=500, chunk_shift_ratio=0.5, num_cache_chunks=1024, chunk_excluded_key_prefixes=[], chunk_default_fs=None, train_data_path_and_name_and_type=[('dump/raw/train_nodev/text', 'text', 'text'), ('dump/raw/train_nodev/wav.scp', 'speech', 'sound'), ('dump/raw/train_nodev/utt2sid', 'sids', 'text_int')], valid_data_path_and_name_and_type=[('dump/raw/train_dev/text', 'text', 'text'), ('dump/raw/train_dev/wav.scp', 'speech', 'sound'), ('dump/raw/train_dev/utt2sid', 'sids', 'text_int')], allow_variable_data_keys=False, max_cache_size=0.0, max_cache_fd=32, allow_multi_rates=False, valid_max_cache_size=None, exclude_weight_decay=False, exclude_weight_decay_conf={}, optim='adamw', optim_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler='exponentiallr', scheduler_conf={'gamma': 0.999875}, optim2='adamw', optim2_conf={'lr': 0.0003, 'betas': [0.8, 0.99], 'eps': 1e-09, 'weight_decay': 0.0}, scheduler2='exponentiallr', scheduler2_conf={'gamma': 0.999875}, generator_first=False, token_list=['<blank>', '<unk>', '<space>', 'e', 'n', 'a', 'o', 't', 'i', 'r', 'd', 's', 'k', 'l', 'm', 'u', 'g', 'h', 'w', 'v', '.', 'z', 'b', 'p', ',', 'j', 'c', 'f', '‘', '’', ':', '?', 'ö', "'", '!', '-', ';', 'ò', 'è', 'ì', 'é', 'y', 'ë', 'x', 'q', '<sos/eos>'], odim=None, model_conf={}, use_preprocessor=True, token_type='char', bpemodel=None, non_linguistic_symbols=None, cleaner=None, g2p=None, feats_extract='fbank', feats_extract_conf={'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'fs': 22050, 'fmin': 80, 'fmax': 7600, 'n_mels': 80}, normalize=None, normalize_conf={}, tts='vits', tts_conf={'generator_type': 'vits_generator', 'generator_params': {'hidden_channels': 192, 'spks': 4, 'global_channels': 256, 'segment_size': 32, 'text_encoder_attention_heads': 2, 'text_encoder_ffn_expand': 4, 'text_encoder_blocks': 6, 'text_encoder_positionwise_layer_type': 'conv1d', 'text_encoder_positionwise_conv_kernel_size': 3, 'text_encoder_positional_encoding_layer_type': 'rel_pos', 'text_encoder_self_attention_layer_type': 'rel_selfattn', 'text_encoder_activation_type': 'swish', 'text_encoder_normalize_before': True, 'text_encoder_dropout_rate': 0.1, 'text_encoder_positional_dropout_rate': 0.0, 'text_encoder_attention_dropout_rate': 0.1, 'use_macaron_style_in_text_encoder': True, 'use_conformer_conv_in_text_encoder': False, 'text_encoder_conformer_kernel_size': -1, 'decoder_kernel_size': 7, 'decoder_channels': 512, 'decoder_upsample_scales': [8, 8, 2, 2], 'decoder_upsample_kernel_sizes': [16, 16, 4, 4], 'decoder_resblock_kernel_sizes': [3, 7, 11], 'decoder_resblock_dilations': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'use_weight_norm_in_decoder': True, 'posterior_encoder_kernel_size': 5, 'posterior_encoder_layers': 16, 'posterior_encoder_stacks': 1, 'posterior_encoder_base_dilation': 1, 'posterior_encoder_dropout_rate': 0.0, 'use_weight_norm_in_posterior_encoder': True, 'flow_flows': 4, 'flow_kernel_size': 5, 'flow_base_dilation': 1, 'flow_layers': 4, 'flow_dropout_rate': 0.0, 'use_weight_norm_in_flow': True, 'use_only_mean_in_flow': True, 'stochastic_duration_predictor_kernel_size': 3, 'stochastic_duration_predictor_dropout_rate': 0.5, 'stochastic_duration_predictor_flows': 4, 'stochastic_duration_predictor_dds_conv_layers': 3, 'vocabs': 46, 'aux_channels': 80}, 'discriminator_type': 'hifigan_multi_scale_multi_period_discriminator', 'discriminator_params': {'scales': 1, 'scale_downsample_pooling': 'AvgPool1d', 'scale_downsample_pooling_params': {'kernel_size': 4, 'stride': 2, 'padding': 2}, 'scale_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [15, 41, 5, 3], 'channels': 128, 'max_downsample_channels': 1024, 'max_groups': 16, 'bias': True, 'downsample_scales': [2, 2, 4, 4, 1], 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': False, 'use_spectral_norm': False}, 'follow_official_norm': False, 'periods': [2, 3, 5, 7, 11], 'period_discriminator_params': {'in_channels': 1, 'out_channels': 1, 'kernel_sizes': [5, 3], 'channels': 32, 'downsample_scales': [3, 3, 3, 3, 1], 'max_downsample_channels': 1024, 'bias': True, 'nonlinear_activation': 'LeakyReLU', 'nonlinear_activation_params': {'negative_slope': 0.1}, 'use_weight_norm': True, 'use_spectral_norm': False}}, 'generator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'discriminator_adv_loss_params': {'average_by_discriminators': False, 'loss_type': 'mse'}, 'feat_match_loss_params': {'average_by_discriminators': False, 'average_by_layers': False, 'include_final_outputs': True}, 'mel_loss_params': {'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None, 'window': 'hann', 'n_mels': 80, 'fmin': 0, 'fmax': None, 'log_base': None}, 'lambda_adv': 1.0, 'lambda_mel': 45.0, 'lambda_feat_match': 2.0, 'lambda_dur': 1.0, 'lambda_kl': 1.0, 'sampling_rate': 22050, 'cache_generator_outputs': True}, pitch_extract=None, pitch_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'f0max': 400, 'f0min': 80}, pitch_normalize=None, pitch_normalize_conf={}, energy_extract=None, energy_extract_conf={'fs': 22050, 'n_fft': 1024, 'hop_length': 256, 'win_length': None}, energy_normalize=None, energy_normalize_conf={}, required=['output_dir', 'token_list'], version='202310', distributed=False)
|
1151 |
+
# Accounting: time=18 threads=1
|
1152 |
+
# Ended (code 0) at Fri Dec 1 15:58:52 UTC 2023, elapsed time 18 seconds
|
exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12/config.yaml
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
config: conf/train_vits.yaml
|
2 |
+
print_config: false
|
3 |
+
log_level: INFO
|
4 |
+
drop_last_iter: false
|
5 |
+
dry_run: false
|
6 |
+
iterator_type: sequence
|
7 |
+
valid_iterator_type: null
|
8 |
+
output_dir: exp-vits-lr-3e-4/tts_stats_raw_char/logdir/stats.12
|
9 |
+
ngpu: 0
|
10 |
+
seed: 67823
|
11 |
+
num_workers: 4
|
12 |
+
num_att_plot: 3
|
13 |
+
dist_backend: nccl
|
14 |
+
dist_init_method: env://
|
15 |
+
dist_world_size: null
|
16 |
+
dist_rank: null
|
17 |
+
local_rank: null
|
18 |
+
dist_master_addr: null
|
19 |
+
dist_master_port: null
|
20 |
+
dist_launcher: null
|
21 |
+
multiprocessing_distributed: false
|
22 |
+
unused_parameters: true
|
23 |
+
sharded_ddp: false
|
24 |
+
cudnn_enabled: true
|
25 |
+
cudnn_benchmark: false
|
26 |
+
cudnn_deterministic: false
|
27 |
+
collect_stats: true
|
28 |
+
write_collected_feats: false
|
29 |
+
max_epoch: 1000
|
30 |
+
patience: null
|
31 |
+
val_scheduler_criterion:
|
32 |
+
- valid
|
33 |
+
- loss
|
34 |
+
early_stopping_criterion:
|
35 |
+
- valid
|
36 |
+
- loss
|
37 |
+
- min
|
38 |
+
best_model_criterion:
|
39 |
+
- - train
|
40 |
+
- total_count
|
41 |
+
- max
|
42 |
+
keep_nbest_models: 10
|
43 |
+
nbest_averaging_interval: 0
|
44 |
+
grad_clip: -1
|
45 |
+
grad_clip_type: 2.0
|
46 |
+
grad_noise: false
|
47 |
+
accum_grad: 1
|
48 |
+
no_forward_run: false
|
49 |
+
resume: false
|
50 |
+
train_dtype: float32
|
51 |
+
use_amp: false
|
52 |
+
log_interval: 50
|
53 |
+
use_matplotlib: true
|
54 |
+
use_tensorboard: true
|
55 |
+
create_graph_in_tensorboard: false
|
56 |
+
use_wandb: true
|
57 |
+
wandb_project: GROTTS
|
58 |
+
wandb_id: null
|
59 |
+
wandb_entity: null
|
60 |
+
wandb_name: VITS_lr_3.0e-4
|
61 |
+
wandb_model_log_interval: -1
|
62 |
+
detect_anomaly: false
|
63 |
+
use_lora: false
|
64 |
+
save_lora_only: true
|
65 |
+
lora_conf: {}
|
66 |
+
pretrain_path: null
|
67 |
+
init_param:
|
68 |
+
- downloads/espnet/kan-bayashi_ljspeech_vits/exp/tts_train_vits_raw_phn_tacotron_g2p_en_no_space/train.total_count.ave_10best.pth:tts:tts:tts.generator.text_encoder,tts.generator.posterior_encoder.input_conv
|
69 |
+
ignore_init_mismatch: false
|
70 |
+
freeze_param: []
|
71 |
+
num_iters_per_epoch: 1000
|
72 |
+
batch_size: 40
|
73 |
+
valid_batch_size: null
|
74 |
+
batch_bins: 10000000
|
75 |
+
valid_batch_bins: null
|
76 |
+
train_shape_file:
|
77 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/train.12.scp
|
78 |
+
valid_shape_file:
|
79 |
+
- exp-vits-lr-3e-4/tts_stats_raw_char/logdir/valid.12.scp
|
80 |
+
batch_type: numel
|
81 |
+
valid_batch_type: null
|
82 |
+
fold_length: []
|
83 |
+
sort_in_batch: descending
|
84 |
+
shuffle_within_batch: false
|
85 |
+
sort_batch: descending
|
86 |
+
multiple_iterator: false
|
87 |
+
chunk_length: 500
|
88 |
+
chunk_shift_ratio: 0.5
|
89 |
+
num_cache_chunks: 1024
|
90 |
+
chunk_excluded_key_prefixes: []
|
91 |
+
chunk_default_fs: null
|
92 |
+
train_data_path_and_name_and_type:
|
93 |
+
- - dump/raw/train_nodev/text
|
94 |
+
- text
|
95 |
+
- text
|
96 |
+
- - dump/raw/train_nodev/wav.scp
|
97 |
+
- speech
|
98 |
+
- sound
|
99 |
+
- - dump/raw/train_nodev/utt2sid
|
100 |
+
- sids
|
101 |
+
- text_int
|
102 |
+
valid_data_path_and_name_and_type:
|
103 |
+
- - dump/raw/train_dev/text
|
104 |
+
- text
|
105 |
+
- text
|
106 |
+
- - dump/raw/train_dev/wav.scp
|
107 |
+
- speech
|
108 |
+
- sound
|
109 |
+
- - dump/raw/train_dev/utt2sid
|
110 |
+
- sids
|
111 |
+
- text_int
|
112 |
+
allow_variable_data_keys: false
|
113 |
+
max_cache_size: 0.0
|
114 |
+
max_cache_fd: 32
|
115 |
+
allow_multi_rates: false
|
116 |
+
valid_max_cache_size: null
|
117 |
+
exclude_weight_decay: false
|
118 |
+
exclude_weight_decay_conf: {}
|
119 |
+
optim: adamw
|
120 |
+
optim_conf:
|
121 |
+
lr: 0.0003
|
122 |
+
betas:
|
123 |
+
- 0.8
|
124 |
+
- 0.99
|
125 |
+
eps: 1.0e-09
|
126 |
+
weight_decay: 0.0
|
127 |
+
scheduler: exponentiallr
|
128 |
+
scheduler_conf:
|
129 |
+
gamma: 0.999875
|
130 |
+
optim2: adamw
|
131 |
+
optim2_conf:
|
132 |
+
lr: 0.0003
|
133 |
+
betas:
|
134 |
+
- 0.8
|
135 |
+
- 0.99
|
136 |
+
eps: 1.0e-09
|
137 |
+
weight_decay: 0.0
|
138 |
+
scheduler2: exponentiallr
|
139 |
+
scheduler2_conf:
|
140 |
+
gamma: 0.999875
|
141 |
+
generator_first: false
|
142 |
+
token_list:
|
143 |
+
- <blank>
|
144 |
+
- <unk>
|
145 |
+
- <space>
|
146 |
+
- e
|
147 |
+
- n
|
148 |
+
- a
|
149 |
+
- o
|
150 |
+
- t
|
151 |
+
- i
|
152 |
+
- r
|
153 |
+
- d
|
154 |
+
- s
|
155 |
+
- k
|
156 |
+
- l
|
157 |
+
- m
|
158 |
+
- u
|
159 |
+
- g
|
160 |
+
- h
|
161 |
+
- w
|
162 |
+
- v
|
163 |
+
- .
|
164 |
+
- z
|
165 |
+
- b
|
166 |
+
- p
|
167 |
+
- ','
|
168 |
+
- j
|
169 |
+
- c
|
170 |
+
- f
|
171 |
+
- ‘
|
172 |
+
- ’
|
173 |
+
- ':'
|
174 |
+
- '?'
|
175 |
+
- ö
|
176 |
+
- ''''
|
177 |
+
- '!'
|
178 |
+
- '-'
|
179 |
+
- ;
|
180 |
+
- ò
|
181 |
+
- è
|
182 |
+
- ì
|
183 |
+
- é
|
184 |
+
- y
|
185 |
+
- ë
|
186 |
+
- x
|
187 |
+
- q
|
188 |
+
- <sos/eos>
|
189 |
+
odim: null
|
190 |
+
model_conf: {}
|
191 |
+
use_preprocessor: true
|
192 |
+
token_type: char
|
193 |
+
bpemodel: null
|
194 |
+
non_linguistic_symbols: null
|
195 |
+
cleaner: null
|
196 |
+
g2p: null
|
197 |
+
feats_extract: fbank
|
198 |
+
feats_extract_conf:
|
199 |
+
n_fft: 1024
|
200 |
+
hop_length: 256
|
201 |
+
win_length: null
|
202 |
+
fs: 22050
|
203 |
+
fmin: 80
|
204 |
+
fmax: 7600
|
205 |
+
n_mels: 80
|
206 |
+
normalize: null
|
207 |
+
normalize_conf: {}
|
208 |
+
tts: vits
|
209 |
+
tts_conf:
|
210 |
+
generator_type: vits_generator
|
211 |
+
generator_params:
|
212 |
+
hidden_channels: 192
|
213 |
+
spks: 4
|
214 |
+
global_channels: 256
|
215 |
+
segment_size: 32
|
216 |
+
text_encoder_attention_heads: 2
|
217 |
+
text_encoder_ffn_expand: 4
|
218 |
+
text_encoder_blocks: 6
|
219 |
+
text_encoder_positionwise_layer_type: conv1d
|
220 |
+
text_encoder_positionwise_conv_kernel_size: 3
|
221 |
+
text_encoder_positional_encoding_layer_type: rel_pos
|
222 |
+
text_encoder_self_attention_layer_type: rel_selfattn
|
223 |
+
text_encoder_activation_type: swish
|
224 |
+
text_encoder_normalize_before: true
|
225 |
+
text_encoder_dropout_rate: 0.1
|
226 |
+
text_encoder_positional_dropout_rate: 0.0
|
227 |
+
text_encoder_attention_dropout_rate: 0.1
|
228 |
+
use_macaron_style_in_text_encoder: true
|
229 |
+
use_conformer_conv_in_text_encoder: false
|
230 |
+
text_encoder_conformer_kernel_size: -1
|
231 |
+
decoder_kernel_size: 7
|
232 |
+
decoder_channels: 512
|
233 |
+
decoder_upsample_scales:
|
234 |
+
- 8
|
235 |
+
- 8
|
236 |
+
- 2
|
237 |
+
- 2
|
238 |
+
decoder_upsample_kernel_sizes:
|
239 |
+
- 16
|
240 |
+
- 16
|
241 |
+
- 4
|
242 |
+
- 4
|
243 |
+
decoder_resblock_kernel_sizes:
|
244 |
+
- 3
|
245 |
+
- 7
|
246 |
+
- 11
|
247 |
+
decoder_resblock_dilations:
|
248 |
+
- - 1
|
249 |
+
- 3
|
250 |
+
- 5
|
251 |
+
- - 1
|
252 |
+
- 3
|
253 |
+
- 5
|
254 |
+
- - 1
|
255 |
+
- 3
|
256 |
+
- 5
|
257 |
+
use_weight_norm_in_decoder: true
|
258 |
+
posterior_encoder_kernel_size: 5
|
259 |
+
posterior_encoder_layers: 16
|
260 |
+
posterior_encoder_stacks: 1
|
261 |
+
posterior_encoder_base_dilation: 1
|
262 |
+
posterior_encoder_dropout_rate: 0.0
|
263 |
+
use_weight_norm_in_posterior_encoder: true
|
264 |
+
flow_flows: 4
|
265 |
+
flow_kernel_size: 5
|
266 |
+
flow_base_dilation: 1
|
267 |
+
flow_layers: 4
|
268 |
+
flow_dropout_rate: 0.0
|
269 |
+
use_weight_norm_in_flow: true
|
270 |
+
use_only_mean_in_flow: true
|
271 |
+
stochastic_duration_predictor_kernel_size: 3
|
272 |
+
stochastic_duration_predictor_dropout_rate: 0.5
|
273 |
+
stochastic_duration_predictor_flows: 4
|
274 |
+
stochastic_duration_predictor_dds_conv_layers: 3
|
275 |
+
vocabs: 46
|
276 |
+
aux_channels: 80
|
277 |
+
discriminator_type: hifigan_multi_scale_multi_period_discriminator
|
278 |
+
discriminator_params:
|
279 |
+
scales: 1
|
280 |
+
scale_downsample_pooling: AvgPool1d
|
281 |
+
scale_downsample_pooling_params:
|
282 |
+
kernel_size: 4
|
283 |
+
stride: 2
|
284 |
+
padding: 2
|
285 |
+
scale_discriminator_params:
|
286 |
+
in_channels: 1
|
287 |
+
out_channels: 1
|
288 |
+
kernel_sizes:
|
289 |
+
- 15
|
290 |
+
- 41
|
291 |
+
- 5
|
292 |
+
- 3
|
293 |
+
channels: 128
|
294 |
+
max_downsample_channels: 1024
|
295 |
+
max_groups: 16
|
296 |
+
bias: true
|
297 |
+
downsample_scales:
|
298 |
+
- 2
|
299 |
+
- 2
|
300 |
+
- 4
|
301 |
+
- 4
|
302 |
+
- 1
|
303 |
+
nonlinear_activation: LeakyReLU
|
304 |
+
nonlinear_activation_params:
|
305 |
+
negative_slope: 0.1
|
306 |
+
use_weight_norm: false
|
307 |
+
use_spectral_norm: false
|
308 |
+
follow_official_norm: false
|
309 |
+
periods:
|
310 |
+
- 2
|
311 |
+
- 3
|
312 |
+
- 5
|
313 |
+
- 7
|
314 |
+
- 11
|
315 |
+
period_discriminator_params:
|
316 |
+
in_channels: 1
|
317 |
+
out_channels: 1
|
318 |
+
kernel_sizes:
|
319 |
+
- 5
|
320 |
+
- 3
|
321 |
+
channels: 32
|
322 |
+
downsample_scales:
|
323 |
+
- 3
|
324 |
+
- 3
|
325 |
+
- 3
|
326 |
+
- 3
|
327 |
+
- 1
|
328 |
+
max_downsample_channels: 1024
|
329 |
+
bias: true
|
330 |
+
nonlinear_activation: LeakyReLU
|
331 |
+
nonlinear_activation_params:
|
332 |
+
negative_slope: 0.1
|
333 |
+
use_weight_norm: true
|
334 |
+
use_spectral_norm: false
|
335 |
+
generator_adv_loss_params:
|
336 |
+
average_by_discriminators: false
|
337 |
+
loss_type: mse
|
338 |
+
discriminator_adv_loss_params:
|
339 |
+
average_by_discriminators: false
|
340 |
+
loss_type: mse
|
341 |
+
feat_match_loss_params:
|
342 |
+
average_by_discriminators: false
|
343 |
+
average_by_layers: false
|
344 |
+
include_final_outputs: true
|
345 |
+
mel_loss_params:
|
346 |
+
fs: 22050
|
347 |
+
n_fft: 1024
|
348 |
+
hop_length: 256
|
349 |
+
win_length: null
|
350 |
+
window: hann
|
351 |
+
n_mels: 80
|
352 |
+
fmin: 0
|
353 |
+
fmax: null
|
354 |
+
log_base: null
|
355 |
+
lambda_adv: 1.0
|
356 |
+
lambda_mel: 45.0
|
357 |
+
lambda_feat_match: 2.0
|
358 |
+
lambda_dur: 1.0
|
359 |
+
lambda_kl: 1.0
|
360 |
+
sampling_rate: 22050
|
361 |
+
cache_generator_outputs: true
|
362 |
+
pitch_extract: null
|
363 |
+
pitch_extract_conf:
|
364 |
+
fs: 22050
|
365 |
+
n_fft: 1024
|
366 |
+
hop_length: 256
|
367 |
+
f0max: 400
|
368 |
+
f0min: 80
|
369 |
+
pitch_normalize: null
|
370 |
+
pitch_normalize_conf: {}
|
371 |
+
energy_extract: null
|
372 |
+
energy_extract_conf:
|
373 |
+
fs: 22050
|
374 |
+
n_fft: 1024
|
375 |
+
hop_length: 256
|
376 |
+
win_length: null
|
377 |
+
energy_normalize: null
|
378 |
+
energy_normalize_conf: {}
|
379 |
+
required:
|
380 |
+
- output_dir
|
381 |
+
- token_list
|
382 |
+
version: '202310'
|
383 |
+
distributed: false
|