bartowski commited on
Commit
04adbbb
·
verified ·
1 Parent(s): 7f396e7

Llamacpp quants

Browse files
.gitattributes CHANGED
@@ -33,3 +33,26 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Einstein-v6.1-Llama3-8B-IQ1_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Einstein-v6.1-Llama3-8B-IQ1_S.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Einstein-v6.1-Llama3-8B-IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Einstein-v6.1-Llama3-8B-IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Einstein-v6.1-Llama3-8B-IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Einstein-v6.1-Llama3-8B-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Einstein-v6.1-Llama3-8B-IQ3_S.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Einstein-v6.1-Llama3-8B-IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Einstein-v6.1-Llama3-8B-IQ4_NL.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Einstein-v6.1-Llama3-8B-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Einstein-v6.1-Llama3-8B-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Einstein-v6.1-Llama3-8B-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Einstein-v6.1-Llama3-8B-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Einstein-v6.1-Llama3-8B-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Einstein-v6.1-Llama3-8B-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Einstein-v6.1-Llama3-8B-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Einstein-v6.1-Llama3-8B-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Einstein-v6.1-Llama3-8B-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Einstein-v6.1-Llama3-8B-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Einstein-v6.1-Llama3-8B-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Einstein-v6.1-Llama3-8B.imatrix filter=lfs diff=lfs merge=lfs -text
Einstein-v6.1-Llama3-8B-IQ1_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fbdd5442330a3838dda5a598db2494612e92efb4001d8ce18713c00ce56c0b5
3
+ size 2161988160
Einstein-v6.1-Llama3-8B-IQ1_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:701d069dedfe45cc75a3bae3d8a3d658f7ab343dcc0f0b731d85be60e9a8d54f
3
+ size 2019643968
Einstein-v6.1-Llama3-8B-IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e91cd3a309bd0f4021de5f81dae08122254cd67bb545a25af4dc116e47d460c
3
+ size 2948298944
Einstein-v6.1-Llama3-8B-IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:815ae223fa4281b9d67fac8243b2a4713fa5c64abd3a57e9a82415eb01fe38ad
3
+ size 2758506688
Einstein-v6.1-Llama3-8B-IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ddf04635438a63234303eea541f0fd7c6dd64541ae36a5b349f32b714c39e3e
3
+ size 2605797952
Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:150c8616fe0cef83bfff6cc45e9b24c9a01318a22e04643e8a2360c6e4595cb0
3
+ size 2399228480
Einstein-v6.1-Llama3-8B-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f17b6918bdcb323f7a214a2daf5ca0a349b457ef73437bd7750af49ec4f0737
3
+ size 3784843584
Einstein-v6.1-Llama3-8B-IQ3_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8e25af6a8e8ccd211faebac0b890a615d8ab42e1af8fb97f9ffb776bf6b7158
3
+ size 3682345280
Einstein-v6.1-Llama3-8B-IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bb9af8cccc5e2b0bd9d4b7f881d1c5a16606cecb5b50c4d5ee50930b365f621
3
+ size 3518767424
Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76545add999464f09a604b397758f9dd274eac13d2949cef81b2b65ec166b234
3
+ size 3274930368
Einstein-v6.1-Llama3-8B-IQ4_NL.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b33408bce9c108122fcf6e1e1ad5c6978c09199685a93079a6e0520fc67cef79
3
+ size 4678011328
Einstein-v6.1-Llama3-8B-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c1c055eb5b3140f8f7634bd69ace403f8732d41fb73197bcf5af2ee6e8fde74
3
+ size 4447684544
Einstein-v6.1-Llama3-8B-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76a94bfa0bac74fd9f7a294ead8e77844462b2c68a88b0b287d0850f0ac8ff71
3
+ size 3179150016
Einstein-v6.1-Llama3-8B-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe8fbb3ffcc49c056e5948590ad91d4c8cd52b830347822176c0c17f963abd42
3
+ size 4321976640
Einstein-v6.1-Llama3-8B-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:084c96f6af9f7458bba8fe60be43dbd0115b70f968f15a799b6ca6d7b5f212e1
3
+ size 4018938176
Einstein-v6.1-Llama3-8B-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2323b80316a2fa343380d0a9f5eb789c737b5529230e5585b2de2145972f0e8d
3
+ size 3664519488
Einstein-v6.1-Llama3-8B-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ef96fd6e32658774b3c8fbc24088787dfa911288e272b186f448c886400d30d
3
+ size 4920756672
Einstein-v6.1-Llama3-8B-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dd8568494660676dbfb2ee9d99d44e65a919b60f608d1df38ed553163ba98a0
3
+ size 4692691392
Einstein-v6.1-Llama3-8B-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ee469722ad182bb7552bef5fc31d23471e52e8cd921d7543afc2a5db1983c3af
3
+ size 5733011904
Einstein-v6.1-Llama3-8B-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abaf90c2c774785230cfdcf59adb864c9df48eeb3b95ce8893fa326ed6c7e193
3
+ size 5599318464
Einstein-v6.1-Llama3-8B-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f9b2855295b1748b39ca72927606411146dc8cf63a73a35052f3088d9461759
3
+ size 6596033088
Einstein-v6.1-Llama3-8B-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8116fe5bde39002b609022bc7b27e927daf6ba6d78cfe0e42f0011e6894c21a
3
+ size 8540805440
Einstein-v6.1-Llama3-8B.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58efcf9a1ac4f01c96d254fda0d2815c2f5983bd58a39344c8771659d63f150d
3
+ size 4988126
README.md ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: other
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ - instruct
9
+ - finetune
10
+ - chatml
11
+ - gpt4
12
+ - synthetic data
13
+ - science
14
+ - physics
15
+ - chemistry
16
+ - biology
17
+ - math
18
+ - llama
19
+ - llama3
20
+ base_model: meta-llama/Meta-Llama-3-8B
21
+ datasets:
22
+ - allenai/ai2_arc
23
+ - camel-ai/physics
24
+ - camel-ai/chemistry
25
+ - camel-ai/biology
26
+ - camel-ai/math
27
+ - metaeval/reclor
28
+ - openbookqa
29
+ - mandyyyyii/scibench
30
+ - derek-thomas/ScienceQA
31
+ - TIGER-Lab/ScienceEval
32
+ - jondurbin/airoboros-3.2
33
+ - LDJnr/Capybara
34
+ - Cot-Alpaca-GPT4-From-OpenHermes-2.5
35
+ - STEM-AI-mtl/Electrical-engineering
36
+ - knowrohit07/saraswati-stem
37
+ - sablo/oasst2_curated
38
+ - lmsys/lmsys-chat-1m
39
+ - TIGER-Lab/MathInstruct
40
+ - bigbio/med_qa
41
+ - meta-math/MetaMathQA-40K
42
+ - openbookqa
43
+ - piqa
44
+ - metaeval/reclor
45
+ - derek-thomas/ScienceQA
46
+ - scibench
47
+ - sciq
48
+ - Open-Orca/SlimOrca
49
+ - migtissera/Synthia-v1.3
50
+ - TIGER-Lab/ScienceEval
51
+ - allenai/WildChat
52
+ - microsoft/orca-math-word-problems-200k
53
+ - openchat/openchat_sharegpt4_dataset
54
+ - teknium/GPTeacher-General-Instruct
55
+ - m-a-p/CodeFeedback-Filtered-Instruction
56
+ - totally-not-an-llm/EverythingLM-data-V3
57
+ - HuggingFaceH4/no_robots
58
+ - OpenAssistant/oasst_top1_2023-08-25
59
+ - WizardLM/WizardLM_evol_instruct_70k
60
+ quantized_by: bartowski
61
+ pipeline_tag: text-generation
62
+ ---
63
+
64
+ ## Llamacpp imatrix Quantizations of Einstein-v6.1-Llama3-8B
65
+
66
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b2714">b2714</a> for quantization.
67
+
68
+ Original model: https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B
69
+
70
+ All quants made using imatrix option with dataset provided by Kalomaze [here](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)
71
+
72
+ ## Prompt format
73
+
74
+ ```
75
+ <|im_start|>system
76
+ {system_prompt}<|im_end|>
77
+ <|im_start|>user
78
+ {prompt}<|im_end|>
79
+ <|im_start|>assistant
80
+
81
+ ```
82
+
83
+ ## Download a file (not the whole branch) from below:
84
+
85
+ | Filename | Quant type | File Size | Description |
86
+ | -------- | ---------- | --------- | ----------- |
87
+ | [Einstein-v6.1-Llama3-8B-Q8_0.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
88
+ | [Einstein-v6.1-Llama3-8B-Q6_K.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
89
+ | [Einstein-v6.1-Llama3-8B-Q5_K_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
90
+ | [Einstein-v6.1-Llama3-8B-Q5_K_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
91
+ | [Einstein-v6.1-Llama3-8B-Q4_K_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
92
+ | [Einstein-v6.1-Llama3-8B-Q4_K_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
93
+ | [Einstein-v6.1-Llama3-8B-IQ4_NL.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ4_NL.gguf) | IQ4_NL | 4.67GB | Decent quality, slightly smaller than Q4_K_S with similar performance *recommended*. |
94
+ | [Einstein-v6.1-Llama3-8B-IQ4_XS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
95
+ | [Einstein-v6.1-Llama3-8B-Q3_K_L.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
96
+ | [Einstein-v6.1-Llama3-8B-Q3_K_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
97
+ | [Einstein-v6.1-Llama3-8B-IQ3_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
98
+ | [Einstein-v6.1-Llama3-8B-IQ3_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_S.gguf) | IQ3_S | 3.68GB | Lower quality, new method with decent performance, recommended over Q3_K_S quant, same size with better performance. |
99
+ | [Einstein-v6.1-Llama3-8B-Q3_K_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
100
+ | [Einstein-v6.1-Llama3-8B-IQ3_XS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
101
+ | [Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
102
+ | [Einstein-v6.1-Llama3-8B-Q2_K.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
103
+ | [Einstein-v6.1-Llama3-8B-IQ2_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
104
+ | [Einstein-v6.1-Llama3-8B-IQ2_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
105
+ | [Einstein-v6.1-Llama3-8B-IQ2_XS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
106
+ | [Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ2_XXS.gguf) | IQ2_XXS | 2.39GB | Lower quality, uses SOTA techniques to be usable. |
107
+ | [Einstein-v6.1-Llama3-8B-IQ1_M.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ1_M.gguf) | IQ1_M | 2.16GB | Extremely low quality, *not* recommended. |
108
+ | [Einstein-v6.1-Llama3-8B-IQ1_S.gguf](https://huggingface.co/bartowski/Einstein-v6.1-Llama3-8B-GGUF/blob/main/Einstein-v6.1-Llama3-8B-IQ1_S.gguf) | IQ1_S | 2.01GB | Extremely low quality, *not* recommended. |
109
+
110
+ ## Which file should I choose?
111
+
112
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
113
+
114
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
115
+
116
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
117
+
118
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
119
+
120
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
121
+
122
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
123
+
124
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
125
+
126
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
127
+
128
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
129
+
130
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
131
+
132
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
133
+
134
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski