Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,1790 +1,11 @@
|
|
1 |
---
|
2 |
quantized_by: bartowski
|
3 |
pipeline_tag: text-generation
|
4 |
-
language:
|
5 |
-
- en
|
6 |
-
tags:
|
7 |
-
- language
|
8 |
-
- granite
|
9 |
-
- embeddings
|
10 |
-
license: apache-2.0
|
11 |
-
base_model: ibm-granite/granite-embedding-30m-english
|
12 |
-
model-index:
|
13 |
-
- name: ibm-granite/granite-embedding-30m-english
|
14 |
-
results:
|
15 |
-
- task:
|
16 |
-
type: Retrieval
|
17 |
-
dataset:
|
18 |
-
name: MTEB ArguaAna
|
19 |
-
type: mteb/arguana
|
20 |
-
config: default
|
21 |
-
split: test
|
22 |
-
metrics:
|
23 |
-
- type: map_at_1
|
24 |
-
value: 0.31792
|
25 |
-
- type: map_at_10
|
26 |
-
value: 0.47599
|
27 |
-
- type: map_at_100
|
28 |
-
value: 0.48425
|
29 |
-
- type: map_at_1000
|
30 |
-
value: 0.48427
|
31 |
-
- type: map_at_3
|
32 |
-
value: 0.42757
|
33 |
-
- type: map_at_5
|
34 |
-
value: 0.45634
|
35 |
-
- type: mrr_at_1
|
36 |
-
value: 0.32788
|
37 |
-
- type: mrr_at_10
|
38 |
-
value: 0.47974
|
39 |
-
- type: mrr_at_100
|
40 |
-
value: 0.48801
|
41 |
-
- type: mrr_at_1000
|
42 |
-
value: 0.48802
|
43 |
-
- type: mrr_at_3
|
44 |
-
value: 0.43065
|
45 |
-
- type: mrr_at_5
|
46 |
-
value: 0.45999
|
47 |
-
- type: ndcg_at_1
|
48 |
-
value: 0.31792
|
49 |
-
- type: ndcg_at_10
|
50 |
-
value: 0.56356
|
51 |
-
- type: ndcg_at_100
|
52 |
-
value: 0.59789
|
53 |
-
- type: ndcg_at_1000
|
54 |
-
value: 0.59857
|
55 |
-
- type: ndcg_at_3
|
56 |
-
value: 0.46453
|
57 |
-
- type: ndcg_at_5
|
58 |
-
value: 0.51623
|
59 |
-
- type: precision_at_1
|
60 |
-
value: 0.31792
|
61 |
-
- type: precision_at_10
|
62 |
-
value: 0.08428
|
63 |
-
- type: precision_at_100
|
64 |
-
value: 0.00991
|
65 |
-
- type: precision_at_1000
|
66 |
-
value: 0.001
|
67 |
-
- type: precision_at_3
|
68 |
-
value: 0.19061
|
69 |
-
- type: precision_at_5
|
70 |
-
value: 0.1394
|
71 |
-
- type: recall_at_1
|
72 |
-
value: 0.31792
|
73 |
-
- type: recall_at_10
|
74 |
-
value: 0.84282
|
75 |
-
- type: recall_at_100
|
76 |
-
value: 0.99075
|
77 |
-
- type: recall_at_1000
|
78 |
-
value: 0.99644
|
79 |
-
- type: recall_at_3
|
80 |
-
value: 0.57183
|
81 |
-
- type: recall_at_5
|
82 |
-
value: 0.69701
|
83 |
-
- task:
|
84 |
-
type: Retrieval
|
85 |
-
dataset:
|
86 |
-
name: MTEB ClimateFEVER
|
87 |
-
type: mteb/climate-fever
|
88 |
-
config: default
|
89 |
-
split: test
|
90 |
-
metrics:
|
91 |
-
- type: map_at_1
|
92 |
-
value: 0.13189
|
93 |
-
- type: map_at_10
|
94 |
-
value: 0.21789
|
95 |
-
- type: map_at_100
|
96 |
-
value: 0.2358
|
97 |
-
- type: map_at_1000
|
98 |
-
value: 0.23772
|
99 |
-
- type: map_at_3
|
100 |
-
value: 0.18513
|
101 |
-
- type: map_at_5
|
102 |
-
value: 0.20212
|
103 |
-
- type: mrr_at_1
|
104 |
-
value: 0.29837
|
105 |
-
- type: mrr_at_10
|
106 |
-
value: 0.41376
|
107 |
-
- type: mrr_at_100
|
108 |
-
value: 0.42282
|
109 |
-
- type: mrr_at_1000
|
110 |
-
value: 0.42319
|
111 |
-
- type: mrr_at_3
|
112 |
-
value: 0.38284
|
113 |
-
- type: mrr_at_5
|
114 |
-
value: 0.40301
|
115 |
-
- type: ndcg_at_1
|
116 |
-
value: 0.29837
|
117 |
-
- type: ndcg_at_10
|
118 |
-
value: 0.30263
|
119 |
-
- type: ndcg_at_100
|
120 |
-
value: 0.37228
|
121 |
-
- type: ndcg_at_1000
|
122 |
-
value: 0.40677
|
123 |
-
- type: ndcg_at_3
|
124 |
-
value: 0.25392
|
125 |
-
- type: ndcg_at_5
|
126 |
-
value: 0.27153
|
127 |
-
- type: precision_at_1
|
128 |
-
value: 0.29837
|
129 |
-
- type: precision_at_10
|
130 |
-
value: 0.09179
|
131 |
-
- type: precision_at_100
|
132 |
-
value: 0.01659
|
133 |
-
- type: precision_at_1000
|
134 |
-
value: 0.0023
|
135 |
-
- type: precision_at_3
|
136 |
-
value: 0.18545
|
137 |
-
- type: precision_at_5
|
138 |
-
value: 0.14241
|
139 |
-
- type: recall_at_1
|
140 |
-
value: 0.13189
|
141 |
-
- type: recall_at_10
|
142 |
-
value: 0.35355
|
143 |
-
- type: recall_at_100
|
144 |
-
value: 0.59255
|
145 |
-
- type: recall_at_1000
|
146 |
-
value: 0.78637
|
147 |
-
- type: recall_at_3
|
148 |
-
value: 0.23255
|
149 |
-
- type: recall_at_5
|
150 |
-
value: 0.28446
|
151 |
-
- task:
|
152 |
-
type: Retrieval
|
153 |
-
dataset:
|
154 |
-
name: MTEB CQADupstackAndroidRetrieval
|
155 |
-
type: mteb/cqadupstack-android
|
156 |
-
config: default
|
157 |
-
split: test
|
158 |
-
metrics:
|
159 |
-
- type: map_at_1
|
160 |
-
value: 0.35797
|
161 |
-
- type: map_at_10
|
162 |
-
value: 0.47793
|
163 |
-
- type: map_at_100
|
164 |
-
value: 0.49422
|
165 |
-
- type: map_at_1000
|
166 |
-
value: 0.49546
|
167 |
-
- type: map_at_3
|
168 |
-
value: 0.44137
|
169 |
-
- type: map_at_5
|
170 |
-
value: 0.46063
|
171 |
-
- type: mrr_at_1
|
172 |
-
value: 0.44206
|
173 |
-
- type: mrr_at_10
|
174 |
-
value: 0.53808
|
175 |
-
- type: mrr_at_100
|
176 |
-
value: 0.5454
|
177 |
-
- type: mrr_at_1000
|
178 |
-
value: 0.54578
|
179 |
-
- type: mrr_at_3
|
180 |
-
value: 0.51431
|
181 |
-
- type: mrr_at_5
|
182 |
-
value: 0.5284
|
183 |
-
- type: ndcg_at_1
|
184 |
-
value: 0.44206
|
185 |
-
- type: ndcg_at_10
|
186 |
-
value: 0.54106
|
187 |
-
- type: ndcg_at_100
|
188 |
-
value: 0.59335
|
189 |
-
- type: ndcg_at_1000
|
190 |
-
value: 0.61015
|
191 |
-
- type: ndcg_at_3
|
192 |
-
value: 0.49365
|
193 |
-
- type: ndcg_at_5
|
194 |
-
value: 0.51429
|
195 |
-
- type: precision_at_1
|
196 |
-
value: 0.44206
|
197 |
-
- type: precision_at_10
|
198 |
-
value: 0.10443
|
199 |
-
- type: precision_at_100
|
200 |
-
value: 0.01631
|
201 |
-
- type: precision_at_1000
|
202 |
-
value: 0.00214
|
203 |
-
- type: precision_at_3
|
204 |
-
value: 0.23653
|
205 |
-
- type: precision_at_5
|
206 |
-
value: 0.1691
|
207 |
-
- type: recall_at_1
|
208 |
-
value: 0.35797
|
209 |
-
- type: recall_at_10
|
210 |
-
value: 0.65182
|
211 |
-
- type: recall_at_100
|
212 |
-
value: 0.86654
|
213 |
-
- type: recall_at_1000
|
214 |
-
value: 0.97131
|
215 |
-
- type: recall_at_3
|
216 |
-
value: 0.51224
|
217 |
-
- type: recall_at_5
|
218 |
-
value: 0.57219
|
219 |
-
- task:
|
220 |
-
type: Retrieval
|
221 |
-
dataset:
|
222 |
-
name: MTEB CQADupstackEnglishRetrieval
|
223 |
-
type: mteb/cqadupstack-english
|
224 |
-
config: default
|
225 |
-
split: test
|
226 |
-
metrics:
|
227 |
-
- type: map_at_1
|
228 |
-
value: 0.32748
|
229 |
-
- type: map_at_10
|
230 |
-
value: 0.44138
|
231 |
-
- type: map_at_100
|
232 |
-
value: 0.45565
|
233 |
-
- type: map_at_1000
|
234 |
-
value: 0.45698
|
235 |
-
- type: map_at_3
|
236 |
-
value: 0.40916
|
237 |
-
- type: map_at_5
|
238 |
-
value: 0.42621
|
239 |
-
- type: mrr_at_1
|
240 |
-
value: 0.41274
|
241 |
-
- type: mrr_at_10
|
242 |
-
value: 0.5046
|
243 |
-
- type: mrr_at_100
|
244 |
-
value: 0.5107
|
245 |
-
- type: mrr_at_1000
|
246 |
-
value: 0.51109
|
247 |
-
- type: mrr_at_3
|
248 |
-
value: 0.48238
|
249 |
-
- type: mrr_at_5
|
250 |
-
value: 0.49563
|
251 |
-
- type: ndcg_at_1
|
252 |
-
value: 0.41274
|
253 |
-
- type: ndcg_at_10
|
254 |
-
value: 0.50251
|
255 |
-
- type: ndcg_at_100
|
256 |
-
value: 0.54725
|
257 |
-
- type: ndcg_at_1000
|
258 |
-
value: 0.56635
|
259 |
-
- type: ndcg_at_3
|
260 |
-
value: 0.46023
|
261 |
-
- type: ndcg_at_5
|
262 |
-
value: 0.47883
|
263 |
-
- type: precision_at_1
|
264 |
-
value: 0.41274
|
265 |
-
- type: precision_at_10
|
266 |
-
value: 0.09828
|
267 |
-
- type: precision_at_100
|
268 |
-
value: 0.01573
|
269 |
-
- type: precision_at_1000
|
270 |
-
value: 0.00202
|
271 |
-
- type: precision_at_3
|
272 |
-
value: 0.22718
|
273 |
-
- type: precision_at_5
|
274 |
-
value: 0.16064
|
275 |
-
- type: recall_at_1
|
276 |
-
value: 0.32748
|
277 |
-
- type: recall_at_10
|
278 |
-
value: 0.60322
|
279 |
-
- type: recall_at_100
|
280 |
-
value: 0.79669
|
281 |
-
- type: recall_at_1000
|
282 |
-
value: 0.9173
|
283 |
-
- type: recall_at_3
|
284 |
-
value: 0.47523
|
285 |
-
- type: recall_at_5
|
286 |
-
value: 0.52957
|
287 |
-
- task:
|
288 |
-
type: Retrieval
|
289 |
-
dataset:
|
290 |
-
name: MTEB CQADupstackGamingRetrieval
|
291 |
-
type: mteb/cqadupstack-gaming
|
292 |
-
config: default
|
293 |
-
split: test
|
294 |
-
metrics:
|
295 |
-
- type: map_at_1
|
296 |
-
value: 0.41126
|
297 |
-
- type: map_at_10
|
298 |
-
value: 0.53661
|
299 |
-
- type: map_at_100
|
300 |
-
value: 0.54588
|
301 |
-
- type: map_at_1000
|
302 |
-
value: 0.54638
|
303 |
-
- type: map_at_3
|
304 |
-
value: 0.50389
|
305 |
-
- type: map_at_5
|
306 |
-
value: 0.52286
|
307 |
-
- type: mrr_at_1
|
308 |
-
value: 0.47147
|
309 |
-
- type: mrr_at_10
|
310 |
-
value: 0.5685
|
311 |
-
- type: mrr_at_100
|
312 |
-
value: 0.57458
|
313 |
-
- type: mrr_at_1000
|
314 |
-
value: 0.57487
|
315 |
-
- type: mrr_at_3
|
316 |
-
value: 0.54431
|
317 |
-
- type: mrr_at_5
|
318 |
-
value: 0.55957
|
319 |
-
- type: ndcg_at_1
|
320 |
-
value: 0.47147
|
321 |
-
- type: ndcg_at_10
|
322 |
-
value: 0.59318
|
323 |
-
- type: ndcg_at_100
|
324 |
-
value: 0.62972
|
325 |
-
- type: ndcg_at_1000
|
326 |
-
value: 0.64033
|
327 |
-
- type: ndcg_at_3
|
328 |
-
value: 0.53969
|
329 |
-
- type: ndcg_at_5
|
330 |
-
value: 0.56743
|
331 |
-
- type: precision_at_1
|
332 |
-
value: 0.47147
|
333 |
-
- type: precision_at_10
|
334 |
-
value: 0.09549
|
335 |
-
- type: precision_at_100
|
336 |
-
value: 0.01224
|
337 |
-
- type: precision_at_1000
|
338 |
-
value: 0.00135
|
339 |
-
- type: precision_at_3
|
340 |
-
value: 0.24159
|
341 |
-
- type: precision_at_5
|
342 |
-
value: 0.16577
|
343 |
-
- type: recall_at_1
|
344 |
-
value: 0.41126
|
345 |
-
- type: recall_at_10
|
346 |
-
value: 0.72691
|
347 |
-
- type: recall_at_100
|
348 |
-
value: 0.88692
|
349 |
-
- type: recall_at_1000
|
350 |
-
value: 0.96232
|
351 |
-
- type: recall_at_3
|
352 |
-
value: 0.58374
|
353 |
-
- type: recall_at_5
|
354 |
-
value: 0.65226
|
355 |
-
- task:
|
356 |
-
type: Retrieval
|
357 |
-
dataset:
|
358 |
-
name: MTEB CQADupstackGisRetrieval
|
359 |
-
type: mteb/cqadupstack-gis
|
360 |
-
config: default
|
361 |
-
split: test
|
362 |
-
metrics:
|
363 |
-
- type: map_at_1
|
364 |
-
value: 0.28464
|
365 |
-
- type: map_at_10
|
366 |
-
value: 0.3828
|
367 |
-
- type: map_at_100
|
368 |
-
value: 0.39277
|
369 |
-
- type: map_at_1000
|
370 |
-
value: 0.39355
|
371 |
-
- type: map_at_3
|
372 |
-
value: 0.35704
|
373 |
-
- type: map_at_5
|
374 |
-
value: 0.37116
|
375 |
-
- type: mrr_at_1
|
376 |
-
value: 0.30734
|
377 |
-
- type: mrr_at_10
|
378 |
-
value: 0.40422
|
379 |
-
- type: mrr_at_100
|
380 |
-
value: 0.41297
|
381 |
-
- type: mrr_at_1000
|
382 |
-
value: 0.41355
|
383 |
-
- type: mrr_at_3
|
384 |
-
value: 0.38136
|
385 |
-
- type: mrr_at_5
|
386 |
-
value: 0.39362
|
387 |
-
- type: ndcg_at_1
|
388 |
-
value: 0.30734
|
389 |
-
- type: ndcg_at_10
|
390 |
-
value: 0.43564
|
391 |
-
- type: ndcg_at_100
|
392 |
-
value: 0.48419
|
393 |
-
- type: ndcg_at_1000
|
394 |
-
value: 0.50404
|
395 |
-
- type: ndcg_at_3
|
396 |
-
value: 0.38672
|
397 |
-
- type: ndcg_at_5
|
398 |
-
value: 0.40954
|
399 |
-
- type: precision_at_1
|
400 |
-
value: 0.30734
|
401 |
-
- type: precision_at_10
|
402 |
-
value: 0.06633
|
403 |
-
- type: precision_at_100
|
404 |
-
value: 0.00956
|
405 |
-
- type: precision_at_1000
|
406 |
-
value: 0.00116
|
407 |
-
- type: precision_at_3
|
408 |
-
value: 0.16497
|
409 |
-
- type: precision_at_5
|
410 |
-
value: 0.11254
|
411 |
-
- type: recall_at_1
|
412 |
-
value: 0.28464
|
413 |
-
- type: recall_at_10
|
414 |
-
value: 0.57621
|
415 |
-
- type: recall_at_100
|
416 |
-
value: 0.7966
|
417 |
-
- type: recall_at_1000
|
418 |
-
value: 0.94633
|
419 |
-
- type: recall_at_3
|
420 |
-
value: 0.44588
|
421 |
-
- type: recall_at_5
|
422 |
-
value: 0.50031
|
423 |
-
- task:
|
424 |
-
type: Retrieval
|
425 |
-
dataset:
|
426 |
-
name: MTEB CQADupstackMathematicaRetrieval
|
427 |
-
type: mteb/cqadupstack-mathematica
|
428 |
-
config: default
|
429 |
-
split: test
|
430 |
-
metrics:
|
431 |
-
- type: map_at_1
|
432 |
-
value: 0.18119
|
433 |
-
- type: map_at_10
|
434 |
-
value: 0.27055
|
435 |
-
- type: map_at_100
|
436 |
-
value: 0.28461
|
437 |
-
- type: map_at_1000
|
438 |
-
value: 0.28577
|
439 |
-
- type: map_at_3
|
440 |
-
value: 0.24341
|
441 |
-
- type: map_at_5
|
442 |
-
value: 0.25861
|
443 |
-
- type: mrr_at_1
|
444 |
-
value: 0.22886
|
445 |
-
- type: mrr_at_10
|
446 |
-
value: 0.32234
|
447 |
-
- type: mrr_at_100
|
448 |
-
value: 0.3328
|
449 |
-
- type: mrr_at_1000
|
450 |
-
value: 0.3334
|
451 |
-
- type: mrr_at_3
|
452 |
-
value: 0.29664
|
453 |
-
- type: mrr_at_5
|
454 |
-
value: 0.31107
|
455 |
-
- type: ndcg_at_1
|
456 |
-
value: 0.22886
|
457 |
-
- type: ndcg_at_10
|
458 |
-
value: 0.32749
|
459 |
-
- type: ndcg_at_100
|
460 |
-
value: 0.39095
|
461 |
-
- type: ndcg_at_1000
|
462 |
-
value: 0.41656
|
463 |
-
- type: ndcg_at_3
|
464 |
-
value: 0.27864
|
465 |
-
- type: ndcg_at_5
|
466 |
-
value: 0.30177
|
467 |
-
- type: precision_at_1
|
468 |
-
value: 0.22886
|
469 |
-
- type: precision_at_10
|
470 |
-
value: 0.06169
|
471 |
-
- type: precision_at_100
|
472 |
-
value: 0.0107
|
473 |
-
- type: precision_at_1000
|
474 |
-
value: 0.00143
|
475 |
-
- type: precision_at_3
|
476 |
-
value: 0.13682
|
477 |
-
- type: precision_at_5
|
478 |
-
value: 0.0995
|
479 |
-
- type: recall_at_1
|
480 |
-
value: 0.18119
|
481 |
-
- type: recall_at_10
|
482 |
-
value: 0.44983
|
483 |
-
- type: recall_at_100
|
484 |
-
value: 0.72396
|
485 |
-
- type: recall_at_1000
|
486 |
-
value: 0.90223
|
487 |
-
- type: recall_at_3
|
488 |
-
value: 0.31633
|
489 |
-
- type: recall_at_5
|
490 |
-
value: 0.37532
|
491 |
-
- task:
|
492 |
-
type: Retrieval
|
493 |
-
dataset:
|
494 |
-
name: MTEB CQADupstackPhysicsRetrieval
|
495 |
-
type: mteb/cqadupstack-physics
|
496 |
-
config: default
|
497 |
-
split: test
|
498 |
-
metrics:
|
499 |
-
- type: map_at_1
|
500 |
-
value: 0.30517
|
501 |
-
- type: map_at_10
|
502 |
-
value: 0.42031
|
503 |
-
- type: map_at_100
|
504 |
-
value: 0.43415
|
505 |
-
- type: map_at_1000
|
506 |
-
value: 0.43525
|
507 |
-
- type: map_at_3
|
508 |
-
value: 0.38443
|
509 |
-
- type: map_at_5
|
510 |
-
value: 0.40685
|
511 |
-
- type: mrr_at_1
|
512 |
-
value: 0.38114
|
513 |
-
- type: mrr_at_10
|
514 |
-
value: 0.47783
|
515 |
-
- type: mrr_at_100
|
516 |
-
value: 0.48647
|
517 |
-
- type: mrr_at_1000
|
518 |
-
value: 0.48688
|
519 |
-
- type: mrr_at_3
|
520 |
-
value: 0.45172
|
521 |
-
- type: mrr_at_5
|
522 |
-
value: 0.46817
|
523 |
-
- type: ndcg_at_1
|
524 |
-
value: 0.38114
|
525 |
-
- type: ndcg_at_10
|
526 |
-
value: 0.4834
|
527 |
-
- type: ndcg_at_100
|
528 |
-
value: 0.53861
|
529 |
-
- type: ndcg_at_1000
|
530 |
-
value: 0.55701
|
531 |
-
- type: ndcg_at_3
|
532 |
-
value: 0.42986
|
533 |
-
- type: ndcg_at_5
|
534 |
-
value: 0.45893
|
535 |
-
- type: precision_at_1
|
536 |
-
value: 0.38114
|
537 |
-
- type: precision_at_10
|
538 |
-
value: 0.08893
|
539 |
-
- type: precision_at_100
|
540 |
-
value: 0.01375
|
541 |
-
- type: precision_at_1000
|
542 |
-
value: 0.00172
|
543 |
-
- type: precision_at_3
|
544 |
-
value: 0.20821
|
545 |
-
- type: precision_at_5
|
546 |
-
value: 0.15034
|
547 |
-
- type: recall_at_1
|
548 |
-
value: 0.30517
|
549 |
-
- type: recall_at_10
|
550 |
-
value: 0.61332
|
551 |
-
- type: recall_at_100
|
552 |
-
value: 0.84051
|
553 |
-
- type: recall_at_1000
|
554 |
-
value: 0.95826
|
555 |
-
- type: recall_at_3
|
556 |
-
value: 0.46015
|
557 |
-
- type: recall_at_5
|
558 |
-
value: 0.53801
|
559 |
-
- task:
|
560 |
-
type: Retrieval
|
561 |
-
dataset:
|
562 |
-
name: MTEB CQADupstackProgrammersRetrieval
|
563 |
-
type: mteb/cqadupstack-programmers
|
564 |
-
config: default
|
565 |
-
split: test
|
566 |
-
metrics:
|
567 |
-
- type: map_at_1
|
568 |
-
value: 0.27396
|
569 |
-
- type: map_at_10
|
570 |
-
value: 0.38043
|
571 |
-
- type: map_at_100
|
572 |
-
value: 0.39341
|
573 |
-
- type: map_at_1000
|
574 |
-
value: 0.39454
|
575 |
-
- type: map_at_3
|
576 |
-
value: 0.34783
|
577 |
-
- type: map_at_5
|
578 |
-
value: 0.3663
|
579 |
-
- type: mrr_at_1
|
580 |
-
value: 0.34247
|
581 |
-
- type: mrr_at_10
|
582 |
-
value: 0.43681
|
583 |
-
- type: mrr_at_100
|
584 |
-
value: 0.4451
|
585 |
-
- type: mrr_at_1000
|
586 |
-
value: 0.44569
|
587 |
-
- type: mrr_at_3
|
588 |
-
value: 0.41172
|
589 |
-
- type: mrr_at_5
|
590 |
-
value: 0.42702
|
591 |
-
- type: ndcg_at_1
|
592 |
-
value: 0.34247
|
593 |
-
- type: ndcg_at_10
|
594 |
-
value: 0.44065
|
595 |
-
- type: ndcg_at_100
|
596 |
-
value: 0.49434
|
597 |
-
- type: ndcg_at_1000
|
598 |
-
value: 0.51682
|
599 |
-
- type: ndcg_at_3
|
600 |
-
value: 0.38976
|
601 |
-
- type: ndcg_at_5
|
602 |
-
value: 0.41332
|
603 |
-
- type: precision_at_1
|
604 |
-
value: 0.34247
|
605 |
-
- type: precision_at_10
|
606 |
-
value: 0.08059
|
607 |
-
- type: precision_at_100
|
608 |
-
value: 0.01258
|
609 |
-
- type: precision_at_1000
|
610 |
-
value: 0.00162
|
611 |
-
- type: precision_at_3
|
612 |
-
value: 0.1876
|
613 |
-
- type: precision_at_5
|
614 |
-
value: 0.13333
|
615 |
-
- type: recall_at_1
|
616 |
-
value: 0.27396
|
617 |
-
- type: recall_at_10
|
618 |
-
value: 0.56481
|
619 |
-
- type: recall_at_100
|
620 |
-
value: 0.79012
|
621 |
-
- type: recall_at_1000
|
622 |
-
value: 0.94182
|
623 |
-
- type: recall_at_3
|
624 |
-
value: 0.41785
|
625 |
-
- type: recall_at_5
|
626 |
-
value: 0.48303
|
627 |
-
- task:
|
628 |
-
type: Retrieval
|
629 |
-
dataset:
|
630 |
-
name: MTEB CQADupstackStatsRetrieval
|
631 |
-
type: mteb/cqadupstack-stats
|
632 |
-
config: default
|
633 |
-
split: test
|
634 |
-
metrics:
|
635 |
-
- type: map_at_1
|
636 |
-
value: 0.25728
|
637 |
-
- type: map_at_10
|
638 |
-
value: 0.33903
|
639 |
-
- type: map_at_100
|
640 |
-
value: 0.34853
|
641 |
-
- type: map_at_1000
|
642 |
-
value: 0.34944
|
643 |
-
- type: map_at_3
|
644 |
-
value: 0.31268
|
645 |
-
- type: map_at_5
|
646 |
-
value: 0.32596
|
647 |
-
- type: mrr_at_1
|
648 |
-
value: 0.29141
|
649 |
-
- type: mrr_at_10
|
650 |
-
value: 0.36739
|
651 |
-
- type: mrr_at_100
|
652 |
-
value: 0.37545
|
653 |
-
- type: mrr_at_1000
|
654 |
-
value: 0.37608
|
655 |
-
- type: mrr_at_3
|
656 |
-
value: 0.34407
|
657 |
-
- type: mrr_at_5
|
658 |
-
value: 0.3568
|
659 |
-
- type: ndcg_at_1
|
660 |
-
value: 0.29141
|
661 |
-
- type: ndcg_at_10
|
662 |
-
value: 0.38596
|
663 |
-
- type: ndcg_at_100
|
664 |
-
value: 0.43375
|
665 |
-
- type: ndcg_at_1000
|
666 |
-
value: 0.45562
|
667 |
-
- type: ndcg_at_3
|
668 |
-
value: 0.33861
|
669 |
-
- type: ndcg_at_5
|
670 |
-
value: 0.35887
|
671 |
-
- type: precision_at_1
|
672 |
-
value: 0.29141
|
673 |
-
- type: precision_at_10
|
674 |
-
value: 0.06334
|
675 |
-
- type: precision_at_100
|
676 |
-
value: 0.00952
|
677 |
-
- type: precision_at_1000
|
678 |
-
value: 0.00121
|
679 |
-
- type: precision_at_3
|
680 |
-
value: 0.14826
|
681 |
-
- type: precision_at_5
|
682 |
-
value: 0.10429
|
683 |
-
- type: recall_at_1
|
684 |
-
value: 0.25728
|
685 |
-
- type: recall_at_10
|
686 |
-
value: 0.50121
|
687 |
-
- type: recall_at_100
|
688 |
-
value: 0.72382
|
689 |
-
- type: recall_at_1000
|
690 |
-
value: 0.88306
|
691 |
-
- type: recall_at_3
|
692 |
-
value: 0.36638
|
693 |
-
- type: recall_at_5
|
694 |
-
value: 0.41689
|
695 |
-
- task:
|
696 |
-
type: Retrieval
|
697 |
-
dataset:
|
698 |
-
name: MTEB CQADupstackTexRetrieval
|
699 |
-
type: mteb/cqadupstack-tex
|
700 |
-
config: default
|
701 |
-
split: test
|
702 |
-
metrics:
|
703 |
-
- type: map_at_1
|
704 |
-
value: 0.19911
|
705 |
-
- type: map_at_10
|
706 |
-
value: 0.2856
|
707 |
-
- type: map_at_100
|
708 |
-
value: 0.29785
|
709 |
-
- type: map_at_1000
|
710 |
-
value: 0.29911
|
711 |
-
- type: map_at_3
|
712 |
-
value: 0.25875
|
713 |
-
- type: map_at_5
|
714 |
-
value: 0.2741
|
715 |
-
- type: mrr_at_1
|
716 |
-
value: 0.24054
|
717 |
-
- type: mrr_at_10
|
718 |
-
value: 0.32483
|
719 |
-
- type: mrr_at_100
|
720 |
-
value: 0.33464
|
721 |
-
- type: mrr_at_1000
|
722 |
-
value: 0.33534
|
723 |
-
- type: mrr_at_3
|
724 |
-
value: 0.30162
|
725 |
-
- type: mrr_at_5
|
726 |
-
value: 0.31506
|
727 |
-
- type: ndcg_at_1
|
728 |
-
value: 0.24054
|
729 |
-
- type: ndcg_at_10
|
730 |
-
value: 0.33723
|
731 |
-
- type: ndcg_at_100
|
732 |
-
value: 0.39362
|
733 |
-
- type: ndcg_at_1000
|
734 |
-
value: 0.42065
|
735 |
-
- type: ndcg_at_3
|
736 |
-
value: 0.29116
|
737 |
-
- type: ndcg_at_5
|
738 |
-
value: 0.31299
|
739 |
-
- type: precision_at_1
|
740 |
-
value: 0.24054
|
741 |
-
- type: precision_at_10
|
742 |
-
value: 0.06194
|
743 |
-
- type: precision_at_100
|
744 |
-
value: 0.01058
|
745 |
-
- type: precision_at_1000
|
746 |
-
value: 0.00148
|
747 |
-
- type: precision_at_3
|
748 |
-
value: 0.13914
|
749 |
-
- type: precision_at_5
|
750 |
-
value: 0.10076
|
751 |
-
- type: recall_at_1
|
752 |
-
value: 0.19911
|
753 |
-
- type: recall_at_10
|
754 |
-
value: 0.45183
|
755 |
-
- type: recall_at_100
|
756 |
-
value: 0.7025
|
757 |
-
- type: recall_at_1000
|
758 |
-
value: 0.89222
|
759 |
-
- type: recall_at_3
|
760 |
-
value: 0.32195
|
761 |
-
- type: recall_at_5
|
762 |
-
value: 0.37852
|
763 |
-
- task:
|
764 |
-
type: Retrieval
|
765 |
-
dataset:
|
766 |
-
name: MTEB CQADupstackUnixRetrieval
|
767 |
-
type: mteb/cqadupstack-unix
|
768 |
-
config: default
|
769 |
-
split: test
|
770 |
-
metrics:
|
771 |
-
- type: map_at_1
|
772 |
-
value: 0.29819
|
773 |
-
- type: map_at_10
|
774 |
-
value: 0.40073
|
775 |
-
- type: map_at_100
|
776 |
-
value: 0.41289
|
777 |
-
- type: map_at_1000
|
778 |
-
value: 0.41375
|
779 |
-
- type: map_at_3
|
780 |
-
value: 0.36572
|
781 |
-
- type: map_at_5
|
782 |
-
value: 0.38386
|
783 |
-
- type: mrr_at_1
|
784 |
-
value: 0.35168
|
785 |
-
- type: mrr_at_10
|
786 |
-
value: 0.44381
|
787 |
-
- type: mrr_at_100
|
788 |
-
value: 0.45191
|
789 |
-
- type: mrr_at_1000
|
790 |
-
value: 0.45234
|
791 |
-
- type: mrr_at_3
|
792 |
-
value: 0.41402
|
793 |
-
- type: mrr_at_5
|
794 |
-
value: 0.43039
|
795 |
-
- type: ndcg_at_1
|
796 |
-
value: 0.35168
|
797 |
-
- type: ndcg_at_10
|
798 |
-
value: 0.46071
|
799 |
-
- type: ndcg_at_100
|
800 |
-
value: 0.51351
|
801 |
-
- type: ndcg_at_1000
|
802 |
-
value: 0.5317
|
803 |
-
- type: ndcg_at_3
|
804 |
-
value: 0.39972
|
805 |
-
- type: ndcg_at_5
|
806 |
-
value: 0.42586
|
807 |
-
- type: precision_at_1
|
808 |
-
value: 0.35168
|
809 |
-
- type: precision_at_10
|
810 |
-
value: 0.07985
|
811 |
-
- type: precision_at_100
|
812 |
-
value: 0.01185
|
813 |
-
- type: precision_at_1000
|
814 |
-
value: 0.00144
|
815 |
-
- type: precision_at_3
|
816 |
-
value: 0.18221
|
817 |
-
- type: precision_at_5
|
818 |
-
value: 0.12892
|
819 |
-
- type: recall_at_1
|
820 |
-
value: 0.29819
|
821 |
-
- type: recall_at_10
|
822 |
-
value: 0.60075
|
823 |
-
- type: recall_at_100
|
824 |
-
value: 0.82771
|
825 |
-
- type: recall_at_1000
|
826 |
-
value: 0.95219
|
827 |
-
- type: recall_at_3
|
828 |
-
value: 0.43245
|
829 |
-
- type: recall_at_5
|
830 |
-
value: 0.49931
|
831 |
-
- task:
|
832 |
-
type: Retrieval
|
833 |
-
dataset:
|
834 |
-
name: MTEB CQADupstackWebmastersRetrieval
|
835 |
-
type: mteb/cqadupstack-webmasters
|
836 |
-
config: default
|
837 |
-
split: test
|
838 |
-
metrics:
|
839 |
-
- type: map_at_1
|
840 |
-
value: 0.28409
|
841 |
-
- type: map_at_10
|
842 |
-
value: 0.37621
|
843 |
-
- type: map_at_100
|
844 |
-
value: 0.39233
|
845 |
-
- type: map_at_1000
|
846 |
-
value: 0.39471
|
847 |
-
- type: map_at_3
|
848 |
-
value: 0.34337
|
849 |
-
- type: map_at_5
|
850 |
-
value: 0.35985
|
851 |
-
- type: mrr_at_1
|
852 |
-
value: 0.33794
|
853 |
-
- type: mrr_at_10
|
854 |
-
value: 0.42349
|
855 |
-
- type: mrr_at_100
|
856 |
-
value: 0.43196
|
857 |
-
- type: mrr_at_1000
|
858 |
-
value: 0.43237
|
859 |
-
- type: mrr_at_3
|
860 |
-
value: 0.39526
|
861 |
-
- type: mrr_at_5
|
862 |
-
value: 0.41087
|
863 |
-
- type: ndcg_at_1
|
864 |
-
value: 0.33794
|
865 |
-
- type: ndcg_at_10
|
866 |
-
value: 0.43832
|
867 |
-
- type: ndcg_at_100
|
868 |
-
value: 0.49514
|
869 |
-
- type: ndcg_at_1000
|
870 |
-
value: 0.51742
|
871 |
-
- type: ndcg_at_3
|
872 |
-
value: 0.38442
|
873 |
-
- type: ndcg_at_5
|
874 |
-
value: 0.40737
|
875 |
-
- type: precision_at_1
|
876 |
-
value: 0.33794
|
877 |
-
- type: precision_at_10
|
878 |
-
value: 0.08597
|
879 |
-
- type: precision_at_100
|
880 |
-
value: 0.01652
|
881 |
-
- type: precision_at_1000
|
882 |
-
value: 0.00251
|
883 |
-
- type: precision_at_3
|
884 |
-
value: 0.17787
|
885 |
-
- type: precision_at_5
|
886 |
-
value: 0.13241
|
887 |
-
- type: recall_at_1
|
888 |
-
value: 0.28409
|
889 |
-
- type: recall_at_10
|
890 |
-
value: 0.55388
|
891 |
-
- type: recall_at_100
|
892 |
-
value: 0.81517
|
893 |
-
- type: recall_at_1000
|
894 |
-
value: 0.95038
|
895 |
-
- type: recall_at_3
|
896 |
-
value: 0.40133
|
897 |
-
- type: recall_at_5
|
898 |
-
value: 0.45913
|
899 |
-
- task:
|
900 |
-
type: Retrieval
|
901 |
-
dataset:
|
902 |
-
name: MTEB CQADupstackWordpressRetrieval
|
903 |
-
type: mteb/cqadupstack-wordpress
|
904 |
-
config: default
|
905 |
-
split: test
|
906 |
-
metrics:
|
907 |
-
- type: map_at_1
|
908 |
-
value: 0.24067
|
909 |
-
- type: map_at_10
|
910 |
-
value: 0.32184
|
911 |
-
- type: map_at_100
|
912 |
-
value: 0.33357
|
913 |
-
- type: map_at_1000
|
914 |
-
value: 0.33458
|
915 |
-
- type: map_at_3
|
916 |
-
value: 0.29492
|
917 |
-
- type: map_at_5
|
918 |
-
value: 0.3111
|
919 |
-
- type: mrr_at_1
|
920 |
-
value: 0.26248
|
921 |
-
- type: mrr_at_10
|
922 |
-
value: 0.34149
|
923 |
-
- type: mrr_at_100
|
924 |
-
value: 0.35189
|
925 |
-
- type: mrr_at_1000
|
926 |
-
value: 0.35251
|
927 |
-
- type: mrr_at_3
|
928 |
-
value: 0.31639
|
929 |
-
- type: mrr_at_5
|
930 |
-
value: 0.33182
|
931 |
-
- type: ndcg_at_1
|
932 |
-
value: 0.26248
|
933 |
-
- type: ndcg_at_10
|
934 |
-
value: 0.36889
|
935 |
-
- type: ndcg_at_100
|
936 |
-
value: 0.42426
|
937 |
-
- type: ndcg_at_1000
|
938 |
-
value: 0.44745
|
939 |
-
- type: ndcg_at_3
|
940 |
-
value: 0.31799
|
941 |
-
- type: ndcg_at_5
|
942 |
-
value: 0.34563
|
943 |
-
- type: precision_at_1
|
944 |
-
value: 0.26248
|
945 |
-
- type: precision_at_10
|
946 |
-
value: 0.05712
|
947 |
-
- type: precision_at_100
|
948 |
-
value: 0.00915
|
949 |
-
- type: precision_at_1000
|
950 |
-
value: 0.00123
|
951 |
-
- type: precision_at_3
|
952 |
-
value: 0.13309
|
953 |
-
- type: precision_at_5
|
954 |
-
value: 0.09649
|
955 |
-
- type: recall_at_1
|
956 |
-
value: 0.24067
|
957 |
-
- type: recall_at_10
|
958 |
-
value: 0.49344
|
959 |
-
- type: recall_at_100
|
960 |
-
value: 0.7412
|
961 |
-
- type: recall_at_1000
|
962 |
-
value: 0.91276
|
963 |
-
- type: recall_at_3
|
964 |
-
value: 0.36272
|
965 |
-
- type: recall_at_5
|
966 |
-
value: 0.4277
|
967 |
-
- task:
|
968 |
-
type: Retrieval
|
969 |
-
dataset:
|
970 |
-
name: MTEB DBPedia
|
971 |
-
type: mteb/dbpedia
|
972 |
-
config: default
|
973 |
-
split: test
|
974 |
-
metrics:
|
975 |
-
- type: map_at_1
|
976 |
-
value: 0.08651
|
977 |
-
- type: map_at_10
|
978 |
-
value: 0.17628
|
979 |
-
- type: map_at_100
|
980 |
-
value: 0.23354
|
981 |
-
- type: map_at_1000
|
982 |
-
value: 0.24827
|
983 |
-
- type: map_at_3
|
984 |
-
value: 0.1351
|
985 |
-
- type: map_at_5
|
986 |
-
value: 0.15468
|
987 |
-
- type: mrr_at_1
|
988 |
-
value: 0.645
|
989 |
-
- type: mrr_at_10
|
990 |
-
value: 0.71989
|
991 |
-
- type: mrr_at_100
|
992 |
-
value: 0.72332
|
993 |
-
- type: mrr_at_1000
|
994 |
-
value: 0.72346
|
995 |
-
- type: mrr_at_3
|
996 |
-
value: 0.7025
|
997 |
-
- type: mrr_at_5
|
998 |
-
value: 0.71275
|
999 |
-
- type: ndcg_at_1
|
1000 |
-
value: 0.51375
|
1001 |
-
- type: ndcg_at_10
|
1002 |
-
value: 0.3596
|
1003 |
-
- type: ndcg_at_100
|
1004 |
-
value: 0.39878
|
1005 |
-
- type: ndcg_at_1000
|
1006 |
-
value: 0.47931
|
1007 |
-
- type: ndcg_at_3
|
1008 |
-
value: 0.41275
|
1009 |
-
- type: ndcg_at_5
|
1010 |
-
value: 0.38297
|
1011 |
-
- type: precision_at_1
|
1012 |
-
value: 0.645
|
1013 |
-
- type: precision_at_10
|
1014 |
-
value: 0.2745
|
1015 |
-
- type: precision_at_100
|
1016 |
-
value: 0.08405
|
1017 |
-
- type: precision_at_1000
|
1018 |
-
value: 0.01923
|
1019 |
-
- type: precision_at_3
|
1020 |
-
value: 0.44417
|
1021 |
-
- type: precision_at_5
|
1022 |
-
value: 0.366
|
1023 |
-
- type: recall_at_1
|
1024 |
-
value: 0.08651
|
1025 |
-
- type: recall_at_10
|
1026 |
-
value: 0.22416
|
1027 |
-
- type: recall_at_100
|
1028 |
-
value: 0.46381
|
1029 |
-
- type: recall_at_1000
|
1030 |
-
value: 0.71557
|
1031 |
-
- type: recall_at_3
|
1032 |
-
value: 0.14847
|
1033 |
-
- type: recall_at_5
|
1034 |
-
value: 0.1804
|
1035 |
-
- task:
|
1036 |
-
type: Retrieval
|
1037 |
-
dataset:
|
1038 |
-
name: MTEB FEVER
|
1039 |
-
type: mteb/fever
|
1040 |
-
config: default
|
1041 |
-
split: test
|
1042 |
-
metrics:
|
1043 |
-
- type: map_at_1
|
1044 |
-
value: 0.73211
|
1045 |
-
- type: map_at_10
|
1046 |
-
value: 0.81463
|
1047 |
-
- type: map_at_100
|
1048 |
-
value: 0.81622
|
1049 |
-
- type: map_at_1000
|
1050 |
-
value: 0.81634
|
1051 |
-
- type: map_at_3
|
1052 |
-
value: 0.805
|
1053 |
-
- type: map_at_5
|
1054 |
-
value: 0.81134
|
1055 |
-
- type: mrr_at_1
|
1056 |
-
value: 0.79088
|
1057 |
-
- type: mrr_at_10
|
1058 |
-
value: 0.86943
|
1059 |
-
- type: mrr_at_100
|
1060 |
-
value: 0.87017
|
1061 |
-
- type: mrr_at_1000
|
1062 |
-
value: 0.87018
|
1063 |
-
- type: mrr_at_3
|
1064 |
-
value: 0.86154
|
1065 |
-
- type: mrr_at_5
|
1066 |
-
value: 0.867
|
1067 |
-
- type: ndcg_at_1
|
1068 |
-
value: 0.79088
|
1069 |
-
- type: ndcg_at_10
|
1070 |
-
value: 0.85528
|
1071 |
-
- type: ndcg_at_100
|
1072 |
-
value: 0.86134
|
1073 |
-
- type: ndcg_at_1000
|
1074 |
-
value: 0.86367
|
1075 |
-
- type: ndcg_at_3
|
1076 |
-
value: 0.83943
|
1077 |
-
- type: ndcg_at_5
|
1078 |
-
value: 0.84878
|
1079 |
-
- type: precision_at_1
|
1080 |
-
value: 0.79088
|
1081 |
-
- type: precision_at_10
|
1082 |
-
value: 0.10132
|
1083 |
-
- type: precision_at_100
|
1084 |
-
value: 0.01055
|
1085 |
-
- type: precision_at_1000
|
1086 |
-
value: 0.00109
|
1087 |
-
- type: precision_at_3
|
1088 |
-
value: 0.31963
|
1089 |
-
- type: precision_at_5
|
1090 |
-
value: 0.19769
|
1091 |
-
- type: recall_at_1
|
1092 |
-
value: 0.73211
|
1093 |
-
- type: recall_at_10
|
1094 |
-
value: 0.92797
|
1095 |
-
- type: recall_at_100
|
1096 |
-
value: 0.95263
|
1097 |
-
- type: recall_at_1000
|
1098 |
-
value: 0.96738
|
1099 |
-
- type: recall_at_3
|
1100 |
-
value: 0.88328
|
1101 |
-
- type: recall_at_5
|
1102 |
-
value: 0.90821
|
1103 |
-
- task:
|
1104 |
-
type: Retrieval
|
1105 |
-
dataset:
|
1106 |
-
name: MTEB FiQA2018
|
1107 |
-
type: mteb/fiqa
|
1108 |
-
config: default
|
1109 |
-
split: test
|
1110 |
-
metrics:
|
1111 |
-
- type: map_at_1
|
1112 |
-
value: 0.18311
|
1113 |
-
- type: map_at_10
|
1114 |
-
value: 0.29201
|
1115 |
-
- type: map_at_100
|
1116 |
-
value: 0.3093
|
1117 |
-
- type: map_at_1000
|
1118 |
-
value: 0.31116
|
1119 |
-
- type: map_at_3
|
1120 |
-
value: 0.24778
|
1121 |
-
- type: map_at_5
|
1122 |
-
value: 0.27453
|
1123 |
-
- type: mrr_at_1
|
1124 |
-
value: 0.35494
|
1125 |
-
- type: mrr_at_10
|
1126 |
-
value: 0.44489
|
1127 |
-
- type: mrr_at_100
|
1128 |
-
value: 0.4532
|
1129 |
-
- type: mrr_at_1000
|
1130 |
-
value: 0.45369
|
1131 |
-
- type: mrr_at_3
|
1132 |
-
value: 0.41667
|
1133 |
-
- type: mrr_at_5
|
1134 |
-
value: 0.43418
|
1135 |
-
- type: ndcg_at_1
|
1136 |
-
value: 0.35494
|
1137 |
-
- type: ndcg_at_10
|
1138 |
-
value: 0.36868
|
1139 |
-
- type: ndcg_at_100
|
1140 |
-
value: 0.43463
|
1141 |
-
- type: ndcg_at_1000
|
1142 |
-
value: 0.46766
|
1143 |
-
- type: ndcg_at_3
|
1144 |
-
value: 0.32305
|
1145 |
-
- type: ndcg_at_5
|
1146 |
-
value: 0.34332
|
1147 |
-
- type: precision_at_1
|
1148 |
-
value: 0.35494
|
1149 |
-
- type: precision_at_10
|
1150 |
-
value: 0.10324
|
1151 |
-
- type: precision_at_100
|
1152 |
-
value: 0.01707
|
1153 |
-
- type: precision_at_1000
|
1154 |
-
value: 0.00229
|
1155 |
-
- type: precision_at_3
|
1156 |
-
value: 0.21142
|
1157 |
-
- type: precision_at_5
|
1158 |
-
value: 0.16327
|
1159 |
-
- type: recall_at_1
|
1160 |
-
value: 0.18311
|
1161 |
-
- type: recall_at_10
|
1162 |
-
value: 0.43881
|
1163 |
-
- type: recall_at_100
|
1164 |
-
value: 0.68593
|
1165 |
-
- type: recall_at_1000
|
1166 |
-
value: 0.8855
|
1167 |
-
- type: recall_at_3
|
1168 |
-
value: 0.28824
|
1169 |
-
- type: recall_at_5
|
1170 |
-
value: 0.36178
|
1171 |
-
- task:
|
1172 |
-
type: Retrieval
|
1173 |
-
dataset:
|
1174 |
-
name: MTEB HotpotQA
|
1175 |
-
type: mteb/hotpotqa
|
1176 |
-
config: default
|
1177 |
-
split: test
|
1178 |
-
metrics:
|
1179 |
-
- type: map_at_1
|
1180 |
-
value: 0.36766
|
1181 |
-
- type: map_at_10
|
1182 |
-
value: 0.53639
|
1183 |
-
- type: map_at_100
|
1184 |
-
value: 0.54532
|
1185 |
-
- type: map_at_1000
|
1186 |
-
value: 0.54608
|
1187 |
-
- type: map_at_3
|
1188 |
-
value: 0.50427
|
1189 |
-
- type: map_at_5
|
1190 |
-
value: 0.5245
|
1191 |
-
- type: mrr_at_1
|
1192 |
-
value: 0.73531
|
1193 |
-
- type: mrr_at_10
|
1194 |
-
value: 0.80104
|
1195 |
-
- type: mrr_at_100
|
1196 |
-
value: 0.80341
|
1197 |
-
- type: mrr_at_1000
|
1198 |
-
value: 0.80351
|
1199 |
-
- type: mrr_at_3
|
1200 |
-
value: 0.78949
|
1201 |
-
- type: mrr_at_5
|
1202 |
-
value: 0.79729
|
1203 |
-
- type: ndcg_at_1
|
1204 |
-
value: 0.73531
|
1205 |
-
- type: ndcg_at_10
|
1206 |
-
value: 0.62918
|
1207 |
-
- type: ndcg_at_100
|
1208 |
-
value: 0.66056
|
1209 |
-
- type: ndcg_at_1000
|
1210 |
-
value: 0.67554
|
1211 |
-
- type: ndcg_at_3
|
1212 |
-
value: 0.58247
|
1213 |
-
- type: ndcg_at_5
|
1214 |
-
value: 0.60905
|
1215 |
-
- type: precision_at_1
|
1216 |
-
value: 0.73531
|
1217 |
-
- type: precision_at_10
|
1218 |
-
value: 0.1302
|
1219 |
-
- type: precision_at_100
|
1220 |
-
value: 0.01546
|
1221 |
-
- type: precision_at_1000
|
1222 |
-
value: 0.00175
|
1223 |
-
- type: precision_at_3
|
1224 |
-
value: 0.36556
|
1225 |
-
- type: precision_at_5
|
1226 |
-
value: 0.24032
|
1227 |
-
- type: recall_at_1
|
1228 |
-
value: 0.36766
|
1229 |
-
- type: recall_at_10
|
1230 |
-
value: 0.65098
|
1231 |
-
- type: recall_at_100
|
1232 |
-
value: 0.77306
|
1233 |
-
- type: recall_at_1000
|
1234 |
-
value: 0.87252
|
1235 |
-
- type: recall_at_3
|
1236 |
-
value: 0.54835
|
1237 |
-
- type: recall_at_5
|
1238 |
-
value: 0.60081
|
1239 |
-
- task:
|
1240 |
-
type: Retrieval
|
1241 |
-
dataset:
|
1242 |
-
name: MTEB MSMARCO
|
1243 |
-
type: mteb/msmarco
|
1244 |
-
config: default
|
1245 |
-
split: dev
|
1246 |
-
metrics:
|
1247 |
-
- type: map_at_1
|
1248 |
-
value: 0.14654
|
1249 |
-
- type: map_at_10
|
1250 |
-
value: 0.2472
|
1251 |
-
- type: map_at_100
|
1252 |
-
value: 0.25994
|
1253 |
-
- type: map_at_1000
|
1254 |
-
value: 0.26067
|
1255 |
-
- type: map_at_3
|
1256 |
-
value: 0.21234
|
1257 |
-
- type: map_at_5
|
1258 |
-
value: 0.2319
|
1259 |
-
- type: mrr_at_1
|
1260 |
-
value: 0.15086
|
1261 |
-
- type: mrr_at_10
|
1262 |
-
value: 0.25184
|
1263 |
-
- type: mrr_at_100
|
1264 |
-
value: 0.26422
|
1265 |
-
- type: mrr_at_1000
|
1266 |
-
value: 0.26489
|
1267 |
-
- type: mrr_at_3
|
1268 |
-
value: 0.21731
|
1269 |
-
- type: mrr_at_5
|
1270 |
-
value: 0.23674
|
1271 |
-
- type: ndcg_at_1
|
1272 |
-
value: 0.15086
|
1273 |
-
- type: ndcg_at_10
|
1274 |
-
value: 0.30711
|
1275 |
-
- type: ndcg_at_100
|
1276 |
-
value: 0.37221
|
1277 |
-
- type: ndcg_at_1000
|
1278 |
-
value: 0.39133
|
1279 |
-
- type: ndcg_at_3
|
1280 |
-
value: 0.23567
|
1281 |
-
- type: ndcg_at_5
|
1282 |
-
value: 0.27066
|
1283 |
-
- type: precision_at_1
|
1284 |
-
value: 0.15086
|
1285 |
-
- type: precision_at_10
|
1286 |
-
value: 0.05132
|
1287 |
-
- type: precision_at_100
|
1288 |
-
value: 0.00845
|
1289 |
-
- type: precision_at_1000
|
1290 |
-
value: 0.00101
|
1291 |
-
- type: precision_at_3
|
1292 |
-
value: 0.10277
|
1293 |
-
- type: precision_at_5
|
1294 |
-
value: 0.07923
|
1295 |
-
- type: recall_at_1
|
1296 |
-
value: 0.14654
|
1297 |
-
- type: recall_at_10
|
1298 |
-
value: 0.49341
|
1299 |
-
- type: recall_at_100
|
1300 |
-
value: 0.80224
|
1301 |
-
- type: recall_at_1000
|
1302 |
-
value: 0.95037
|
1303 |
-
- type: recall_at_3
|
1304 |
-
value: 0.29862
|
1305 |
-
- type: recall_at_5
|
1306 |
-
value: 0.38274
|
1307 |
-
- task:
|
1308 |
-
type: Retrieval
|
1309 |
-
dataset:
|
1310 |
-
name: MTEB NFCorpus
|
1311 |
-
type: mteb/nfcorpus
|
1312 |
-
config: default
|
1313 |
-
split: test
|
1314 |
-
metrics:
|
1315 |
-
- type: map_at_1
|
1316 |
-
value: 0.05452
|
1317 |
-
- type: map_at_10
|
1318 |
-
value: 0.12758
|
1319 |
-
- type: map_at_100
|
1320 |
-
value: 0.1593
|
1321 |
-
- type: map_at_1000
|
1322 |
-
value: 0.17422
|
1323 |
-
- type: map_at_3
|
1324 |
-
value: 0.0945
|
1325 |
-
- type: map_at_5
|
1326 |
-
value: 0.1092
|
1327 |
-
- type: mrr_at_1
|
1328 |
-
value: 0.43963
|
1329 |
-
- type: mrr_at_10
|
1330 |
-
value: 0.53237
|
1331 |
-
- type: mrr_at_100
|
1332 |
-
value: 0.53777
|
1333 |
-
- type: mrr_at_1000
|
1334 |
-
value: 0.53822
|
1335 |
-
- type: mrr_at_3
|
1336 |
-
value: 0.51445
|
1337 |
-
- type: mrr_at_5
|
1338 |
-
value: 0.52466
|
1339 |
-
- type: ndcg_at_1
|
1340 |
-
value: 0.41486
|
1341 |
-
- type: ndcg_at_10
|
1342 |
-
value: 0.33737
|
1343 |
-
- type: ndcg_at_100
|
1344 |
-
value: 0.30886
|
1345 |
-
- type: ndcg_at_1000
|
1346 |
-
value: 0.40018
|
1347 |
-
- type: ndcg_at_3
|
1348 |
-
value: 0.39324
|
1349 |
-
- type: ndcg_at_5
|
1350 |
-
value: 0.36949
|
1351 |
-
- type: precision_at_1
|
1352 |
-
value: 0.43344
|
1353 |
-
- type: precision_at_10
|
1354 |
-
value: 0.24799
|
1355 |
-
- type: precision_at_100
|
1356 |
-
value: 0.07895
|
1357 |
-
- type: precision_at_1000
|
1358 |
-
value: 0.02091
|
1359 |
-
- type: precision_at_3
|
1360 |
-
value: 0.37152
|
1361 |
-
- type: precision_at_5
|
1362 |
-
value: 0.31703
|
1363 |
-
- type: recall_at_1
|
1364 |
-
value: 0.05452
|
1365 |
-
- type: recall_at_10
|
1366 |
-
value: 0.1712
|
1367 |
-
- type: recall_at_100
|
1368 |
-
value: 0.30719
|
1369 |
-
- type: recall_at_1000
|
1370 |
-
value: 0.62766
|
1371 |
-
- type: recall_at_3
|
1372 |
-
value: 0.10733
|
1373 |
-
- type: recall_at_5
|
1374 |
-
value: 0.13553
|
1375 |
-
- task:
|
1376 |
-
type: Retrieval
|
1377 |
-
dataset:
|
1378 |
-
name: MTEB NQ
|
1379 |
-
type: mteb/nq
|
1380 |
-
config: default
|
1381 |
-
split: test
|
1382 |
-
metrics:
|
1383 |
-
- type: map_at_1
|
1384 |
-
value: 0.29022
|
1385 |
-
- type: map_at_10
|
1386 |
-
value: 0.4373
|
1387 |
-
- type: map_at_100
|
1388 |
-
value: 0.44849
|
1389 |
-
- type: map_at_1000
|
1390 |
-
value: 0.44877
|
1391 |
-
- type: map_at_3
|
1392 |
-
value: 0.39045
|
1393 |
-
- type: map_at_5
|
1394 |
-
value: 0.4186
|
1395 |
-
- type: mrr_at_1
|
1396 |
-
value: 0.32793
|
1397 |
-
- type: mrr_at_10
|
1398 |
-
value: 0.46243
|
1399 |
-
- type: mrr_at_100
|
1400 |
-
value: 0.47083
|
1401 |
-
- type: mrr_at_1000
|
1402 |
-
value: 0.47101
|
1403 |
-
- type: mrr_at_3
|
1404 |
-
value: 0.42261
|
1405 |
-
- type: mrr_at_5
|
1406 |
-
value: 0.44775
|
1407 |
-
- type: ndcg_at_1
|
1408 |
-
value: 0.32793
|
1409 |
-
- type: ndcg_at_10
|
1410 |
-
value: 0.51631
|
1411 |
-
- type: ndcg_at_100
|
1412 |
-
value: 0.56287
|
1413 |
-
- type: ndcg_at_1000
|
1414 |
-
value: 0.56949
|
1415 |
-
- type: ndcg_at_3
|
1416 |
-
value: 0.42782
|
1417 |
-
- type: ndcg_at_5
|
1418 |
-
value: 0.47554
|
1419 |
-
- type: precision_at_1
|
1420 |
-
value: 0.32793
|
1421 |
-
- type: precision_at_10
|
1422 |
-
value: 0.08737
|
1423 |
-
- type: precision_at_100
|
1424 |
-
value: 0.01134
|
1425 |
-
- type: precision_at_1000
|
1426 |
-
value: 0.0012
|
1427 |
-
- type: precision_at_3
|
1428 |
-
value: 0.19583
|
1429 |
-
- type: precision_at_5
|
1430 |
-
value: 0.14484
|
1431 |
-
- type: recall_at_1
|
1432 |
-
value: 0.29022
|
1433 |
-
- type: recall_at_10
|
1434 |
-
value: 0.73325
|
1435 |
-
- type: recall_at_100
|
1436 |
-
value: 0.93455
|
1437 |
-
- type: recall_at_1000
|
1438 |
-
value: 0.98414
|
1439 |
-
- type: recall_at_3
|
1440 |
-
value: 0.50406
|
1441 |
-
- type: recall_at_5
|
1442 |
-
value: 0.6145
|
1443 |
-
- task:
|
1444 |
-
type: Retrieval
|
1445 |
-
dataset:
|
1446 |
-
name: MTEB QuoraRetrieval
|
1447 |
-
type: mteb/quora
|
1448 |
-
config: default
|
1449 |
-
split: test
|
1450 |
-
metrics:
|
1451 |
-
- type: map_at_1
|
1452 |
-
value: 0.68941
|
1453 |
-
- type: map_at_10
|
1454 |
-
value: 0.82641
|
1455 |
-
- type: map_at_100
|
1456 |
-
value: 0.83317
|
1457 |
-
- type: map_at_1000
|
1458 |
-
value: 0.83337
|
1459 |
-
- type: map_at_3
|
1460 |
-
value: 0.79604
|
1461 |
-
- type: map_at_5
|
1462 |
-
value: 0.81525
|
1463 |
-
- type: mrr_at_1
|
1464 |
-
value: 0.7935
|
1465 |
-
- type: mrr_at_10
|
1466 |
-
value: 0.85969
|
1467 |
-
- type: mrr_at_100
|
1468 |
-
value: 0.86094
|
1469 |
-
- type: mrr_at_1000
|
1470 |
-
value: 0.86095
|
1471 |
-
- type: mrr_at_3
|
1472 |
-
value: 0.84852
|
1473 |
-
- type: mrr_at_5
|
1474 |
-
value: 0.85627
|
1475 |
-
- type: ndcg_at_1
|
1476 |
-
value: 0.7936
|
1477 |
-
- type: ndcg_at_10
|
1478 |
-
value: 0.86687
|
1479 |
-
- type: ndcg_at_100
|
1480 |
-
value: 0.88094
|
1481 |
-
- type: ndcg_at_1000
|
1482 |
-
value: 0.88243
|
1483 |
-
- type: ndcg_at_3
|
1484 |
-
value: 0.83538
|
1485 |
-
- type: ndcg_at_5
|
1486 |
-
value: 0.85308
|
1487 |
-
- type: precision_at_1
|
1488 |
-
value: 0.7936
|
1489 |
-
- type: precision_at_10
|
1490 |
-
value: 0.13145
|
1491 |
-
- type: precision_at_100
|
1492 |
-
value: 0.01517
|
1493 |
-
- type: precision_at_1000
|
1494 |
-
value: 0.00156
|
1495 |
-
- type: precision_at_3
|
1496 |
-
value: 0.36353
|
1497 |
-
- type: precision_at_5
|
1498 |
-
value: 0.24044
|
1499 |
-
- type: recall_at_1
|
1500 |
-
value: 0.68941
|
1501 |
-
- type: recall_at_10
|
1502 |
-
value: 0.94407
|
1503 |
-
- type: recall_at_100
|
1504 |
-
value: 0.99226
|
1505 |
-
- type: recall_at_1000
|
1506 |
-
value: 0.99958
|
1507 |
-
- type: recall_at_3
|
1508 |
-
value: 0.85502
|
1509 |
-
- type: recall_at_5
|
1510 |
-
value: 0.90372
|
1511 |
-
- task:
|
1512 |
-
type: Retrieval
|
1513 |
-
dataset:
|
1514 |
-
name: MTEB SCIDOCS
|
1515 |
-
type: mteb/scidocs
|
1516 |
-
config: default
|
1517 |
-
split: test
|
1518 |
-
metrics:
|
1519 |
-
- type: map_at_1
|
1520 |
-
value: 0.04988
|
1521 |
-
- type: map_at_10
|
1522 |
-
value: 0.13553
|
1523 |
-
- type: map_at_100
|
1524 |
-
value: 0.16136
|
1525 |
-
- type: map_at_1000
|
1526 |
-
value: 0.16512
|
1527 |
-
- type: map_at_3
|
1528 |
-
value: 0.09439
|
1529 |
-
- type: map_at_5
|
1530 |
-
value: 0.1146
|
1531 |
-
- type: mrr_at_1
|
1532 |
-
value: 0.246
|
1533 |
-
- type: mrr_at_10
|
1534 |
-
value: 0.36792
|
1535 |
-
- type: mrr_at_100
|
1536 |
-
value: 0.37973
|
1537 |
-
- type: mrr_at_1000
|
1538 |
-
value: 0.38011
|
1539 |
-
- type: mrr_at_3
|
1540 |
-
value: 0.33117
|
1541 |
-
- type: mrr_at_5
|
1542 |
-
value: 0.35172
|
1543 |
-
- type: ndcg_at_1
|
1544 |
-
value: 0.246
|
1545 |
-
- type: ndcg_at_10
|
1546 |
-
value: 0.22542
|
1547 |
-
- type: ndcg_at_100
|
1548 |
-
value: 0.32326
|
1549 |
-
- type: ndcg_at_1000
|
1550 |
-
value: 0.3828
|
1551 |
-
- type: ndcg_at_3
|
1552 |
-
value: 0.20896
|
1553 |
-
- type: ndcg_at_5
|
1554 |
-
value: 0.18497
|
1555 |
-
- type: precision_at_1
|
1556 |
-
value: 0.246
|
1557 |
-
- type: precision_at_10
|
1558 |
-
value: 0.1194
|
1559 |
-
- type: precision_at_100
|
1560 |
-
value: 0.02616
|
1561 |
-
- type: precision_at_1000
|
1562 |
-
value: 0.00404
|
1563 |
-
- type: precision_at_3
|
1564 |
-
value: 0.198
|
1565 |
-
- type: precision_at_5
|
1566 |
-
value: 0.1654
|
1567 |
-
- type: recall_at_1
|
1568 |
-
value: 0.04988
|
1569 |
-
- type: recall_at_10
|
1570 |
-
value: 0.24212
|
1571 |
-
- type: recall_at_100
|
1572 |
-
value: 0.53105
|
1573 |
-
- type: recall_at_1000
|
1574 |
-
value: 0.82022
|
1575 |
-
- type: recall_at_3
|
1576 |
-
value: 0.12047
|
1577 |
-
- type: recall_at_5
|
1578 |
-
value: 0.16777
|
1579 |
-
- task:
|
1580 |
-
type: Retrieval
|
1581 |
-
dataset:
|
1582 |
-
name: MTEB SciFact
|
1583 |
-
type: mteb/scifact
|
1584 |
-
config: default
|
1585 |
-
split: test
|
1586 |
-
metrics:
|
1587 |
-
- type: map_at_1
|
1588 |
-
value: 0.56578
|
1589 |
-
- type: map_at_10
|
1590 |
-
value: 0.66725
|
1591 |
-
- type: map_at_100
|
1592 |
-
value: 0.67379
|
1593 |
-
- type: map_at_1000
|
1594 |
-
value: 0.674
|
1595 |
-
- type: map_at_3
|
1596 |
-
value: 0.63416
|
1597 |
-
- type: map_at_5
|
1598 |
-
value: 0.6577
|
1599 |
-
- type: mrr_at_1
|
1600 |
-
value: 0.59333
|
1601 |
-
- type: mrr_at_10
|
1602 |
-
value: 0.67533
|
1603 |
-
- type: mrr_at_100
|
1604 |
-
value: 0.68062
|
1605 |
-
- type: mrr_at_1000
|
1606 |
-
value: 0.68082
|
1607 |
-
- type: mrr_at_3
|
1608 |
-
value: 0.64944
|
1609 |
-
- type: mrr_at_5
|
1610 |
-
value: 0.66928
|
1611 |
-
- type: ndcg_at_1
|
1612 |
-
value: 0.59333
|
1613 |
-
- type: ndcg_at_10
|
1614 |
-
value: 0.7127
|
1615 |
-
- type: ndcg_at_100
|
1616 |
-
value: 0.73889
|
1617 |
-
- type: ndcg_at_1000
|
1618 |
-
value: 0.7441
|
1619 |
-
- type: ndcg_at_3
|
1620 |
-
value: 0.65793
|
1621 |
-
- type: ndcg_at_5
|
1622 |
-
value: 0.69429
|
1623 |
-
- type: precision_at_1
|
1624 |
-
value: 0.59333
|
1625 |
-
- type: precision_at_10
|
1626 |
-
value: 0.096
|
1627 |
-
- type: precision_at_100
|
1628 |
-
value: 0.01087
|
1629 |
-
- type: precision_at_1000
|
1630 |
-
value: 0.00113
|
1631 |
-
- type: precision_at_3
|
1632 |
-
value: 0.25556
|
1633 |
-
- type: precision_at_5
|
1634 |
-
value: 0.17667
|
1635 |
-
- type: recall_at_1
|
1636 |
-
value: 0.56578
|
1637 |
-
- type: recall_at_10
|
1638 |
-
value: 0.842
|
1639 |
-
- type: recall_at_100
|
1640 |
-
value: 0.95667
|
1641 |
-
- type: recall_at_1000
|
1642 |
-
value: 0.99667
|
1643 |
-
- type: recall_at_3
|
1644 |
-
value: 0.70072
|
1645 |
-
- type: recall_at_5
|
1646 |
-
value: 0.79011
|
1647 |
-
- task:
|
1648 |
-
type: Retrieval
|
1649 |
-
dataset:
|
1650 |
-
name: MTEB Touche2020
|
1651 |
-
type: mteb/touche2020
|
1652 |
-
config: default
|
1653 |
-
split: test
|
1654 |
-
metrics:
|
1655 |
-
- type: map_at_1
|
1656 |
-
value: 0.01976
|
1657 |
-
- type: map_at_10
|
1658 |
-
value: 0.09688
|
1659 |
-
- type: map_at_100
|
1660 |
-
value: 0.15117
|
1661 |
-
- type: map_at_1000
|
1662 |
-
value: 0.16769
|
1663 |
-
- type: map_at_3
|
1664 |
-
value: 0.04589
|
1665 |
-
- type: map_at_5
|
1666 |
-
value: 0.06556
|
1667 |
-
- type: mrr_at_1
|
1668 |
-
value: 0.26531
|
1669 |
-
- type: mrr_at_10
|
1670 |
-
value: 0.43863
|
1671 |
-
- type: mrr_at_100
|
1672 |
-
value: 0.44767
|
1673 |
-
- type: mrr_at_1000
|
1674 |
-
value: 0.44767
|
1675 |
-
- type: mrr_at_3
|
1676 |
-
value: 0.39116
|
1677 |
-
- type: mrr_at_5
|
1678 |
-
value: 0.41156
|
1679 |
-
- type: ndcg_at_1
|
1680 |
-
value: 0.23469
|
1681 |
-
- type: ndcg_at_10
|
1682 |
-
value: 0.24029
|
1683 |
-
- type: ndcg_at_100
|
1684 |
-
value: 0.34425
|
1685 |
-
- type: ndcg_at_1000
|
1686 |
-
value: 0.46907
|
1687 |
-
- type: ndcg_at_3
|
1688 |
-
value: 0.25522
|
1689 |
-
- type: ndcg_at_5
|
1690 |
-
value: 0.24333
|
1691 |
-
- type: precision_at_1
|
1692 |
-
value: 0.26531
|
1693 |
-
- type: precision_at_10
|
1694 |
-
value: 0.22449
|
1695 |
-
- type: precision_at_100
|
1696 |
-
value: 0.07122
|
1697 |
-
- type: precision_at_1000
|
1698 |
-
value: 0.01527
|
1699 |
-
- type: precision_at_3
|
1700 |
-
value: 0.27891
|
1701 |
-
- type: precision_at_5
|
1702 |
-
value: 0.25714
|
1703 |
-
- type: recall_at_1
|
1704 |
-
value: 0.01976
|
1705 |
-
- type: recall_at_10
|
1706 |
-
value: 0.16633
|
1707 |
-
- type: recall_at_100
|
1708 |
-
value: 0.4561
|
1709 |
-
- type: recall_at_1000
|
1710 |
-
value: 0.82481
|
1711 |
-
- type: recall_at_3
|
1712 |
-
value: 0.06101
|
1713 |
-
- type: recall_at_5
|
1714 |
-
value: 0.0968
|
1715 |
-
- task:
|
1716 |
-
type: Retrieval
|
1717 |
-
dataset:
|
1718 |
-
name: MTEB TRECCOVID
|
1719 |
-
type: mteb/trec-covid
|
1720 |
-
config: default
|
1721 |
-
split: test
|
1722 |
-
metrics:
|
1723 |
-
- type: map_at_1
|
1724 |
-
value: 0.00211
|
1725 |
-
- type: map_at_10
|
1726 |
-
value: 0.01526
|
1727 |
-
- type: map_at_100
|
1728 |
-
value: 0.08863
|
1729 |
-
- type: map_at_1000
|
1730 |
-
value: 0.23162
|
1731 |
-
- type: map_at_3
|
1732 |
-
value: 0.00555
|
1733 |
-
- type: map_at_5
|
1734 |
-
value: 0.00873
|
1735 |
-
- type: mrr_at_1
|
1736 |
-
value: 0.76
|
1737 |
-
- type: mrr_at_10
|
1738 |
-
value: 0.8485
|
1739 |
-
- type: mrr_at_100
|
1740 |
-
value: 0.8485
|
1741 |
-
- type: mrr_at_1000
|
1742 |
-
value: 0.8485
|
1743 |
-
- type: mrr_at_3
|
1744 |
-
value: 0.84
|
1745 |
-
- type: mrr_at_5
|
1746 |
-
value: 0.844
|
1747 |
-
- type: ndcg_at_1
|
1748 |
-
value: 0.7
|
1749 |
-
- type: ndcg_at_10
|
1750 |
-
value: 0.63098
|
1751 |
-
- type: ndcg_at_100
|
1752 |
-
value: 0.49847
|
1753 |
-
- type: ndcg_at_1000
|
1754 |
-
value: 0.48395
|
1755 |
-
- type: ndcg_at_3
|
1756 |
-
value: 0.68704
|
1757 |
-
- type: ndcg_at_5
|
1758 |
-
value: 0.67533
|
1759 |
-
- type: precision_at_1
|
1760 |
-
value: 0.76
|
1761 |
-
- type: precision_at_10
|
1762 |
-
value: 0.66
|
1763 |
-
- type: precision_at_100
|
1764 |
-
value: 0.5134
|
1765 |
-
- type: precision_at_1000
|
1766 |
-
value: 0.2168
|
1767 |
-
- type: precision_at_3
|
1768 |
-
value: 0.72667
|
1769 |
-
- type: precision_at_5
|
1770 |
-
value: 0.716
|
1771 |
-
- type: recall_at_1
|
1772 |
-
value: 0.00211
|
1773 |
-
- type: recall_at_10
|
1774 |
-
value: 0.01748
|
1775 |
-
- type: recall_at_100
|
1776 |
-
value: 0.12448
|
1777 |
-
- type: recall_at_1000
|
1778 |
-
value: 0.46795
|
1779 |
-
- type: recall_at_3
|
1780 |
-
value: 0.00593
|
1781 |
-
- type: recall_at_5
|
1782 |
-
value: 0.00962
|
1783 |
---
|
1784 |
|
1785 |
## Llamacpp Static Quantizations of granite-embedding-30m-english
|
1786 |
|
1787 |
-
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/
|
1788 |
|
1789 |
Original model: https://huggingface.co/ibm-granite/granite-embedding-30m-english
|
1790 |
|
@@ -1794,6 +15,10 @@ Run them in [LM Studio](https://lmstudio.ai/)
|
|
1794 |
|
1795 |
No prompt format found, check original model page
|
1796 |
|
|
|
|
|
|
|
|
|
1797 |
## Download a file (not the whole branch) from below:
|
1798 |
|
1799 |
| Filename | Quant type | File Size | Split | Description |
|
@@ -1813,6 +38,7 @@ No prompt format found, check original model page
|
|
1813 |
| [granite-embedding-30m-english-IQ4_XS.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-IQ4_XS.gguf) | IQ4_XS | 0.03GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
|
1814 |
| [granite-embedding-30m-english-Q3_K_XL.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-Q3_K_XL.gguf) | Q3_K_XL | 0.03GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
|
1815 |
| [granite-embedding-30m-english-Q3_K_L.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-Q3_K_L.gguf) | Q3_K_L | 0.03GB | false | Lower quality but usable, good for low RAM availability. |
|
|
|
1816 |
| [granite-embedding-30m-english-IQ3_M.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-IQ3_M.gguf) | IQ3_M | 0.03GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
|
1817 |
|
1818 |
## Embed/output weights
|
|
|
1 |
---
|
2 |
quantized_by: bartowski
|
3 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
## Llamacpp Static Quantizations of granite-embedding-30m-english
|
7 |
|
8 |
+
Using <a href="https://github.com/ggerganov/llama.cpp/">llama.cpp</a> release <a href="https://github.com/ggerganov/llama.cpp/releases/tag/b4381">b4381</a> for quantization.
|
9 |
|
10 |
Original model: https://huggingface.co/ibm-granite/granite-embedding-30m-english
|
11 |
|
|
|
15 |
|
16 |
No prompt format found, check original model page
|
17 |
|
18 |
+
## What's new:
|
19 |
+
|
20 |
+
Fix tokenizer
|
21 |
+
|
22 |
## Download a file (not the whole branch) from below:
|
23 |
|
24 |
| Filename | Quant type | File Size | Split | Description |
|
|
|
38 |
| [granite-embedding-30m-english-IQ4_XS.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-IQ4_XS.gguf) | IQ4_XS | 0.03GB | false | Decent quality, smaller than Q4_K_S with similar performance, *recommended*. |
|
39 |
| [granite-embedding-30m-english-Q3_K_XL.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-Q3_K_XL.gguf) | Q3_K_XL | 0.03GB | false | Uses Q8_0 for embed and output weights. Lower quality but usable, good for low RAM availability. |
|
40 |
| [granite-embedding-30m-english-Q3_K_L.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-Q3_K_L.gguf) | Q3_K_L | 0.03GB | false | Lower quality but usable, good for low RAM availability. |
|
41 |
+
| [granite-embedding-30m-english-Q3_K_M.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-Q3_K_M.gguf) | Q3_K_M | 0.03GB | false | Low quality. |
|
42 |
| [granite-embedding-30m-english-IQ3_M.gguf](https://huggingface.co/bartowski/granite-embedding-30m-english-GGUF/blob/main/granite-embedding-30m-english-IQ3_M.gguf) | IQ3_M | 0.03GB | false | Medium-low quality, new method with decent performance comparable to Q3_K_M. |
|
43 |
|
44 |
## Embed/output weights
|