--- language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft base_model: NousResearch/Meta-Llama-3-8B-Instruct quantized_by: bartowski pipeline_tag: text-generation --- ## 4-bit GEMM AWQ Quantizations of Llama-3-8B-Instruct-Coder-v2 Using AutoAWQ release v0.2.5 for quantization. Original model: https://huggingface.co/rombodawg/Llama-3-8B-Instruct-Coder-v2 ## Prompt format ``` <|begin_of_text|><|start_header_id|>system<|end_header_id|> {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|> {prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` ## AWQ Parameters - q_group_size: 128 - w_bit: 4 - zero_point: True - version: GEMM ## How to run From the AutoAWQ repo [here](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py) First install autoawq pypi package: ``` pip install autoawq ``` Then run the following: ``` from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, TextStreamer quant_path = "models/Llama-3-8B-Instruct-Coder-v2-AWQ" # Load model model = AutoAWQForCausalLM.from_quantized(quant_path, fuse_layers=True) tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) prompt = "You're standing on the surface of the Earth. "\ "You walk one mile south, one mile west and one mile north. "\ "You end up exactly where you started. Where are you?" chat = [ {"role": "system", "content": "You are a concise assistant that helps answer questions."}, {"role": "user", "content": prompt}, ] # <|eot_id|> used for llama 3 models terminators = [ tokenizer.eos_token_id, tokenizer.convert_tokens_to_ids("<|eot_id|>") ] tokens = tokenizer.apply_chat_template( chat, return_tensors="pt" ).cuda() # Generate output generation_output = model.generate( tokens, streamer=streamer, max_new_tokens=64, eos_token_id=terminators ) ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski