bartowski commited on
Commit
831b4f4
1 Parent(s): b48e223

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +19 -17
README.md CHANGED
@@ -1,8 +1,6 @@
1
  ---
2
- base_model: 01-ai/Yi-Coder-1.5B-Chat
3
- license: apache-2.0
4
- pipeline_tag: text-generation
5
  quantized_by: bartowski
 
6
  ---
7
 
8
  ## Llamacpp imatrix Quantizations of Yi-Coder-1.5B-Chat
@@ -26,6 +24,10 @@ Run them in [LM Studio](https://lmstudio.ai/)
26
 
27
  ```
28
 
 
 
 
 
29
  ## Download a file (not the whole branch) from below:
30
 
31
  | Filename | Quant type | File Size | Split | Description |
@@ -41,18 +43,13 @@ Run them in [LM Studio](https://lmstudio.ai/)
41
  | [Yi-Coder-1.5B-Chat-Q4_K_M.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_K_M.gguf) | Q4_K_M | 0.96GB | false | Good quality, default size for must use cases, *recommended*. |
42
  | [Yi-Coder-1.5B-Chat-Q3_K_XL.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q3_K_XL.gguf) | Q3_K_XL | 0.94GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
43
  | [Yi-Coder-1.5B-Chat-Q4_K_S.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_K_S.gguf) | Q4_K_S | 0.90GB | false | Slightly lower quality with more space savings, *recommended*. |
 
44
  | [Yi-Coder-1.5B-Chat-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0_8_8.gguf) | Q4_0_8_8 | 0.87GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). |
45
  | [Yi-Coder-1.5B-Chat-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0_4_8.gguf) | Q4_0_4_8 | 0.87GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). |
46
- | [Yi-Coder-1.5B-Chat-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0_4_4.gguf) | Q4_0_4_4 | 0.87GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. |
47
  | [Yi-Coder-1.5B-Chat-Q4_0.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0.gguf) | Q4_0 | 0.87GB | false | Legacy format, generally not worth using over similarly sized formats |
48
  | [Yi-Coder-1.5B-Chat-IQ4_XS.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-IQ4_XS.gguf) | IQ4_XS | 0.83GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
49
  | [Yi-Coder-1.5B-Chat-Q3_K_L.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q3_K_L.gguf) | Q3_K_L | 0.83GB | false | Lower quality but usable, good for low RAM availability. |
50
-
51
- ## Q4_0_X_X
52
-
53
- If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
54
-
55
- To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html)(thanks EloyOn!).
56
 
57
  ## Embed/output weights
58
 
@@ -62,12 +59,6 @@ Some say that this improves the quality, others don't notice any difference. If
62
 
63
  Thanks!
64
 
65
- ## Credits
66
-
67
- Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
68
-
69
- Thank you ZeroWw for the inspiration to experiment with embed/output
70
-
71
  ## Downloading using huggingface-cli
72
 
73
  First, make sure you have hugginface-cli installed:
@@ -90,6 +81,12 @@ huggingface-cli download bartowski/Yi-Coder-1.5B-Chat-GGUF --include "Yi-Coder-1
90
 
91
  You can either specify a new local-dir (Yi-Coder-1.5B-Chat-Q8_0) or download them all in place (./)
92
 
 
 
 
 
 
 
93
  ## Which file should I choose?
94
 
95
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
@@ -114,5 +111,10 @@ These I-quants can also be used on CPU and Apple Metal, but will be slower than
114
 
115
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
116
 
117
- Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
 
 
118
 
 
 
 
 
1
  ---
 
 
 
2
  quantized_by: bartowski
3
+ pipeline_tag: text-generation
4
  ---
5
 
6
  ## Llamacpp imatrix Quantizations of Yi-Coder-1.5B-Chat
 
24
 
25
  ```
26
 
27
+ ## What's new:
28
+
29
+ Fixing tokenizer
30
+
31
  ## Download a file (not the whole branch) from below:
32
 
33
  | Filename | Quant type | File Size | Split | Description |
 
43
  | [Yi-Coder-1.5B-Chat-Q4_K_M.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_K_M.gguf) | Q4_K_M | 0.96GB | false | Good quality, default size for must use cases, *recommended*. |
44
  | [Yi-Coder-1.5B-Chat-Q3_K_XL.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q3_K_XL.gguf) | Q3_K_XL | 0.94GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
45
  | [Yi-Coder-1.5B-Chat-Q4_K_S.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_K_S.gguf) | Q4_K_S | 0.90GB | false | Slightly lower quality with more space savings, *recommended*. |
46
+ | [Yi-Coder-1.5B-Chat-Q4_0_4_4.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0_4_4.gguf) | Q4_0_4_4 | 0.87GB | false | Optimized for ARM inference. Should work well on all ARM chips, pick this if you're unsure. |
47
  | [Yi-Coder-1.5B-Chat-Q4_0_8_8.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0_8_8.gguf) | Q4_0_8_8 | 0.87GB | false | Optimized for ARM inference. Requires 'sve' support (see link below). |
48
  | [Yi-Coder-1.5B-Chat-Q4_0_4_8.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0_4_8.gguf) | Q4_0_4_8 | 0.87GB | false | Optimized for ARM inference. Requires 'i8mm' support (see link below). |
 
49
  | [Yi-Coder-1.5B-Chat-Q4_0.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q4_0.gguf) | Q4_0 | 0.87GB | false | Legacy format, generally not worth using over similarly sized formats |
50
  | [Yi-Coder-1.5B-Chat-IQ4_XS.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-IQ4_XS.gguf) | IQ4_XS | 0.83GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
51
  | [Yi-Coder-1.5B-Chat-Q3_K_L.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-Q3_K_L.gguf) | Q3_K_L | 0.83GB | false | Lower quality but usable, good for low RAM availability. |
52
+ | [Yi-Coder-1.5B-Chat-IQ3_M.gguf](https://huggingface.co/bartowski/Yi-Coder-1.5B-Chat-GGUF/blob/main/Yi-Coder-1.5B-Chat-IQ3_M.gguf) | IQ3_M | 0.75GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
 
 
 
 
 
53
 
54
  ## Embed/output weights
55
 
 
59
 
60
  Thanks!
61
 
 
 
 
 
 
 
62
  ## Downloading using huggingface-cli
63
 
64
  First, make sure you have hugginface-cli installed:
 
81
 
82
  You can either specify a new local-dir (Yi-Coder-1.5B-Chat-Q8_0) or download them all in place (./)
83
 
84
+ ## Q4_0_X_X
85
+
86
+ If you're using an ARM chip, the Q4_0_X_X quants will have a substantial speedup. Check out Q4_0_4_4 speed comparisons [on the original pull request](https://github.com/ggerganov/llama.cpp/pull/5780#pullrequestreview-21657544660)
87
+
88
+ To check which one would work best for your ARM chip, you can check [AArch64 SoC features](https://gpages.juszkiewicz.com.pl/arm-socs-table/arm-socs.html) (thanks EloyOn!).
89
+
90
  ## Which file should I choose?
91
 
92
  A great write up with charts showing various performances is provided by Artefact2 [here](https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9)
 
111
 
112
  The I-quants are *not* compatible with Vulcan, which is also AMD, so if you have an AMD card double check if you're using the rocBLAS build or the Vulcan build. At the time of writing this, LM Studio has a preview with ROCm support, and other inference engines have specific builds for ROCm.
113
 
114
+ ## Credits
115
+
116
+ Thank you kalomaze and Dampf for assistance in creating the imatrix calibration dataset
117
 
118
+ Thank you ZeroWw for the inspiration to experiment with embed/output
119
+
120
+ Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski