--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1946 - Accuracy: 0.9576 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 101 | 1.0266 | 0.8504 | | No log | 2.0 | 202 | 0.4850 | 0.9451 | | No log | 3.0 | 303 | 0.2802 | 0.9551 | | No log | 4.0 | 404 | 0.2025 | 0.9576 | | 0.6615 | 5.0 | 505 | 0.2072 | 0.9501 | | 0.6615 | 6.0 | 606 | 0.2131 | 0.9426 | | 0.6615 | 7.0 | 707 | 0.2189 | 0.9551 | | 0.6615 | 8.0 | 808 | 0.1967 | 0.9576 | | 0.6615 | 9.0 | 909 | 0.1958 | 0.9576 | | 0.0705 | 10.0 | 1010 | 0.1946 | 0.9576 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1