File size: 1,883 Bytes
92b48b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# model

This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1946
- Accuracy: 0.9576

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 101  | 1.0266          | 0.8504   |
| No log        | 2.0   | 202  | 0.4850          | 0.9451   |
| No log        | 3.0   | 303  | 0.2802          | 0.9551   |
| No log        | 4.0   | 404  | 0.2025          | 0.9576   |
| 0.6615        | 5.0   | 505  | 0.2072          | 0.9501   |
| 0.6615        | 6.0   | 606  | 0.2131          | 0.9426   |
| 0.6615        | 7.0   | 707  | 0.2189          | 0.9551   |
| 0.6615        | 8.0   | 808  | 0.1967          | 0.9576   |
| 0.6615        | 9.0   | 909  | 0.1958          | 0.9576   |
| 0.0705        | 10.0  | 1010 | 0.1946          | 0.9576   |


### Framework versions

- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1