|
--- |
|
license: mit |
|
tags: |
|
- asr |
|
- whisper |
|
- speech-recognition |
|
--- |
|
|
|
|
|
```python |
|
|
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
import librosa |
|
import torch |
|
|
|
|
|
model_name = "basharalrfooh/whisper-samll-quran" |
|
processor = WhisperProcessor.from_pretrained(model_name) |
|
model = WhisperForConditionalGeneration.from_pretrained(model_name) |
|
model.config.forced_decoder_ids = None |
|
|
|
|
|
audio_file = "Your .wav file" |
|
|
|
speech_array, sampling_rate = librosa.load(audio_file, sr=16000) |
|
|
|
inputs = processor(speech_array, return_tensors="pt", sampling_rate=sampling_rate) |
|
|
|
with torch.no_grad(): |
|
predicted_ids = model.generate(inputs["input_features"]) |
|
|
|
# Decode token IDs to text |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True) |
|
|
|
print(f"Transcription: {transcription}") |
|
|
|
|