bartowski commited on
Commit
ee4b39e
1 Parent(s): 57571a9

Llamacpp quants

Browse files
.gitattributes CHANGED
@@ -33,3 +33,26 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Replete-Coder-Llama3-8B-IQ2_M.gguf filter=lfs diff=lfs merge=lfs -text
37
+ Replete-Coder-Llama3-8B-IQ2_S.gguf filter=lfs diff=lfs merge=lfs -text
38
+ Replete-Coder-Llama3-8B-IQ2_XS.gguf filter=lfs diff=lfs merge=lfs -text
39
+ Replete-Coder-Llama3-8B-IQ3_M.gguf filter=lfs diff=lfs merge=lfs -text
40
+ Replete-Coder-Llama3-8B-IQ3_XS.gguf filter=lfs diff=lfs merge=lfs -text
41
+ Replete-Coder-Llama3-8B-IQ3_XXS.gguf filter=lfs diff=lfs merge=lfs -text
42
+ Replete-Coder-Llama3-8B-IQ4_XS.gguf filter=lfs diff=lfs merge=lfs -text
43
+ Replete-Coder-Llama3-8B-Q2_K.gguf filter=lfs diff=lfs merge=lfs -text
44
+ Replete-Coder-Llama3-8B-Q3_K_L.gguf filter=lfs diff=lfs merge=lfs -text
45
+ Replete-Coder-Llama3-8B-Q3_K_M.gguf filter=lfs diff=lfs merge=lfs -text
46
+ Replete-Coder-Llama3-8B-Q3_K_S.gguf filter=lfs diff=lfs merge=lfs -text
47
+ Replete-Coder-Llama3-8B-Q4_K_L.gguf filter=lfs diff=lfs merge=lfs -text
48
+ Replete-Coder-Llama3-8B-Q4_K_M.gguf filter=lfs diff=lfs merge=lfs -text
49
+ Replete-Coder-Llama3-8B-Q4_K_S.gguf filter=lfs diff=lfs merge=lfs -text
50
+ Replete-Coder-Llama3-8B-Q5_K_L.gguf filter=lfs diff=lfs merge=lfs -text
51
+ Replete-Coder-Llama3-8B-Q5_K_M.gguf filter=lfs diff=lfs merge=lfs -text
52
+ Replete-Coder-Llama3-8B-Q5_K_S.gguf filter=lfs diff=lfs merge=lfs -text
53
+ Replete-Coder-Llama3-8B-Q6_K.gguf filter=lfs diff=lfs merge=lfs -text
54
+ Replete-Coder-Llama3-8B-Q6_K_L.gguf filter=lfs diff=lfs merge=lfs -text
55
+ Replete-Coder-Llama3-8B-Q8_0.gguf filter=lfs diff=lfs merge=lfs -text
56
+ Replete-Coder-Llama3-8B-Q8_0_L.gguf filter=lfs diff=lfs merge=lfs -text
57
+ Replete-Coder-Llama3-8B-f32.gguf filter=lfs diff=lfs merge=lfs -text
58
+ Replete-Coder-Llama3-8B.imatrix filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: llama-3
4
+ license_link: https://llama.meta.com/llama3/license/
5
+ tags:
6
+ - text-generation-inference
7
+ - transformers
8
+ - unsloth
9
+ - llama
10
+ datasets:
11
+ - Replete-AI/code_bagel_hermes-2.5
12
+ - Replete-AI/code_bagel
13
+ - Replete-AI/OpenHermes-2.5-Uncensored
14
+ - teknium/OpenHermes-2.5
15
+ - layoric/tiny-codes-alpaca
16
+ - glaiveai/glaive-code-assistant-v3
17
+ - ajibawa-2023/Code-290k-ShareGPT
18
+ - TIGER-Lab/MathInstruct
19
+ - chargoddard/commitpack-ft-instruct-rated
20
+ - iamturun/code_instructions_120k_alpaca
21
+ - ise-uiuc/Magicoder-Evol-Instruct-110K
22
+ - cognitivecomputations/dolphin-coder
23
+ - nickrosh/Evol-Instruct-Code-80k-v1
24
+ - coseal/CodeUltraFeedback_binarized
25
+ - glaiveai/glaive-function-calling-v2
26
+ - CyberNative/Code_Vulnerability_Security_DPO
27
+ - jondurbin/airoboros-2.2
28
+ - camel-ai
29
+ - lmsys/lmsys-chat-1m
30
+ - CollectiveCognition/chats-data-2023-09-22
31
+ - CoT-Alpaca-GPT4
32
+ - WizardLM/WizardLM_evol_instruct_70k
33
+ - WizardLM/WizardLM_evol_instruct_V2_196k
34
+ - teknium/GPT4-LLM-Cleaned
35
+ - GPTeacher
36
+ - OpenGPT
37
+ - meta-math/MetaMathQA
38
+ - Open-Orca/SlimOrca
39
+ - garage-bAInd/Open-Platypus
40
+ - anon8231489123/ShareGPT_Vicuna_unfiltered
41
+ - Unnatural-Instructions-GPT4
42
+ model-index:
43
+ - name: Replete-Coder-llama3-8b
44
+ results:
45
+ - task:
46
+ name: HumanEval
47
+ type: text-generation
48
+ dataset:
49
+ type: openai_humaneval
50
+ name: HumanEval
51
+ metrics:
52
+ - name: pass@1
53
+ type: pass@1
54
+ value:
55
+ verified: false
56
+ - task:
57
+ name: AI2 Reasoning Challenge
58
+ type: text-generation
59
+ dataset:
60
+ name: AI2 Reasoning Challenge (25-Shot)
61
+ type: ai2_arc
62
+ config: ARC-Challenge
63
+ split: test
64
+ args:
65
+ num_few_shot: 25
66
+ metrics:
67
+ - type: accuracy
68
+ value:
69
+ name: normalized accuracy
70
+ source:
71
+ url: https://www.placeholderurl.com
72
+ name: Open LLM Leaderboard
73
+ - task:
74
+ name: Text Generation
75
+ type: text-generation
76
+ dataset:
77
+ name: HellaSwag (10-Shot)
78
+ type: hellaswag
79
+ split: validation
80
+ args:
81
+ num_few_shot: 10
82
+ metrics:
83
+ - type: accuracy
84
+ value:
85
+ name: normalized accuracy
86
+ source:
87
+ url: https://www.placeholderurl.com
88
+ name: Open LLM Leaderboard
89
+ - task:
90
+ name: Text Generation
91
+ type: text-generation
92
+ dataset:
93
+ name: MMLU (5-Shot)
94
+ type: cais/mmlu
95
+ config: all
96
+ split: test
97
+ args:
98
+ num_few_shot: 5
99
+ metrics:
100
+ - type: accuracy
101
+ value:
102
+ name: accuracy
103
+ source:
104
+ url: https://www.placeholderurl.com
105
+ name: Open LLM Leaderboard
106
+ - task:
107
+ name: Text Generation
108
+ type: text-generation
109
+ dataset:
110
+ name: TruthfulQA (0-shot)
111
+ type: truthful_qa
112
+ config: multiple_choice
113
+ split: validation
114
+ args:
115
+ num_few_shot: 0
116
+ metrics:
117
+ - type: multiple_choice_accuracy
118
+ value:
119
+ source:
120
+ url: https://www.placeholderurl.com
121
+ name: Open LLM Leaderboard
122
+ - task:
123
+ name: Text Generation
124
+ type: text-generation
125
+ dataset:
126
+ name: Winogrande (5-shot)
127
+ type: winogrande
128
+ config: winogrande_xl
129
+ split: validation
130
+ args:
131
+ num_few_shot: 5
132
+ metrics:
133
+ - type: accuracy
134
+ value:
135
+ name: accuracy
136
+ source:
137
+ url: https://www.placeholderurl.com
138
+ name: Open LLM Leaderboard
139
+ - task:
140
+ name: Text Generation
141
+ type: text-generation
142
+ dataset:
143
+ name: GSM8k (5-shot)
144
+ type: gsm8k
145
+ config: main
146
+ split: test
147
+ args:
148
+ num_few_shot: 5
149
+ metrics:
150
+ - type: accuracy
151
+ value:
152
+ name: accuracy
153
+ source:
154
+ url: https://www.placeholderurl.com
155
+ name: Open LLM Leaderboard
156
+ quantized_by: bartowski
157
+ pipeline_tag: text-generation
158
+ ---
159
+
160
+ ## Llamacpp imatrix Quantizations of Replete-Coder-Llama3-8B
161
+
162
+ Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b3197">b3197</a> for quantization.
163
+
164
+ Original model: https://huggingface.co/Replete-AI/Replete-Coder-Llama3-8B
165
+
166
+ All quants made using imatrix option with dataset from [here](https://gist.github.com/bartowski1182/eb213dccb3571f863da82e99418f81e8)
167
+
168
+ ## Prompt format
169
+
170
+ No chat template specified so default is used. This may be incorrect, check original model card for details.
171
+
172
+ ```
173
+ <|im_start|>system
174
+ {system_prompt}<|im_end|>
175
+ <|im_start|>user
176
+ {prompt}<|im_end|>
177
+ <|im_start|>assistant
178
+
179
+ ```
180
+
181
+ ## Download a file (not the whole branch) from below:
182
+
183
+ | Filename | Quant type | File Size | Description |
184
+ | -------- | ---------- | --------- | ----------- |
185
+ | [Replete-Coder-Llama3-8B-Q8_0_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q8_1.gguf) | Q8_0_L | 9.52GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Extremely high quality, generally unneeded but max available quant. |
186
+ | [Replete-Coder-Llama3-8B-Q8_0.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q8_0.gguf) | Q8_0 | 8.54GB | Extremely high quality, generally unneeded but max available quant. |
187
+ | [Replete-Coder-Llama3-8B-Q6_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q6_K_L.gguf) | Q6_K_L | 7.83GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Very high quality, near perfect, *recommended*. |
188
+ | [Replete-Coder-Llama3-8B-Q6_K.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q6_K.gguf) | Q6_K | 6.59GB | Very high quality, near perfect, *recommended*. |
189
+ | [Replete-Coder-Llama3-8B-Q5_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q5_K_L.gguf) | Q5_K_L | 7.04GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. High quality, *recommended*. |
190
+ | [Replete-Coder-Llama3-8B-Q5_K_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q5_K_M.gguf) | Q5_K_M | 5.73GB | High quality, *recommended*. |
191
+ | [Replete-Coder-Llama3-8B-Q5_K_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q5_K_S.gguf) | Q5_K_S | 5.59GB | High quality, *recommended*. |
192
+ | [Replete-Coder-Llama3-8B-Q4_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q4_K_L.gguf) | Q4_K_L | 6.29GB | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Good quality, uses about 4.83 bits per weight, *recommended*. |
193
+ | [Replete-Coder-Llama3-8B-Q4_K_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q4_K_M.gguf) | Q4_K_M | 4.92GB | Good quality, uses about 4.83 bits per weight, *recommended*. |
194
+ | [Replete-Coder-Llama3-8B-Q4_K_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q4_K_S.gguf) | Q4_K_S | 4.69GB | Slightly lower quality with more space savings, *recommended*. |
195
+ | [Replete-Coder-Llama3-8B-IQ4_XS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ4_XS.gguf) | IQ4_XS | 4.44GB | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
196
+ | [Replete-Coder-Llama3-8B-Q3_K_XL.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF//main/Replete-Coder-Llama3-8B-Q3_K_XL.gguf) | Q3_K_XL | | *Experimental*, uses f16 for embed and output weights. Please provide any feedback of differences. Lower quality but usable, good for low RAM availability. |
197
+ | [Replete-Coder-Llama3-8B-Q3_K_L.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q3_K_L.gguf) | Q3_K_L | 4.32GB | Lower quality but usable, good for low RAM availability. |
198
+ | [Replete-Coder-Llama3-8B-Q3_K_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q3_K_M.gguf) | Q3_K_M | 4.01GB | Even lower quality. |
199
+ | [Replete-Coder-Llama3-8B-IQ3_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ3_M.gguf) | IQ3_M | 3.78GB | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
200
+ | [Replete-Coder-Llama3-8B-Q3_K_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q3_K_S.gguf) | Q3_K_S | 3.66GB | Low quality, not recommended. |
201
+ | [Replete-Coder-Llama3-8B-IQ3_XS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ3_XS.gguf) | IQ3_XS | 3.51GB | Lower quality, new method with decent performance, slightly better than Q3_K_S. |
202
+ | [Replete-Coder-Llama3-8B-IQ3_XXS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ3_XXS.gguf) | IQ3_XXS | 3.27GB | Lower quality, new method with decent performance, comparable to Q3 quants. |
203
+ | [Replete-Coder-Llama3-8B-Q2_K.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-Q2_K.gguf) | Q2_K | 3.17GB | Very low quality but surprisingly usable. |
204
+ | [Replete-Coder-Llama3-8B-IQ2_M.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ2_M.gguf) | IQ2_M | 2.94GB | Very low quality, uses SOTA techniques to also be surprisingly usable. |
205
+ | [Replete-Coder-Llama3-8B-IQ2_S.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ2_S.gguf) | IQ2_S | 2.75GB | Very low quality, uses SOTA techniques to be usable. |
206
+ | [Replete-Coder-Llama3-8B-IQ2_XS.gguf](https://huggingface.co/bartowski/Replete-Coder-Llama3-8B-GGUF/blob/main/Replete-Coder-Llama3-8B-IQ2_XS.gguf) | IQ2_XS | 2.60GB | Very low quality, uses SOTA techniques to be usable. |
207
+
208
+ ## Downloading using huggingface-cli
209
+
210
+ First, make sure you have hugginface-cli installed:
211
+
212
+ ```
213
+ pip install -U "huggingface_hub[cli]"
214
+ ```
215
+
216
+ Then, you can target the specific file you want:
217
+
218
+ ```
219
+ huggingface-cli download bartowski/Replete-Coder-Llama3-8B-GGUF --include "Replete-Coder-Llama3-8B-Q4_K_M.gguf" --local-dir ./
220
+ ```
221
+
222
+ If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
223
+
224
+ ```
225
+ huggingface-cli download bartowski/Replete-Coder-Llama3-8B-GGUF --include "Replete-Coder-Llama3-8B-Q8_0.gguf/*" --local-dir Replete-Coder-Llama3-8B-Q8_0
226
+ ```
227
+
228
+ You can either specify a new local-dir (Replete-Coder-Llama3-8B-Q8_0) or download them all in place (./)
229
+
230
+ ## Which file should I choose?
231
+
232
+ A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
233
+
234
+ The first thing to figure out is how big a model you can run. To do this, you'll need to figure out how much RAM and/or VRAM you have.
235
+
236
+ If you want your model running as FAST as possible, you'll want to fit the whole thing on your GPU's VRAM. Aim for a quant with a file size 1-2GB smaller than your GPU's total VRAM.
237
+
238
+ If you want the absolute maximum quality, add both your system RAM and your GPU's VRAM together, then similarly grab a quant with a file size 1-2GB Smaller than that total.
239
+
240
+ Next, you'll need to decide if you want to use an 'I-quant' or a 'K-quant'.
241
+
242
+ If you don't want to think too much, grab one of the K-quants. These are in format 'QX_K_X', like Q5_K_M.
243
+
244
+ If you want to get more into the weeds, you can check out this extremely useful feature chart:
245
+
246
+ [llama.cpp feature matrix](https://github.com/ggerganov/llama.cpp/wiki/Feature-matrix)
247
+
248
+ But basically, if you're aiming for below Q4, and you're running cuBLAS (Nvidia) or rocBLAS (AMD), you should look towards the I-quants. These are in format IQX_X, like IQ3_M. These are newer and offer better performance for their size.
249
+
250
+ These I-quants can also be used on CPU and Apple Metal, but will be slower than their K-quant equivalent, so speed vs performance is a tradeoff you'll have to decide.
251
+
252
+ The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
253
+
254
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
Replete-Coder-Llama3-8B-IQ2_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8c7333681ab4728f8e618575b5a2c439c43af0100801c46b9269ede05e595fa
3
+ size 2948280512
Replete-Coder-Llama3-8B-IQ2_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d0f529bb7cbbde06115d6a070506c063670c4befea57e2633d63a7cbf84dbc7
3
+ size 2758488256
Replete-Coder-Llama3-8B-IQ2_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:505f852e36044b7b778b49b105ca2cefe6ff870c3219041737dd5270be5f24a3
3
+ size 2605781184
Replete-Coder-Llama3-8B-IQ3_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9ec528e5df39a84b04b76c8177c0b9ac2aee9f4bd02a967f6c3be4339ace457
3
+ size 3784822976
Replete-Coder-Llama3-8B-IQ3_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7557a03c16c54a74aeab48eb8f3071e091ef602ea7d1ae3845a8855e677fd8cb
3
+ size 3518746816
Replete-Coder-Llama3-8B-IQ3_XXS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3f85934d7bcc1c4edae3a9814311cd23baa317217d7fcf54c1b65d6d947311c
3
+ size 3274911936
Replete-Coder-Llama3-8B-IQ4_XS.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8138a08068631479342025511dd081504fa7ae3ed387d1969e7d53e977a017a
3
+ size 4447662272
Replete-Coder-Llama3-8B-Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79ce33b3aedc7a4d7ac0c75842381836c95da7fd217313deb4498026da4380c6
3
+ size 3179131072
Replete-Coder-Llama3-8B-Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce66496f0b2f7df71208b0123b213dbe0be214b7bc2ff9e81d3af8f71697c3ce
3
+ size 4321956032
Replete-Coder-Llama3-8B-Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d80ae0a3917d384aa7ad34bc782cd6c47e433a054128a9708ee122b1ef504411
3
+ size 4018917568
Replete-Coder-Llama3-8B-Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97a551207917150113f2c4b2c2ad9df7075a1bce8da26f1008221599e717e005
3
+ size 3664498880
Replete-Coder-Llama3-8B-Q4_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:396f9f93dc54fac74d2f770f57d80cddb272e97427c9dd10d50bca50ac682b16
3
+ size 6295638208
Replete-Coder-Llama3-8B-Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f5674e0876a3dc9997f622106f292d8569cbec6b25499cdea6201258bef5485
3
+ size 4920733888
Replete-Coder-Llama3-8B-Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7abac425f81973df233248bd209f4f88bc54607a70b2804995451c7dff76fa19
3
+ size 4692668608
Replete-Coder-Llama3-8B-Q5_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7e81fdc961df62540ae4eaba5e388c2f4823fce8ea1c991aa2cafe5edb131d1
3
+ size 7042224320
Replete-Coder-Llama3-8B-Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6da5ab2e25f9889758dee0ebf51fccb3bdc05c6fc7484997a73425f533d6a387
3
+ size 5732987072
Replete-Coder-Llama3-8B-Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33920d9911bf4cbad8d8131c3a79048095381dfab099b6125a8a9dcc8c77b5ae
3
+ size 5599293632
Replete-Coder-Llama3-8B-Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4b8927e0c43d78daa620cc33b09963559dc2579119834b518d22bf01322054b
3
+ size 6596006080
Replete-Coder-Llama3-8B-Q6_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c756aaa907f02c4df44a3fcf68462926a85114c2cf825f65f91d6dad305aad1
3
+ size 7835472064
Replete-Coder-Llama3-8B-Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a62883e215cd1fbabbbe52e17cd6cfb25186e978ae2eb56bf5a0ce6e86ac089a
3
+ size 8540770496
Replete-Coder-Llama3-8B-Q8_0_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b70fce9866829a0cd3b1b974b4cdd217335191b88a4a6036a2bc6ef49e45c957
3
+ size 9525776576
Replete-Coder-Llama3-8B-f32.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2597c0bcf6ddd6a37f6ee7ac387cb77bd7aa784cf2e59a535ae1ce364ee5b414
3
+ size 32128880544
Replete-Coder-Llama3-8B.imatrix ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1292c387fd7725d0f0565d08a5fc2c13d1d7a2ef8e24e0dfacf4c3d73372c2e
3
+ size 4988171