---
pipeline_tag: text-generation
inference:
parameters:
temperature: 0.2
top_p: 0.95
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
datasets:
- bigcode/the-stack-v2-train
license: bigcode-openrail-m
library_name: transformers
tags:
- code
model-index:
- name: starcoder2-7b
results:
- task:
type: text-generation
dataset:
name: CruxEval-I
type: cruxeval-i
metrics:
- type: pass@1
value: 34.6
- task:
type: text-generation
dataset:
name: DS-1000
type: ds-1000
metrics:
- type: pass@1
value: 27.8
- task:
type: text-generation
dataset:
name: GSM8K (PAL)
type: gsm8k-pal
metrics:
- type: accuracy
value: 40.4
- task:
type: text-generation
dataset:
name: HumanEval+
type: humanevalplus
metrics:
- type: pass@1
value: 29.9
- task:
type: text-generation
dataset:
name: HumanEval
type: humaneval
metrics:
- type: pass@1
value: 35.4
- task:
type: text-generation
dataset:
name: RepoBench-v1.1
type: repobench-v1.1
metrics:
- type: edit-smiliarity
value: 72.07
quantized_by: bartowski
---
## Exllama v2 Quantizations of starcoder2-7b
Using turboderp's ExLlamaV2 v0.0.14 for quantization.
The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)
Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.
Original model: https://huggingface.co/bigcode/starcoder2-7b
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/starcoder2-7b-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.2 GB | 10.2 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/starcoder2-7b-exl2/tree/6_5) | 6.5 | 8.0 | 7.1 GB | 7.9 GB | 8.9 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. |
| [5_0](https://huggingface.co/bartowski/starcoder2-7b-exl2/tree/5_0) | 5.0 | 6.0 | 5.8 GB | 6.6 GB | 7.6 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. |
| [4_25](https://huggingface.co/bartowski/starcoder2-7b-exl2/tree/4_25) | 4.25 | 6.0 | 5.1 GB | 5.9 GB | 6.9 GB | GPTQ equivalent bits per weight, slightly higher quality. |
| [3_5](https://huggingface.co/bartowski/starcoder2-7b-exl2/tree/3_5) | 3.5 | 6.0 | 4.5 GB | 5.3 GB | 6.3 GB | Lower quality, only use if you have to. |
## Download instructions
With git:
```shell
git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/starcoder2-7b-exl2 starcoder2-7b-exl2-6_5
```
With huggingface hub (credit to TheBloke for instructions):
```shell
pip3 install huggingface-hub
```
To download the `main` (only useful if you only care about measurement.json) branch to a folder called `starcoder2-7b-exl2`:
```shell
mkdir starcoder2-7b-exl2
huggingface-cli download bartowski/starcoder2-7b-exl2 --local-dir starcoder2-7b-exl2 --local-dir-use-symlinks False
```
To download from a different branch, add the `--revision` parameter:
Linux:
```shell
mkdir starcoder2-7b-exl2-6_5
huggingface-cli download bartowski/starcoder2-7b-exl2 --revision 6_5 --local-dir starcoder2-7b-exl2-6_5 --local-dir-use-symlinks False
```
Windows (which apparently doesn't like _ in folders sometimes?):
```shell
mkdir starcoder2-7b-exl2-6.5
huggingface-cli download bartowski/starcoder2-7b-exl2 --revision 6_5 --local-dir starcoder2-7b-exl2-6.5 --local-dir-use-symlinks False
```
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski