bebechien commited on
Commit
09eb54f
1 Parent(s): b499755

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ base_model/gemma-2-2b/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ base_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
base_model/README.md ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ extra_gated_heading: Access Gemma on Hugging Face
6
+ extra_gated_prompt: >-
7
+ To access Gemma on Hugging Face, you’re required to review and agree to
8
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
9
+ Face and click below. Requests are processed immediately.
10
+ extra_gated_button_content: Acknowledge license
11
+ ---
12
+
13
+
14
+ # Gemma 2 model card
15
+
16
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
17
+
18
+ **Resources and Technical Documentation**:
19
+
20
+ * [Responsible Generative AI Toolkit][rai-toolkit]
21
+ * [Gemma on Kaggle][kaggle-gemma]
22
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
23
+
24
+ **Terms of Use**: [Terms][terms]
25
+
26
+ **Authors**: Google
27
+
28
+ ## Model Information
29
+
30
+ Summary description and brief definition of inputs and outputs.
31
+
32
+ ### Description
33
+
34
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
35
+ built from the same research and technology used to create the Gemini models.
36
+ They are text-to-text, decoder-only large language models, available in English,
37
+ with open weights for both pre-trained variants and instruction-tuned variants.
38
+ Gemma models are well-suited for a variety of text generation tasks, including
39
+ question answering, summarization, and reasoning. Their relatively small size
40
+ makes it possible to deploy them in environments with limited resources such as
41
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
42
+ state of the art AI models and helping foster innovation for everyone.
43
+
44
+ ### Usage
45
+
46
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
47
+ ```sh
48
+ pip install -U transformers
49
+ ```
50
+
51
+ Then, copy the snippet from the section that is relevant for your usecase.
52
+
53
+ #### Running with the `pipeline` API
54
+
55
+ ```python
56
+ import torch
57
+ from transformers import pipeline
58
+
59
+ pipe = pipeline(
60
+ "text-generation",
61
+ model="google/gemma-2-2b",
62
+ device="cuda", # replace with "mps" to run on a Mac device
63
+ )
64
+
65
+ text = "Once upon a time,"
66
+ outputs = pipe(text, max_new_tokens=256)
67
+ response = outputs[0]["generated_text"]
68
+ print(response)
69
+ ```
70
+
71
+ #### Running the model on a single / multi GPU
72
+
73
+ ```python
74
+ # pip install accelerate
75
+ from transformers import AutoTokenizer, AutoModelForCausalLM
76
+ import torch
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
79
+ model = AutoModelForCausalLM.from_pretrained(
80
+ "google/gemma-2-2b",
81
+ device_map="auto",
82
+ )
83
+
84
+ input_text = "Write me a poem about Machine Learning."
85
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
86
+
87
+ outputs = model.generate(**input_ids, max_new_tokens=32)
88
+ print(tokenizer.decode(outputs[0]))
89
+ ```
90
+
91
+ #### Running the model through a CLI
92
+
93
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
94
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
95
+ for getting started, then launch the CLI through the following command:
96
+
97
+ ```shell
98
+ local-gemma --model "google/gemma-2-2b" --prompt "What is the capital of Mexico?"
99
+ ```
100
+
101
+ #### Quantized Versions through `bitsandbytes`
102
+
103
+ <details>
104
+ <summary>
105
+ Using 8-bit precision (int8)
106
+ </summary>
107
+
108
+ ```python
109
+ # pip install bitsandbytes accelerate
110
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
111
+
112
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
113
+
114
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
115
+ model = AutoModelForCausalLM.from_pretrained(
116
+ "google/gemma-2-2b",
117
+ quantization_config=quantization_config,
118
+ )
119
+
120
+ input_text = "Write me a poem about Machine Learning."
121
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
122
+
123
+ outputs = model.generate(**input_ids, max_new_tokens=32)
124
+ print(tokenizer.decode(outputs[0]))
125
+ ```
126
+ </details>
127
+
128
+ <details>
129
+ <summary>
130
+ Using 4-bit precision
131
+ </summary>
132
+
133
+ ```python
134
+ # pip install bitsandbytes accelerate
135
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
136
+
137
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
138
+
139
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
140
+ model = AutoModelForCausalLM.from_pretrained(
141
+ "google/gemma-2-2b",
142
+ quantization_config=quantization_config,
143
+ )
144
+
145
+ input_text = "Write me a poem about Machine Learning."
146
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
147
+
148
+ outputs = model.generate(**input_ids, max_new_tokens=32)
149
+ print(tokenizer.decode(outputs[0]))
150
+ ```
151
+ </details>
152
+
153
+ #### Advanced Usage
154
+
155
+ <details>
156
+ <summary>
157
+ Torch compile
158
+ </summary>
159
+
160
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
161
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
162
+
163
+ Note that two warm-up steps are required before the full inference speed is realised:
164
+
165
+ ```python
166
+ import os
167
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
168
+
169
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
170
+ from transformers.cache_utils import HybridCache
171
+ import torch
172
+
173
+ torch.set_float32_matmul_precision("high")
174
+
175
+ # load the model + tokenizer
176
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
177
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b", torch_dtype=torch.bfloat16)
178
+ model.to("cuda")
179
+
180
+ # apply the torch compile transformation
181
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
182
+
183
+ # pre-process inputs
184
+ input_text = "The theory of special relativity states "
185
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
186
+ prompt_length = model_inputs.input_ids.shape[1]
187
+
188
+ # set-up k/v cache
189
+ past_key_values = HybridCache(
190
+ config=model.config,
191
+ max_batch_size=1,
192
+ max_cache_len=model.config.max_position_embeddings,
193
+ device=model.device,
194
+ dtype=model.dtype
195
+ )
196
+
197
+ # enable passing kv cache to generate
198
+ model._supports_cache_class = True
199
+ model.generation_config.cache_implementation = None
200
+
201
+ # two warm-up steps
202
+ for idx in range(2):
203
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
204
+ past_key_values.reset()
205
+
206
+ # fast run
207
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
208
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
209
+ ```
210
+
211
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
212
+
213
+ </details>
214
+
215
+ ### Inputs and outputs
216
+
217
+ * **Input:** Text string, such as a question, a prompt, or a document to be
218
+ summarized.
219
+ * **Output:** Generated English-language text in response to the input, such
220
+ as an answer to a question, or a summary of a document.
221
+
222
+ ### Citation
223
+
224
+ ```none
225
+ @article{gemma_2024,
226
+ title={Gemma},
227
+ url={https://www.kaggle.com/m/3301},
228
+ DOI={10.34740/KAGGLE/M/3301},
229
+ publisher={Kaggle},
230
+ author={Gemma Team},
231
+ year={2024}
232
+ }
233
+ ```
234
+
235
+ ## Model Data
236
+
237
+ Data used for model training and how the data was processed.
238
+
239
+ ### Training Dataset
240
+
241
+ These models were trained on a dataset of text data that includes a wide variety
242
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
243
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
244
+ Here are the key components:
245
+
246
+ * Web Documents: A diverse collection of web text ensures the model is exposed
247
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
248
+ English-language content.
249
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
250
+ programming languages, which improves its ability to generate code or
251
+ understand code-related questions.
252
+ * Mathematics: Training on mathematical text helps the model learn logical
253
+ reasoning, symbolic representation, and to address mathematical queries.
254
+
255
+ The combination of these diverse data sources is crucial for training a powerful
256
+ language model that can handle a wide variety of different tasks and text
257
+ formats.
258
+
259
+ ### Data Preprocessing
260
+
261
+ Here are the key data cleaning and filtering methods applied to the training
262
+ data:
263
+
264
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
265
+ applied at multiple stages in the data preparation process to ensure the
266
+ exclusion of harmful and illegal content.
267
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
268
+ reliable, automated techniques were used to filter out certain personal
269
+ information and other sensitive data from training sets.
270
+ * Additional methods: Filtering based on content quality and safety in line with
271
+ [our policies][safety-policies].
272
+
273
+ ## Implementation Information
274
+
275
+ Details about the model internals.
276
+
277
+ ### Hardware
278
+
279
+ Gemma was trained using the latest generation of
280
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
281
+
282
+ Training large language models requires significant computational power. TPUs,
283
+ designed specifically for matrix operations common in machine learning, offer
284
+ several advantages in this domain:
285
+
286
+ * Performance: TPUs are specifically designed to handle the massive computations
287
+ involved in training LLMs. They can speed up training considerably compared to
288
+ CPUs.
289
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
290
+ for the handling of large models and batch sizes during training. This can
291
+ lead to better model quality.
292
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
293
+ handling the growing complexity of large foundation models. You can distribute
294
+ training across multiple TPU devices for faster and more efficient processing.
295
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
296
+ solution for training large models compared to CPU-based infrastructure,
297
+ especially when considering the time and resources saved due to faster
298
+ training.
299
+ * These advantages are aligned with
300
+ [Google's commitments to operate sustainably][sustainability].
301
+
302
+ ### Software
303
+
304
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
305
+
306
+ JAX allows researchers to take advantage of the latest generation of hardware,
307
+ including TPUs, for faster and more efficient training of large models.
308
+
309
+ ML Pathways is Google's latest effort to build artificially intelligent systems
310
+ capable of generalizing across multiple tasks. This is specially suitable for
311
+ [foundation models][foundation-models], including large language models like
312
+ these ones.
313
+
314
+ Together, JAX and ML Pathways are used as described in the
315
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
316
+ controller' programming model of Jax and Pathways allows a single Python
317
+ process to orchestrate the entire training run, dramatically simplifying the
318
+ development workflow."
319
+
320
+ ## Evaluation
321
+
322
+ Model evaluation metrics and results.
323
+
324
+ ### Benchmark Results
325
+
326
+ These models were evaluated against a large collection of different datasets and
327
+ metrics to cover different aspects of text generation:
328
+
329
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
330
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
331
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
332
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
333
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
334
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
335
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
336
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
337
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
338
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
339
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
340
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
341
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
342
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
343
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
344
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
345
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
346
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
347
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
348
+
349
+ ## Ethics and Safety
350
+
351
+ Ethics and safety evaluation approach and results.
352
+
353
+ ### Evaluation Approach
354
+
355
+ Our evaluation methods include structured evaluations and internal red-teaming
356
+ testing of relevant content policies. Red-teaming was conducted by a number of
357
+ different teams, each with different goals and human evaluation metrics. These
358
+ models were evaluated against a number of different categories relevant to
359
+ ethics and safety, including:
360
+
361
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
362
+ policies including child sexual abuse and exploitation, harassment, violence
363
+ and gore, and hate speech.
364
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
365
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
366
+ * Memorization: Automated evaluation of memorization of training data, including
367
+ the risk of personally identifiable information exposure.
368
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
369
+ biological, radiological, and nuclear (CBRN) risks.
370
+
371
+ ### Evaluation Results
372
+
373
+ The results of ethics and safety evaluations are within acceptable thresholds
374
+ for meeting [internal policies][safety-policies] for categories such as child
375
+ safety, content safety, representational harms, memorization, large-scale harms.
376
+ On top of robust internal evaluations, the results of well-known safety
377
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
378
+ are shown here.
379
+
380
+ #### Gemma 2.0
381
+
382
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
383
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
384
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
385
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
386
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
387
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
388
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
389
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
390
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
391
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
392
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
393
+
394
+ ## Dangerous Capability Evaluations
395
+
396
+ ### Evaluation Approach
397
+
398
+ We evaluated a range of dangerous capabilities:
399
+
400
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
401
+ cybersecurity contexts, we utilized both publicly available
402
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
403
+ well as internally developed CTF challenges. These evaluations measure the
404
+ model's ability to exploit vulnerabilities and gain unauthorized access in
405
+ simulated environments.
406
+ - **Self-proliferation:** We evaluated the model's capacity for
407
+ self-proliferation by designing tasks that involve resource acquisition, code
408
+ execution, and interaction with remote systems. These evaluations assess
409
+ the model's ability to independently replicate and spread.
410
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
411
+ deception, we conducted human persuasion studies. These studies involved
412
+ scenarios that measure the model's ability to build rapport, influence
413
+ beliefs, and elicit specific actions from human participants.
414
+
415
+ ### Evaluation Results
416
+
417
+ All evaluations are described in detail in
418
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
419
+ and in brief in the
420
+ [Gemma 2 technical report][tech-report].
421
+
422
+ <table>
423
+ <thead>
424
+ <tr>
425
+ <th>Evaluation</th>
426
+ <th>Capability</th>
427
+ <th>Gemma 2 IT 27B</th>
428
+ </tr>
429
+ </thead>
430
+ <tbody>
431
+ <tr>
432
+ <td>InterCode-CTF</td>
433
+ <td>Offensive cybersecurity</td>
434
+ <td>34/76 challenges</td>
435
+ </tr>
436
+ <tr>
437
+ <td>Internal CTF</td>
438
+ <td>Offensive cybersecurity</td>
439
+ <td>1/13 challenges</td>
440
+ </tr>
441
+ <tr>
442
+ <td>Hack the Box</td>
443
+ <td>Offensive cybersecurity</td>
444
+ <td>0/13 challenges</td>
445
+ </tr>
446
+ <tr>
447
+ <td>Self-proliferation early warning</td>
448
+ <td>Self-proliferation</td>
449
+ <td>1/10 challenges</td>
450
+ </tr>
451
+ <tr>
452
+ <td>Charm offensive</td>
453
+ <td>Persuasion</td>
454
+ <td>Percent of participants agreeing:
455
+ 81% interesting,
456
+ 75% would speak again,
457
+ 80% made personal connection</td>
458
+ </tr>
459
+ <tr>
460
+ <td>Click Links</td>
461
+ <td>Persuasion</td>
462
+ <td>34% of participants</td>
463
+ </tr>
464
+ <tr>
465
+ <td>Find Info</td>
466
+ <td>Persuasion</td>
467
+ <td>9% of participants</td>
468
+ </tr>
469
+ <tr>
470
+ <td>Run Code</td>
471
+ <td>Persuasion</td>
472
+ <td>11% of participants</td>
473
+ </tr>
474
+ <tr>
475
+ <td>Money talks</td>
476
+ <td>Persuasion</td>
477
+ <td>£3.72 mean donation</td>
478
+ </tr>
479
+ <tr>
480
+ <td>Web of Lies</td>
481
+ <td>Persuasion</td>
482
+ <td>18% mean shift towards correct belief, 1% mean shift towards
483
+ incorrect belief</td>
484
+ </tr>
485
+ </tbody>
486
+ </table>
487
+
488
+ ## Usage and Limitations
489
+
490
+ These models have certain limitations that users should be aware of.
491
+
492
+ ### Intended Usage
493
+
494
+ Open Large Language Models (LLMs) have a wide range of applications across
495
+ various industries and domains. The following list of potential uses is not
496
+ comprehensive. The purpose of this list is to provide contextual information
497
+ about the possible use-cases that the model creators considered as part of model
498
+ training and development.
499
+
500
+ * Content Creation and Communication
501
+ * Text Generation: These models can be used to generate creative text formats
502
+ such as poems, scripts, code, marketing copy, and email drafts.
503
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
504
+ service, virtual assistants, or interactive applications.
505
+ * Text Summarization: Generate concise summaries of a text corpus, research
506
+ papers, or reports.
507
+ * Research and Education
508
+ * Natural Language Processing (NLP) Research: These models can serve as a
509
+ foundation for researchers to experiment with NLP techniques, develop
510
+ algorithms, and contribute to the advancement of the field.
511
+ * Language Learning Tools: Support interactive language learning experiences,
512
+ aiding in grammar correction or providing writing practice.
513
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
514
+ by generating summaries or answering questions about specific topics.
515
+
516
+ ### Limitations
517
+
518
+ * Training Data
519
+ * The quality and diversity of the training data significantly influence the
520
+ model's capabilities. Biases or gaps in the training data can lead to
521
+ limitations in the model's responses.
522
+ * The scope of the training dataset determines the subject areas the model can
523
+ handle effectively.
524
+ * Context and Task Complexity
525
+ * LLMs are better at tasks that can be framed with clear prompts and
526
+ instructions. Open-ended or highly complex tasks might be challenging.
527
+ * A model's performance can be influenced by the amount of context provided
528
+ (longer context generally leads to better outputs, up to a certain point).
529
+ * Language Ambiguity and Nuance
530
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
531
+ nuances, sarcasm, or figurative language.
532
+ * Factual Accuracy
533
+ * LLMs generate responses based on information they learned from their
534
+ training datasets, but they are not knowledge bases. They may generate
535
+ incorrect or outdated factual statements.
536
+ * Common Sense
537
+ * LLMs rely on statistical patterns in language. They might lack the ability
538
+ to apply common sense reasoning in certain situations.
539
+
540
+ ### Ethical Considerations and Risks
541
+
542
+ The development of large language models (LLMs) raises several ethical concerns.
543
+ In creating an open model, we have carefully considered the following:
544
+
545
+ * Bias and Fairness
546
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
547
+ biases embedded in the training material. These models underwent careful
548
+ scrutiny, input data pre-processing described and posterior evaluations
549
+ reported in this card.
550
+ * Misinformation and Misuse
551
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
552
+ * Guidelines are provided for responsible use with the model, see the
553
+ [Responsible Generative AI Toolkit][rai-toolkit].
554
+ * Transparency and Accountability:
555
+ * This model card summarizes details on the models' architecture,
556
+ capabilities, limitations, and evaluation processes.
557
+ * A responsibly developed open model offers the opportunity to share
558
+ innovation by making LLM technology accessible to developers and researchers
559
+ across the AI ecosystem.
560
+
561
+ Risks identified and mitigations:
562
+
563
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
564
+ (using evaluation metrics, human review) and the exploration of de-biasing
565
+ techniques during model training, fine-tuning, and other use cases.
566
+ * Generation of harmful content: Mechanisms and guidelines for content safety
567
+ are essential. Developers are encouraged to exercise caution and implement
568
+ appropriate content safety safeguards based on their specific product policies
569
+ and application use cases.
570
+ * Misuse for malicious purposes: Technical limitations and developer and
571
+ end-user education can help mitigate against malicious applications of LLMs.
572
+ Educational resources and reporting mechanisms for users to flag misuse are
573
+ provided. Prohibited uses of Gemma models are outlined in the
574
+ [Gemma Prohibited Use Policy][prohibited-use].
575
+ * Privacy violations: Models were trained on data filtered for removal of PII
576
+ (Personally Identifiable Information). Developers are encouraged to adhere to
577
+ privacy regulations with privacy-preserving techniques.
578
+
579
+ ### Benefits
580
+
581
+ At the time of release, this family of models provides high-performance open
582
+ large language model implementations designed from the ground up for Responsible
583
+ AI development compared to similarly sized models.
584
+
585
+ Using the benchmark evaluation metrics described in this document, these models
586
+ have shown to provide superior performance to other, comparably-sized open model
587
+ alternatives.
588
+
589
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
590
+ [rai-toolkit]: https://ai.google.dev/responsible
591
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
592
+ [terms]: https://ai.google.dev/gemma/terms
593
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
594
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
595
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
596
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
597
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
598
+ [sustainability]: https://sustainability.google/operating-sustainably/
599
+ [jax]: https://github.com/google/jax
600
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
601
+ [sustainability]: https://sustainability.google/operating-sustainably/
602
+ [foundation-models]: https://ai.google/discover/foundation-models/
603
+ [gemini-2-paper]: https://goo.gle/gemma2report
604
+ [mmlu]: https://arxiv.org/abs/2009.03300
605
+ [hellaswag]: https://arxiv.org/abs/1905.07830
606
+ [piqa]: https://arxiv.org/abs/1911.11641
607
+ [socialiqa]: https://arxiv.org/abs/1904.09728
608
+ [boolq]: https://arxiv.org/abs/1905.10044
609
+ [winogrande]: https://arxiv.org/abs/1907.10641
610
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
611
+ [openbookqa]: https://arxiv.org/abs/1809.02789
612
+ [arc]: https://arxiv.org/abs/1911.01547
613
+ [triviaqa]: https://arxiv.org/abs/1705.03551
614
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
615
+ [humaneval]: https://arxiv.org/abs/2107.03374
616
+ [mbpp]: https://arxiv.org/abs/2108.07732
617
+ [gsm8k]: https://arxiv.org/abs/2110.14168
618
+ [realtox]: https://arxiv.org/abs/2009.11462
619
+ [bold]: https://arxiv.org/abs/2101.11718
620
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
621
+ [bbq]: https://arxiv.org/abs/2110.08193v2
622
+ [winogender]: https://arxiv.org/abs/1804.09301
623
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
624
+ [winobias]: https://arxiv.org/abs/1804.06876
625
+ [math]: https://arxiv.org/abs/2103.03874
626
+ [agieval]: https://arxiv.org/abs/2304.06364
627
+ [drop]: https://arxiv.org/abs/1903.00161
628
+ [big-bench]: https://arxiv.org/abs/2206.04615
629
+ [toxigen]: https://arxiv.org/abs/2203.09509
630
+ [eval-danger]: https://arxiv.org/abs/2403.13793
base_model/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma2ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": 50.0,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": 1,
11
+ "final_logit_softcapping": 30.0,
12
+ "head_dim": 256,
13
+ "hidden_act": "gelu_pytorch_tanh",
14
+ "hidden_activation": "gelu_pytorch_tanh",
15
+ "hidden_size": 2304,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 9216,
18
+ "max_position_embeddings": 8192,
19
+ "model_type": "gemma2",
20
+ "num_attention_heads": 8,
21
+ "num_hidden_layers": 26,
22
+ "num_key_value_heads": 4,
23
+ "pad_token_id": 0,
24
+ "query_pre_attn_scalar": 256,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_theta": 10000.0,
27
+ "sliding_window": 4096,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.42.4",
30
+ "use_cache": true,
31
+ "vocab_size": 256000
32
+ }
base_model/gemma-2-2b/README.md ADDED
@@ -0,0 +1,630 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: gemma
3
+ library_name: transformers
4
+ pipeline_tag: text-generation
5
+ extra_gated_heading: Access Gemma on Hugging Face
6
+ extra_gated_prompt: >-
7
+ To access Gemma on Hugging Face, you’re required to review and agree to
8
+ Google’s usage license. To do this, please ensure you’re logged in to Hugging
9
+ Face and click below. Requests are processed immediately.
10
+ extra_gated_button_content: Acknowledge license
11
+ ---
12
+
13
+
14
+ # Gemma 2 model card
15
+
16
+ **Model Page**: [Gemma](https://ai.google.dev/gemma/docs/base)
17
+
18
+ **Resources and Technical Documentation**:
19
+
20
+ * [Responsible Generative AI Toolkit][rai-toolkit]
21
+ * [Gemma on Kaggle][kaggle-gemma]
22
+ * [Gemma on Vertex Model Garden][vertex-mg-gemma2]
23
+
24
+ **Terms of Use**: [Terms][terms]
25
+
26
+ **Authors**: Google
27
+
28
+ ## Model Information
29
+
30
+ Summary description and brief definition of inputs and outputs.
31
+
32
+ ### Description
33
+
34
+ Gemma is a family of lightweight, state-of-the-art open models from Google,
35
+ built from the same research and technology used to create the Gemini models.
36
+ They are text-to-text, decoder-only large language models, available in English,
37
+ with open weights for both pre-trained variants and instruction-tuned variants.
38
+ Gemma models are well-suited for a variety of text generation tasks, including
39
+ question answering, summarization, and reasoning. Their relatively small size
40
+ makes it possible to deploy them in environments with limited resources such as
41
+ a laptop, desktop or your own cloud infrastructure, democratizing access to
42
+ state of the art AI models and helping foster innovation for everyone.
43
+
44
+ ### Usage
45
+
46
+ Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
47
+ ```sh
48
+ pip install -U transformers
49
+ ```
50
+
51
+ Then, copy the snippet from the section that is relevant for your usecase.
52
+
53
+ #### Running with the `pipeline` API
54
+
55
+ ```python
56
+ import torch
57
+ from transformers import pipeline
58
+
59
+ pipe = pipeline(
60
+ "text-generation",
61
+ model="google/gemma-2-2b",
62
+ device="cuda", # replace with "mps" to run on a Mac device
63
+ )
64
+
65
+ text = "Once upon a time,"
66
+ outputs = pipe(text, max_new_tokens=256)
67
+ response = outputs[0]["generated_text"]
68
+ print(response)
69
+ ```
70
+
71
+ #### Running the model on a single / multi GPU
72
+
73
+ ```python
74
+ # pip install accelerate
75
+ from transformers import AutoTokenizer, AutoModelForCausalLM
76
+ import torch
77
+
78
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
79
+ model = AutoModelForCausalLM.from_pretrained(
80
+ "google/gemma-2-2b",
81
+ device_map="auto",
82
+ )
83
+
84
+ input_text = "Write me a poem about Machine Learning."
85
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
86
+
87
+ outputs = model.generate(**input_ids, max_new_tokens=32)
88
+ print(tokenizer.decode(outputs[0]))
89
+ ```
90
+
91
+ #### Running the model through a CLI
92
+
93
+ The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
94
+ for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
95
+ for getting started, then launch the CLI through the following command:
96
+
97
+ ```shell
98
+ local-gemma --model "google/gemma-2-2b" --prompt "What is the capital of Mexico?"
99
+ ```
100
+
101
+ #### Quantized Versions through `bitsandbytes`
102
+
103
+ <details>
104
+ <summary>
105
+ Using 8-bit precision (int8)
106
+ </summary>
107
+
108
+ ```python
109
+ # pip install bitsandbytes accelerate
110
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
111
+
112
+ quantization_config = BitsAndBytesConfig(load_in_8bit=True)
113
+
114
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
115
+ model = AutoModelForCausalLM.from_pretrained(
116
+ "google/gemma-2-2b",
117
+ quantization_config=quantization_config,
118
+ )
119
+
120
+ input_text = "Write me a poem about Machine Learning."
121
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
122
+
123
+ outputs = model.generate(**input_ids, max_new_tokens=32)
124
+ print(tokenizer.decode(outputs[0]))
125
+ ```
126
+ </details>
127
+
128
+ <details>
129
+ <summary>
130
+ Using 4-bit precision
131
+ </summary>
132
+
133
+ ```python
134
+ # pip install bitsandbytes accelerate
135
+ from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
136
+
137
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
138
+
139
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
140
+ model = AutoModelForCausalLM.from_pretrained(
141
+ "google/gemma-2-2b",
142
+ quantization_config=quantization_config,
143
+ )
144
+
145
+ input_text = "Write me a poem about Machine Learning."
146
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
147
+
148
+ outputs = model.generate(**input_ids, max_new_tokens=32)
149
+ print(tokenizer.decode(outputs[0]))
150
+ ```
151
+ </details>
152
+
153
+ #### Advanced Usage
154
+
155
+ <details>
156
+ <summary>
157
+ Torch compile
158
+ </summary>
159
+
160
+ [Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
161
+ inference of PyTorch modules. The Gemma-2 2b model can be run up to 6x faster by leveraging torch compile.
162
+
163
+ Note that two warm-up steps are required before the full inference speed is realised:
164
+
165
+ ```python
166
+ import os
167
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
168
+
169
+ from transformers import AutoTokenizer, Gemma2ForCausalLM
170
+ from transformers.cache_utils import HybridCache
171
+ import torch
172
+
173
+ torch.set_float32_matmul_precision("high")
174
+
175
+ # load the model + tokenizer
176
+ tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b")
177
+ model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b", torch_dtype=torch.bfloat16)
178
+ model.to("cuda")
179
+
180
+ # apply the torch compile transformation
181
+ model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
182
+
183
+ # pre-process inputs
184
+ input_text = "The theory of special relativity states "
185
+ model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
186
+ prompt_length = model_inputs.input_ids.shape[1]
187
+
188
+ # set-up k/v cache
189
+ past_key_values = HybridCache(
190
+ config=model.config,
191
+ max_batch_size=1,
192
+ max_cache_len=model.config.max_position_embeddings,
193
+ device=model.device,
194
+ dtype=model.dtype
195
+ )
196
+
197
+ # enable passing kv cache to generate
198
+ model._supports_cache_class = True
199
+ model.generation_config.cache_implementation = None
200
+
201
+ # two warm-up steps
202
+ for idx in range(2):
203
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
204
+ past_key_values.reset()
205
+
206
+ # fast run
207
+ outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
208
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
209
+ ```
210
+
211
+ For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
212
+
213
+ </details>
214
+
215
+ ### Inputs and outputs
216
+
217
+ * **Input:** Text string, such as a question, a prompt, or a document to be
218
+ summarized.
219
+ * **Output:** Generated English-language text in response to the input, such
220
+ as an answer to a question, or a summary of a document.
221
+
222
+ ### Citation
223
+
224
+ ```none
225
+ @article{gemma_2024,
226
+ title={Gemma},
227
+ url={https://www.kaggle.com/m/3301},
228
+ DOI={10.34740/KAGGLE/M/3301},
229
+ publisher={Kaggle},
230
+ author={Gemma Team},
231
+ year={2024}
232
+ }
233
+ ```
234
+
235
+ ## Model Data
236
+
237
+ Data used for model training and how the data was processed.
238
+
239
+ ### Training Dataset
240
+
241
+ These models were trained on a dataset of text data that includes a wide variety
242
+ of sources. The 27B model was trained with 13 trillion tokens, the 9B model was
243
+ trained with 8 trillion tokens, and 2B model was trained with 2 trillion tokens.
244
+ Here are the key components:
245
+
246
+ * Web Documents: A diverse collection of web text ensures the model is exposed
247
+ to a broad range of linguistic styles, topics, and vocabulary. Primarily
248
+ English-language content.
249
+ * Code: Exposing the model to code helps it to learn the syntax and patterns of
250
+ programming languages, which improves its ability to generate code or
251
+ understand code-related questions.
252
+ * Mathematics: Training on mathematical text helps the model learn logical
253
+ reasoning, symbolic representation, and to address mathematical queries.
254
+
255
+ The combination of these diverse data sources is crucial for training a powerful
256
+ language model that can handle a wide variety of different tasks and text
257
+ formats.
258
+
259
+ ### Data Preprocessing
260
+
261
+ Here are the key data cleaning and filtering methods applied to the training
262
+ data:
263
+
264
+ * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
265
+ applied at multiple stages in the data preparation process to ensure the
266
+ exclusion of harmful and illegal content.
267
+ * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
268
+ reliable, automated techniques were used to filter out certain personal
269
+ information and other sensitive data from training sets.
270
+ * Additional methods: Filtering based on content quality and safety in line with
271
+ [our policies][safety-policies].
272
+
273
+ ## Implementation Information
274
+
275
+ Details about the model internals.
276
+
277
+ ### Hardware
278
+
279
+ Gemma was trained using the latest generation of
280
+ [Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
281
+
282
+ Training large language models requires significant computational power. TPUs,
283
+ designed specifically for matrix operations common in machine learning, offer
284
+ several advantages in this domain:
285
+
286
+ * Performance: TPUs are specifically designed to handle the massive computations
287
+ involved in training LLMs. They can speed up training considerably compared to
288
+ CPUs.
289
+ * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
290
+ for the handling of large models and batch sizes during training. This can
291
+ lead to better model quality.
292
+ * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
293
+ handling the growing complexity of large foundation models. You can distribute
294
+ training across multiple TPU devices for faster and more efficient processing.
295
+ * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
296
+ solution for training large models compared to CPU-based infrastructure,
297
+ especially when considering the time and resources saved due to faster
298
+ training.
299
+ * These advantages are aligned with
300
+ [Google's commitments to operate sustainably][sustainability].
301
+
302
+ ### Software
303
+
304
+ Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
305
+
306
+ JAX allows researchers to take advantage of the latest generation of hardware,
307
+ including TPUs, for faster and more efficient training of large models.
308
+
309
+ ML Pathways is Google's latest effort to build artificially intelligent systems
310
+ capable of generalizing across multiple tasks. This is specially suitable for
311
+ [foundation models][foundation-models], including large language models like
312
+ these ones.
313
+
314
+ Together, JAX and ML Pathways are used as described in the
315
+ [paper about the Gemini family of models][gemini-2-paper]; "the 'single
316
+ controller' programming model of Jax and Pathways allows a single Python
317
+ process to orchestrate the entire training run, dramatically simplifying the
318
+ development workflow."
319
+
320
+ ## Evaluation
321
+
322
+ Model evaluation metrics and results.
323
+
324
+ ### Benchmark Results
325
+
326
+ These models were evaluated against a large collection of different datasets and
327
+ metrics to cover different aspects of text generation:
328
+
329
+ | Benchmark | Metric | Gemma 2 PT 2B | Gemma 2 PT 9B | Gemma 2 PT 27B |
330
+ | ------------------------------ | ------------- | ------------- | ------------- | -------------- |
331
+ | [MMLU][mmlu] | 5-shot, top-1 | 51.3 | 71.3 | 75.2 |
332
+ | [HellaSwag][hellaswag] | 10-shot | 73.0 | 81.9 | 86.4 |
333
+ | [PIQA][piqa] | 0-shot | 77.8 | 81.7 | 83.2 |
334
+ | [SocialIQA][socialiqa] | 0-shot | 51.9 | 53.4 | 53.7 |
335
+ | [BoolQ][boolq] | 0-shot | 72.5 | 84.2 | 84.8 |
336
+ | [WinoGrande][winogrande] | partial score | 70.9 | 80.6 | 83.7 |
337
+ | [ARC-e][arc] | 0-shot | 80.1 | 88.0 | 88.6 |
338
+ | [ARC-c][arc] | 25-shot | 55.4 | 68.4 | 71.4 |
339
+ | [TriviaQA][triviaqa] | 5-shot | 59.4 | 76.6 | 83.7 |
340
+ | [Natural Questions][naturalq] | 5-shot | 16.7 | 29.2 | 34.5 |
341
+ | [HumanEval][humaneval] | pass@1 | 17.7 | 40.2 | 51.8 |
342
+ | [MBPP][mbpp] | 3-shot | 29.6 | 52.4 | 62.6 |
343
+ | [GSM8K][gsm8k] | 5-shot, maj@1 | 23.9 | 68.6 | 74.0 |
344
+ | [MATH][math] | 4-shot | 15.0 | 36.6 | 42.3 |
345
+ | [AGIEval][agieval] | 3-5-shot | 30.6 | 52.8 | 55.1 |
346
+ | [DROP][drop] | 3-shot, F1 | 52.0 | 69.4 | 72.2 |
347
+ | [BIG-Bench][big-bench] | 3-shot, CoT | 41.9 | 68.2 | 74.9 |
348
+
349
+ ## Ethics and Safety
350
+
351
+ Ethics and safety evaluation approach and results.
352
+
353
+ ### Evaluation Approach
354
+
355
+ Our evaluation methods include structured evaluations and internal red-teaming
356
+ testing of relevant content policies. Red-teaming was conducted by a number of
357
+ different teams, each with different goals and human evaluation metrics. These
358
+ models were evaluated against a number of different categories relevant to
359
+ ethics and safety, including:
360
+
361
+ * Text-to-Text Content Safety: Human evaluation on prompts covering safety
362
+ policies including child sexual abuse and exploitation, harassment, violence
363
+ and gore, and hate speech.
364
+ * Text-to-Text Representational Harms: Benchmark against relevant academic
365
+ datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
366
+ * Memorization: Automated evaluation of memorization of training data, including
367
+ the risk of personally identifiable information exposure.
368
+ * Large-scale harm: Tests for "dangerous capabilities," such as chemical,
369
+ biological, radiological, and nuclear (CBRN) risks.
370
+
371
+ ### Evaluation Results
372
+
373
+ The results of ethics and safety evaluations are within acceptable thresholds
374
+ for meeting [internal policies][safety-policies] for categories such as child
375
+ safety, content safety, representational harms, memorization, large-scale harms.
376
+ On top of robust internal evaluations, the results of well-known safety
377
+ benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
378
+ are shown here.
379
+
380
+ #### Gemma 2.0
381
+
382
+ | Benchmark | Metric | Gemma 2 IT 2B | Gemma 2 IT 9B | Gemma 2 IT 27B |
383
+ | ------------------------ | ------------- | ------------- | ------------- | -------------- |
384
+ | [RealToxicity][realtox] | average | 8.16 | 8.25 | 8.84 |
385
+ | [CrowS-Pairs][crows] | top-1 | 37.67 | 37.47 | 36.67 |
386
+ | [BBQ Ambig][bbq] | 1-shot, top-1 | 83.20 | 88.58 | 85.99 |
387
+ | [BBQ Disambig][bbq] | top-1 | 69.31 | 82.67 | 86.94 |
388
+ | [Winogender][winogender] | top-1 | 52.91 | 79.17 | 77.22 |
389
+ | [TruthfulQA][truthfulqa] | | 43.72 | 50.27 | 51.60 |
390
+ | [Winobias 1_2][winobias] | | 59.28 | 78.09 | 81.94 |
391
+ | [Winobias 2_2][winobias] | | 88.57 | 95.32 | 97.22 |
392
+ | [Toxigen][toxigen] | | 48.32 | 39.30 | 38.42 |
393
+
394
+ ## Dangerous Capability Evaluations
395
+
396
+ ### Evaluation Approach
397
+
398
+ We evaluated a range of dangerous capabilities:
399
+
400
+ - **Offensive cybersecurity:** To assess the model's potential for misuse in
401
+ cybersecurity contexts, we utilized both publicly available
402
+ Capture-the-Flag (CTF) platforms like InterCode-CTF and Hack the Box, as
403
+ well as internally developed CTF challenges. These evaluations measure the
404
+ model's ability to exploit vulnerabilities and gain unauthorized access in
405
+ simulated environments.
406
+ - **Self-proliferation:** We evaluated the model's capacity for
407
+ self-proliferation by designing tasks that involve resource acquisition, code
408
+ execution, and interaction with remote systems. These evaluations assess
409
+ the model's ability to independently replicate and spread.
410
+ - **Persuasion:** To evaluate the model's capacity for persuasion and
411
+ deception, we conducted human persuasion studies. These studies involved
412
+ scenarios that measure the model's ability to build rapport, influence
413
+ beliefs, and elicit specific actions from human participants.
414
+
415
+ ### Evaluation Results
416
+
417
+ All evaluations are described in detail in
418
+ [Evaluating Frontier Models for Dangerous Capabilities][eval-danger]
419
+ and in brief in the
420
+ [Gemma 2 technical report][tech-report].
421
+
422
+ <table>
423
+ <thead>
424
+ <tr>
425
+ <th>Evaluation</th>
426
+ <th>Capability</th>
427
+ <th>Gemma 2 IT 27B</th>
428
+ </tr>
429
+ </thead>
430
+ <tbody>
431
+ <tr>
432
+ <td>InterCode-CTF</td>
433
+ <td>Offensive cybersecurity</td>
434
+ <td>34/76 challenges</td>
435
+ </tr>
436
+ <tr>
437
+ <td>Internal CTF</td>
438
+ <td>Offensive cybersecurity</td>
439
+ <td>1/13 challenges</td>
440
+ </tr>
441
+ <tr>
442
+ <td>Hack the Box</td>
443
+ <td>Offensive cybersecurity</td>
444
+ <td>0/13 challenges</td>
445
+ </tr>
446
+ <tr>
447
+ <td>Self-proliferation early warning</td>
448
+ <td>Self-proliferation</td>
449
+ <td>1/10 challenges</td>
450
+ </tr>
451
+ <tr>
452
+ <td>Charm offensive</td>
453
+ <td>Persuasion</td>
454
+ <td>Percent of participants agreeing:
455
+ 81% interesting,
456
+ 75% would speak again,
457
+ 80% made personal connection</td>
458
+ </tr>
459
+ <tr>
460
+ <td>Click Links</td>
461
+ <td>Persuasion</td>
462
+ <td>34% of participants</td>
463
+ </tr>
464
+ <tr>
465
+ <td>Find Info</td>
466
+ <td>Persuasion</td>
467
+ <td>9% of participants</td>
468
+ </tr>
469
+ <tr>
470
+ <td>Run Code</td>
471
+ <td>Persuasion</td>
472
+ <td>11% of participants</td>
473
+ </tr>
474
+ <tr>
475
+ <td>Money talks</td>
476
+ <td>Persuasion</td>
477
+ <td>£3.72 mean donation</td>
478
+ </tr>
479
+ <tr>
480
+ <td>Web of Lies</td>
481
+ <td>Persuasion</td>
482
+ <td>18% mean shift towards correct belief, 1% mean shift towards
483
+ incorrect belief</td>
484
+ </tr>
485
+ </tbody>
486
+ </table>
487
+
488
+ ## Usage and Limitations
489
+
490
+ These models have certain limitations that users should be aware of.
491
+
492
+ ### Intended Usage
493
+
494
+ Open Large Language Models (LLMs) have a wide range of applications across
495
+ various industries and domains. The following list of potential uses is not
496
+ comprehensive. The purpose of this list is to provide contextual information
497
+ about the possible use-cases that the model creators considered as part of model
498
+ training and development.
499
+
500
+ * Content Creation and Communication
501
+ * Text Generation: These models can be used to generate creative text formats
502
+ such as poems, scripts, code, marketing copy, and email drafts.
503
+ * Chatbots and Conversational AI: Power conversational interfaces for customer
504
+ service, virtual assistants, or interactive applications.
505
+ * Text Summarization: Generate concise summaries of a text corpus, research
506
+ papers, or reports.
507
+ * Research and Education
508
+ * Natural Language Processing (NLP) Research: These models can serve as a
509
+ foundation for researchers to experiment with NLP techniques, develop
510
+ algorithms, and contribute to the advancement of the field.
511
+ * Language Learning Tools: Support interactive language learning experiences,
512
+ aiding in grammar correction or providing writing practice.
513
+ * Knowledge Exploration: Assist researchers in exploring large bodies of text
514
+ by generating summaries or answering questions about specific topics.
515
+
516
+ ### Limitations
517
+
518
+ * Training Data
519
+ * The quality and diversity of the training data significantly influence the
520
+ model's capabilities. Biases or gaps in the training data can lead to
521
+ limitations in the model's responses.
522
+ * The scope of the training dataset determines the subject areas the model can
523
+ handle effectively.
524
+ * Context and Task Complexity
525
+ * LLMs are better at tasks that can be framed with clear prompts and
526
+ instructions. Open-ended or highly complex tasks might be challenging.
527
+ * A model's performance can be influenced by the amount of context provided
528
+ (longer context generally leads to better outputs, up to a certain point).
529
+ * Language Ambiguity and Nuance
530
+ * Natural language is inherently complex. LLMs might struggle to grasp subtle
531
+ nuances, sarcasm, or figurative language.
532
+ * Factual Accuracy
533
+ * LLMs generate responses based on information they learned from their
534
+ training datasets, but they are not knowledge bases. They may generate
535
+ incorrect or outdated factual statements.
536
+ * Common Sense
537
+ * LLMs rely on statistical patterns in language. They might lack the ability
538
+ to apply common sense reasoning in certain situations.
539
+
540
+ ### Ethical Considerations and Risks
541
+
542
+ The development of large language models (LLMs) raises several ethical concerns.
543
+ In creating an open model, we have carefully considered the following:
544
+
545
+ * Bias and Fairness
546
+ * LLMs trained on large-scale, real-world text data can reflect socio-cultural
547
+ biases embedded in the training material. These models underwent careful
548
+ scrutiny, input data pre-processing described and posterior evaluations
549
+ reported in this card.
550
+ * Misinformation and Misuse
551
+ * LLMs can be misused to generate text that is false, misleading, or harmful.
552
+ * Guidelines are provided for responsible use with the model, see the
553
+ [Responsible Generative AI Toolkit][rai-toolkit].
554
+ * Transparency and Accountability:
555
+ * This model card summarizes details on the models' architecture,
556
+ capabilities, limitations, and evaluation processes.
557
+ * A responsibly developed open model offers the opportunity to share
558
+ innovation by making LLM technology accessible to developers and researchers
559
+ across the AI ecosystem.
560
+
561
+ Risks identified and mitigations:
562
+
563
+ * Perpetuation of biases: It's encouraged to perform continuous monitoring
564
+ (using evaluation metrics, human review) and the exploration of de-biasing
565
+ techniques during model training, fine-tuning, and other use cases.
566
+ * Generation of harmful content: Mechanisms and guidelines for content safety
567
+ are essential. Developers are encouraged to exercise caution and implement
568
+ appropriate content safety safeguards based on their specific product policies
569
+ and application use cases.
570
+ * Misuse for malicious purposes: Technical limitations and developer and
571
+ end-user education can help mitigate against malicious applications of LLMs.
572
+ Educational resources and reporting mechanisms for users to flag misuse are
573
+ provided. Prohibited uses of Gemma models are outlined in the
574
+ [Gemma Prohibited Use Policy][prohibited-use].
575
+ * Privacy violations: Models were trained on data filtered for removal of PII
576
+ (Personally Identifiable Information). Developers are encouraged to adhere to
577
+ privacy regulations with privacy-preserving techniques.
578
+
579
+ ### Benefits
580
+
581
+ At the time of release, this family of models provides high-performance open
582
+ large language model implementations designed from the ground up for Responsible
583
+ AI development compared to similarly sized models.
584
+
585
+ Using the benchmark evaluation metrics described in this document, these models
586
+ have shown to provide superior performance to other, comparably-sized open model
587
+ alternatives.
588
+
589
+ [tech-report]: https://storage.googleapis.com/deepmind-media/gemma/gemma-2-report.pdf
590
+ [rai-toolkit]: https://ai.google.dev/responsible
591
+ [kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
592
+ [terms]: https://ai.google.dev/gemma/terms
593
+ [vertex-mg-gemma2]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/gemma2
594
+ [sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
595
+ [safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
596
+ [prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
597
+ [tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
598
+ [sustainability]: https://sustainability.google/operating-sustainably/
599
+ [jax]: https://github.com/google/jax
600
+ [ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
601
+ [sustainability]: https://sustainability.google/operating-sustainably/
602
+ [foundation-models]: https://ai.google/discover/foundation-models/
603
+ [gemini-2-paper]: https://goo.gle/gemma2report
604
+ [mmlu]: https://arxiv.org/abs/2009.03300
605
+ [hellaswag]: https://arxiv.org/abs/1905.07830
606
+ [piqa]: https://arxiv.org/abs/1911.11641
607
+ [socialiqa]: https://arxiv.org/abs/1904.09728
608
+ [boolq]: https://arxiv.org/abs/1905.10044
609
+ [winogrande]: https://arxiv.org/abs/1907.10641
610
+ [commonsenseqa]: https://arxiv.org/abs/1811.00937
611
+ [openbookqa]: https://arxiv.org/abs/1809.02789
612
+ [arc]: https://arxiv.org/abs/1911.01547
613
+ [triviaqa]: https://arxiv.org/abs/1705.03551
614
+ [naturalq]: https://github.com/google-research-datasets/natural-questions
615
+ [humaneval]: https://arxiv.org/abs/2107.03374
616
+ [mbpp]: https://arxiv.org/abs/2108.07732
617
+ [gsm8k]: https://arxiv.org/abs/2110.14168
618
+ [realtox]: https://arxiv.org/abs/2009.11462
619
+ [bold]: https://arxiv.org/abs/2101.11718
620
+ [crows]: https://aclanthology.org/2020.emnlp-main.154/
621
+ [bbq]: https://arxiv.org/abs/2110.08193v2
622
+ [winogender]: https://arxiv.org/abs/1804.09301
623
+ [truthfulqa]: https://arxiv.org/abs/2109.07958
624
+ [winobias]: https://arxiv.org/abs/1804.06876
625
+ [math]: https://arxiv.org/abs/2103.03874
626
+ [agieval]: https://arxiv.org/abs/2304.06364
627
+ [drop]: https://arxiv.org/abs/1903.00161
628
+ [big-bench]: https://arxiv.org/abs/2206.04615
629
+ [toxigen]: https://arxiv.org/abs/2203.09509
630
+ [eval-danger]: https://arxiv.org/abs/2403.13793
base_model/gemma-2-2b/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Gemma2ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_logit_softcapping": 50.0,
8
+ "bos_token_id": 2,
9
+ "cache_implementation": "hybrid",
10
+ "eos_token_id": 1,
11
+ "final_logit_softcapping": 30.0,
12
+ "head_dim": 256,
13
+ "hidden_act": "gelu_pytorch_tanh",
14
+ "hidden_activation": "gelu_pytorch_tanh",
15
+ "hidden_size": 2304,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 9216,
18
+ "max_position_embeddings": 8192,
19
+ "model_type": "gemma2",
20
+ "num_attention_heads": 8,
21
+ "num_hidden_layers": 26,
22
+ "num_key_value_heads": 4,
23
+ "pad_token_id": 0,
24
+ "query_pre_attn_scalar": 256,
25
+ "rms_norm_eps": 1e-06,
26
+ "rope_theta": 10000.0,
27
+ "sliding_window": 4096,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.42.4",
30
+ "use_cache": true,
31
+ "vocab_size": 256000
32
+ }
base_model/gemma-2-2b/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.42.4"
8
+ }
base_model/gemma-2-2b/model.safetensors.index.json ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 10457367552
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
30
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
32
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
34
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
35
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
118
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
120
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
121
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
122
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
140
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
141
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
142
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
143
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
144
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
145
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
148
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
149
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
150
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
189
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
192
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
193
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
203
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
204
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
205
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
272
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
273
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
275
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
276
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
277
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
278
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
283
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
284
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
285
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
286
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
287
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
288
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
289
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
290
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
291
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
292
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
293
+ "model.norm.weight": "model-00003-of-00003.safetensors"
294
+ }
295
+ }
base_model/gemma-2-2b/special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
base_model/gemma-2-2b/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
3
+ size 17525357
base_model/gemma-2-2b/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
base_model/gemma-2-2b/tokenizer_config.json ADDED
@@ -0,0 +1,2012 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ },
1741
+ "255968": {
1742
+ "content": "[toxicity=0]",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": false
1748
+ },
1749
+ "255969": {
1750
+ "content": "\t\t",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": false
1756
+ },
1757
+ "255970": {
1758
+ "content": "\t\t\t",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": false
1764
+ },
1765
+ "255971": {
1766
+ "content": "\t\t\t\t",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": false
1772
+ },
1773
+ "255972": {
1774
+ "content": "\t\t\t\t\t",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": false
1780
+ },
1781
+ "255973": {
1782
+ "content": "\t\t\t\t\t\t",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": false
1788
+ },
1789
+ "255974": {
1790
+ "content": "\t\t\t\t\t\t\t",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": false
1796
+ },
1797
+ "255975": {
1798
+ "content": "\t\t\t\t\t\t\t\t",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": false
1804
+ },
1805
+ "255976": {
1806
+ "content": "\t\t\t\t\t\t\t\t\t",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": false
1812
+ },
1813
+ "255977": {
1814
+ "content": "\t\t\t\t\t\t\t\t\t\t",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": false
1820
+ },
1821
+ "255978": {
1822
+ "content": "\t\t\t\t\t\t\t\t\t\t\t",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": false
1828
+ },
1829
+ "255979": {
1830
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": false
1836
+ },
1837
+ "255980": {
1838
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": false
1844
+ },
1845
+ "255981": {
1846
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": false
1852
+ },
1853
+ "255982": {
1854
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": false
1860
+ },
1861
+ "255983": {
1862
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": false
1868
+ },
1869
+ "255984": {
1870
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": false
1876
+ },
1877
+ "255985": {
1878
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": false
1884
+ },
1885
+ "255986": {
1886
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": false
1892
+ },
1893
+ "255987": {
1894
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": false
1900
+ },
1901
+ "255988": {
1902
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": false
1908
+ },
1909
+ "255989": {
1910
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": false
1916
+ },
1917
+ "255990": {
1918
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": false
1924
+ },
1925
+ "255991": {
1926
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": false
1932
+ },
1933
+ "255992": {
1934
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": false
1940
+ },
1941
+ "255993": {
1942
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": false
1948
+ },
1949
+ "255994": {
1950
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": false
1956
+ },
1957
+ "255995": {
1958
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": false
1964
+ },
1965
+ "255996": {
1966
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": false
1972
+ },
1973
+ "255997": {
1974
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": false
1980
+ },
1981
+ "255998": {
1982
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": false
1988
+ },
1989
+ "255999": {
1990
+ "content": "<unused99>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": false
1996
+ }
1997
+ },
1998
+ "additional_special_tokens": [
1999
+ "<start_of_turn>",
2000
+ "<end_of_turn>"
2001
+ ],
2002
+ "bos_token": "<bos>",
2003
+ "clean_up_tokenization_spaces": false,
2004
+ "eos_token": "<eos>",
2005
+ "model_max_length": 1000000000000000019884624838656,
2006
+ "pad_token": "<pad>",
2007
+ "sp_model_kwargs": {},
2008
+ "spaces_between_special_tokens": false,
2009
+ "tokenizer_class": "GemmaTokenizer",
2010
+ "unk_token": "<unk>",
2011
+ "use_default_system_prompt": false
2012
+ }
base_model/generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 2,
4
+ "cache_implementation": "hybrid",
5
+ "eos_token_id": 1,
6
+ "pad_token_id": 0,
7
+ "transformers_version": "4.42.4"
8
+ }
base_model/model.safetensors.index.json ADDED
@@ -0,0 +1,295 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 10457367552
4
+ },
5
+ "weight_map": {
6
+ "model.embed_tokens.weight": "model-00001-of-00003.safetensors",
7
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
8
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
9
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
10
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
11
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
12
+ "model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
13
+ "model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
16
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
17
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
18
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
19
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
20
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
21
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
22
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
23
+ "model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
24
+ "model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
25
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
26
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
27
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
28
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
29
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
30
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
31
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
32
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
33
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
34
+ "model.layers.10.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
35
+ "model.layers.10.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
36
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
37
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
38
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
39
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
40
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
41
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
42
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
43
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
44
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
45
+ "model.layers.11.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
46
+ "model.layers.11.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
47
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
48
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
49
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
50
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
51
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
52
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
53
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
54
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
55
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
56
+ "model.layers.12.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
57
+ "model.layers.12.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
58
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
59
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
60
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
61
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
62
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
63
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
64
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
65
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
66
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
67
+ "model.layers.13.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
68
+ "model.layers.13.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
69
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
70
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
71
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
72
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
73
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
74
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
75
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
76
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
77
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
78
+ "model.layers.14.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
79
+ "model.layers.14.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
80
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
81
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
82
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
83
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
84
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
85
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
86
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
87
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
88
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
89
+ "model.layers.15.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
90
+ "model.layers.15.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
91
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
92
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
93
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
94
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
95
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
96
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
97
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
98
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
99
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
100
+ "model.layers.16.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
101
+ "model.layers.16.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
102
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
103
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
104
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
105
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
106
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
107
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
108
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
109
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
110
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
111
+ "model.layers.17.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
112
+ "model.layers.17.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
113
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
114
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
115
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
116
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
117
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
118
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
119
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
120
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
121
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
122
+ "model.layers.18.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
123
+ "model.layers.18.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
124
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
125
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
126
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
127
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
128
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
129
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
130
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
131
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
132
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
133
+ "model.layers.19.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
134
+ "model.layers.19.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
135
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
136
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
137
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
138
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
139
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
140
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
141
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
142
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
143
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
144
+ "model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
145
+ "model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
146
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
147
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
148
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
149
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
150
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
151
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
152
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
153
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
154
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
155
+ "model.layers.20.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
156
+ "model.layers.20.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
157
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
158
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
159
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
160
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
161
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
162
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
163
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
164
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
165
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
166
+ "model.layers.21.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
167
+ "model.layers.21.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
168
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
169
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
170
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
171
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
172
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00003.safetensors",
173
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
174
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
175
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
176
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
177
+ "model.layers.22.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
178
+ "model.layers.22.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
179
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
180
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
181
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
182
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
183
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00003.safetensors",
184
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
185
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
186
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
187
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
188
+ "model.layers.23.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
189
+ "model.layers.23.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
190
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
191
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
192
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
193
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
194
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
195
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
196
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
197
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
198
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
199
+ "model.layers.24.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
200
+ "model.layers.24.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
201
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
202
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
203
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
204
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
205
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
206
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
207
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
208
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
209
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
210
+ "model.layers.25.post_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
211
+ "model.layers.25.pre_feedforward_layernorm.weight": "model-00003-of-00003.safetensors",
212
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
213
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
214
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
215
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
216
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
217
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
218
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
219
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
220
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
221
+ "model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
222
+ "model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
223
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
224
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
225
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
226
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
227
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
228
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
229
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
230
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
231
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
232
+ "model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
233
+ "model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
234
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
235
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
236
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
237
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
238
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
239
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
240
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
241
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
242
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
243
+ "model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
244
+ "model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
245
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
246
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
247
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
248
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
249
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
250
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
251
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
252
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
253
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
254
+ "model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
255
+ "model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
256
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
257
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
258
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
259
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
260
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
261
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
262
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
263
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
264
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
265
+ "model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
266
+ "model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00003.safetensors",
267
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
268
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
269
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
270
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
271
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00003.safetensors",
272
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
273
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
274
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
275
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
276
+ "model.layers.8.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
277
+ "model.layers.8.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
278
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
279
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
280
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
281
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
282
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
283
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
284
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
285
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
286
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
287
+ "model.layers.9.post_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
288
+ "model.layers.9.pre_feedforward_layernorm.weight": "model-00002-of-00003.safetensors",
289
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
290
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
291
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
292
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
293
+ "model.norm.weight": "model-00003-of-00003.safetensors"
294
+ }
295
+ }
base_model/special_tokens_map.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<start_of_turn>",
4
+ "<end_of_turn>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<bos>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "<pad>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "unk_token": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
base_model/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
3
+ size 17525357
base_model/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
3
+ size 4241003
base_model/tokenizer_config.json ADDED
@@ -0,0 +1,2012 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<pad>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<eos>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<bos>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "4": {
38
+ "content": "<mask>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": false
44
+ },
45
+ "5": {
46
+ "content": "<2mass>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": false
52
+ },
53
+ "6": {
54
+ "content": "[@BOS@]",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": false
60
+ },
61
+ "7": {
62
+ "content": "<unused0>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": false
68
+ },
69
+ "8": {
70
+ "content": "<unused1>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": false
76
+ },
77
+ "9": {
78
+ "content": "<unused2>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": false
84
+ },
85
+ "10": {
86
+ "content": "<unused3>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": false
92
+ },
93
+ "11": {
94
+ "content": "<unused4>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": false
100
+ },
101
+ "12": {
102
+ "content": "<unused5>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": false
108
+ },
109
+ "13": {
110
+ "content": "<unused6>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": false
116
+ },
117
+ "14": {
118
+ "content": "<unused7>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "15": {
126
+ "content": "<unused8>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "16": {
134
+ "content": "<unused9>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "17": {
142
+ "content": "<unused10>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "18": {
150
+ "content": "<unused11>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "19": {
158
+ "content": "<unused12>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "20": {
166
+ "content": "<unused13>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "21": {
174
+ "content": "<unused14>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "22": {
182
+ "content": "<unused15>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "23": {
190
+ "content": "<unused16>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "24": {
198
+ "content": "<unused17>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "25": {
206
+ "content": "<unused18>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ },
213
+ "26": {
214
+ "content": "<unused19>",
215
+ "lstrip": false,
216
+ "normalized": false,
217
+ "rstrip": false,
218
+ "single_word": false,
219
+ "special": false
220
+ },
221
+ "27": {
222
+ "content": "<unused20>",
223
+ "lstrip": false,
224
+ "normalized": false,
225
+ "rstrip": false,
226
+ "single_word": false,
227
+ "special": false
228
+ },
229
+ "28": {
230
+ "content": "<unused21>",
231
+ "lstrip": false,
232
+ "normalized": false,
233
+ "rstrip": false,
234
+ "single_word": false,
235
+ "special": false
236
+ },
237
+ "29": {
238
+ "content": "<unused22>",
239
+ "lstrip": false,
240
+ "normalized": false,
241
+ "rstrip": false,
242
+ "single_word": false,
243
+ "special": false
244
+ },
245
+ "30": {
246
+ "content": "<unused23>",
247
+ "lstrip": false,
248
+ "normalized": false,
249
+ "rstrip": false,
250
+ "single_word": false,
251
+ "special": false
252
+ },
253
+ "31": {
254
+ "content": "<unused24>",
255
+ "lstrip": false,
256
+ "normalized": false,
257
+ "rstrip": false,
258
+ "single_word": false,
259
+ "special": false
260
+ },
261
+ "32": {
262
+ "content": "<unused25>",
263
+ "lstrip": false,
264
+ "normalized": false,
265
+ "rstrip": false,
266
+ "single_word": false,
267
+ "special": false
268
+ },
269
+ "33": {
270
+ "content": "<unused26>",
271
+ "lstrip": false,
272
+ "normalized": false,
273
+ "rstrip": false,
274
+ "single_word": false,
275
+ "special": false
276
+ },
277
+ "34": {
278
+ "content": "<unused27>",
279
+ "lstrip": false,
280
+ "normalized": false,
281
+ "rstrip": false,
282
+ "single_word": false,
283
+ "special": false
284
+ },
285
+ "35": {
286
+ "content": "<unused28>",
287
+ "lstrip": false,
288
+ "normalized": false,
289
+ "rstrip": false,
290
+ "single_word": false,
291
+ "special": false
292
+ },
293
+ "36": {
294
+ "content": "<unused29>",
295
+ "lstrip": false,
296
+ "normalized": false,
297
+ "rstrip": false,
298
+ "single_word": false,
299
+ "special": false
300
+ },
301
+ "37": {
302
+ "content": "<unused30>",
303
+ "lstrip": false,
304
+ "normalized": false,
305
+ "rstrip": false,
306
+ "single_word": false,
307
+ "special": false
308
+ },
309
+ "38": {
310
+ "content": "<unused31>",
311
+ "lstrip": false,
312
+ "normalized": false,
313
+ "rstrip": false,
314
+ "single_word": false,
315
+ "special": false
316
+ },
317
+ "39": {
318
+ "content": "<unused32>",
319
+ "lstrip": false,
320
+ "normalized": false,
321
+ "rstrip": false,
322
+ "single_word": false,
323
+ "special": false
324
+ },
325
+ "40": {
326
+ "content": "<unused33>",
327
+ "lstrip": false,
328
+ "normalized": false,
329
+ "rstrip": false,
330
+ "single_word": false,
331
+ "special": false
332
+ },
333
+ "41": {
334
+ "content": "<unused34>",
335
+ "lstrip": false,
336
+ "normalized": false,
337
+ "rstrip": false,
338
+ "single_word": false,
339
+ "special": false
340
+ },
341
+ "42": {
342
+ "content": "<unused35>",
343
+ "lstrip": false,
344
+ "normalized": false,
345
+ "rstrip": false,
346
+ "single_word": false,
347
+ "special": false
348
+ },
349
+ "43": {
350
+ "content": "<unused36>",
351
+ "lstrip": false,
352
+ "normalized": false,
353
+ "rstrip": false,
354
+ "single_word": false,
355
+ "special": false
356
+ },
357
+ "44": {
358
+ "content": "<unused37>",
359
+ "lstrip": false,
360
+ "normalized": false,
361
+ "rstrip": false,
362
+ "single_word": false,
363
+ "special": false
364
+ },
365
+ "45": {
366
+ "content": "<unused38>",
367
+ "lstrip": false,
368
+ "normalized": false,
369
+ "rstrip": false,
370
+ "single_word": false,
371
+ "special": false
372
+ },
373
+ "46": {
374
+ "content": "<unused39>",
375
+ "lstrip": false,
376
+ "normalized": false,
377
+ "rstrip": false,
378
+ "single_word": false,
379
+ "special": false
380
+ },
381
+ "47": {
382
+ "content": "<unused40>",
383
+ "lstrip": false,
384
+ "normalized": false,
385
+ "rstrip": false,
386
+ "single_word": false,
387
+ "special": false
388
+ },
389
+ "48": {
390
+ "content": "<unused41>",
391
+ "lstrip": false,
392
+ "normalized": false,
393
+ "rstrip": false,
394
+ "single_word": false,
395
+ "special": false
396
+ },
397
+ "49": {
398
+ "content": "<unused42>",
399
+ "lstrip": false,
400
+ "normalized": false,
401
+ "rstrip": false,
402
+ "single_word": false,
403
+ "special": false
404
+ },
405
+ "50": {
406
+ "content": "<unused43>",
407
+ "lstrip": false,
408
+ "normalized": false,
409
+ "rstrip": false,
410
+ "single_word": false,
411
+ "special": false
412
+ },
413
+ "51": {
414
+ "content": "<unused44>",
415
+ "lstrip": false,
416
+ "normalized": false,
417
+ "rstrip": false,
418
+ "single_word": false,
419
+ "special": false
420
+ },
421
+ "52": {
422
+ "content": "<unused45>",
423
+ "lstrip": false,
424
+ "normalized": false,
425
+ "rstrip": false,
426
+ "single_word": false,
427
+ "special": false
428
+ },
429
+ "53": {
430
+ "content": "<unused46>",
431
+ "lstrip": false,
432
+ "normalized": false,
433
+ "rstrip": false,
434
+ "single_word": false,
435
+ "special": false
436
+ },
437
+ "54": {
438
+ "content": "<unused47>",
439
+ "lstrip": false,
440
+ "normalized": false,
441
+ "rstrip": false,
442
+ "single_word": false,
443
+ "special": false
444
+ },
445
+ "55": {
446
+ "content": "<unused48>",
447
+ "lstrip": false,
448
+ "normalized": false,
449
+ "rstrip": false,
450
+ "single_word": false,
451
+ "special": false
452
+ },
453
+ "56": {
454
+ "content": "<unused49>",
455
+ "lstrip": false,
456
+ "normalized": false,
457
+ "rstrip": false,
458
+ "single_word": false,
459
+ "special": false
460
+ },
461
+ "57": {
462
+ "content": "<unused50>",
463
+ "lstrip": false,
464
+ "normalized": false,
465
+ "rstrip": false,
466
+ "single_word": false,
467
+ "special": false
468
+ },
469
+ "58": {
470
+ "content": "<unused51>",
471
+ "lstrip": false,
472
+ "normalized": false,
473
+ "rstrip": false,
474
+ "single_word": false,
475
+ "special": false
476
+ },
477
+ "59": {
478
+ "content": "<unused52>",
479
+ "lstrip": false,
480
+ "normalized": false,
481
+ "rstrip": false,
482
+ "single_word": false,
483
+ "special": false
484
+ },
485
+ "60": {
486
+ "content": "<unused53>",
487
+ "lstrip": false,
488
+ "normalized": false,
489
+ "rstrip": false,
490
+ "single_word": false,
491
+ "special": false
492
+ },
493
+ "61": {
494
+ "content": "<unused54>",
495
+ "lstrip": false,
496
+ "normalized": false,
497
+ "rstrip": false,
498
+ "single_word": false,
499
+ "special": false
500
+ },
501
+ "62": {
502
+ "content": "<unused55>",
503
+ "lstrip": false,
504
+ "normalized": false,
505
+ "rstrip": false,
506
+ "single_word": false,
507
+ "special": false
508
+ },
509
+ "63": {
510
+ "content": "<unused56>",
511
+ "lstrip": false,
512
+ "normalized": false,
513
+ "rstrip": false,
514
+ "single_word": false,
515
+ "special": false
516
+ },
517
+ "64": {
518
+ "content": "<unused57>",
519
+ "lstrip": false,
520
+ "normalized": false,
521
+ "rstrip": false,
522
+ "single_word": false,
523
+ "special": false
524
+ },
525
+ "65": {
526
+ "content": "<unused58>",
527
+ "lstrip": false,
528
+ "normalized": false,
529
+ "rstrip": false,
530
+ "single_word": false,
531
+ "special": false
532
+ },
533
+ "66": {
534
+ "content": "<unused59>",
535
+ "lstrip": false,
536
+ "normalized": false,
537
+ "rstrip": false,
538
+ "single_word": false,
539
+ "special": false
540
+ },
541
+ "67": {
542
+ "content": "<unused60>",
543
+ "lstrip": false,
544
+ "normalized": false,
545
+ "rstrip": false,
546
+ "single_word": false,
547
+ "special": false
548
+ },
549
+ "68": {
550
+ "content": "<unused61>",
551
+ "lstrip": false,
552
+ "normalized": false,
553
+ "rstrip": false,
554
+ "single_word": false,
555
+ "special": false
556
+ },
557
+ "69": {
558
+ "content": "<unused62>",
559
+ "lstrip": false,
560
+ "normalized": false,
561
+ "rstrip": false,
562
+ "single_word": false,
563
+ "special": false
564
+ },
565
+ "70": {
566
+ "content": "<unused63>",
567
+ "lstrip": false,
568
+ "normalized": false,
569
+ "rstrip": false,
570
+ "single_word": false,
571
+ "special": false
572
+ },
573
+ "71": {
574
+ "content": "<unused64>",
575
+ "lstrip": false,
576
+ "normalized": false,
577
+ "rstrip": false,
578
+ "single_word": false,
579
+ "special": false
580
+ },
581
+ "72": {
582
+ "content": "<unused65>",
583
+ "lstrip": false,
584
+ "normalized": false,
585
+ "rstrip": false,
586
+ "single_word": false,
587
+ "special": false
588
+ },
589
+ "73": {
590
+ "content": "<unused66>",
591
+ "lstrip": false,
592
+ "normalized": false,
593
+ "rstrip": false,
594
+ "single_word": false,
595
+ "special": false
596
+ },
597
+ "74": {
598
+ "content": "<unused67>",
599
+ "lstrip": false,
600
+ "normalized": false,
601
+ "rstrip": false,
602
+ "single_word": false,
603
+ "special": false
604
+ },
605
+ "75": {
606
+ "content": "<unused68>",
607
+ "lstrip": false,
608
+ "normalized": false,
609
+ "rstrip": false,
610
+ "single_word": false,
611
+ "special": false
612
+ },
613
+ "76": {
614
+ "content": "<unused69>",
615
+ "lstrip": false,
616
+ "normalized": false,
617
+ "rstrip": false,
618
+ "single_word": false,
619
+ "special": false
620
+ },
621
+ "77": {
622
+ "content": "<unused70>",
623
+ "lstrip": false,
624
+ "normalized": false,
625
+ "rstrip": false,
626
+ "single_word": false,
627
+ "special": false
628
+ },
629
+ "78": {
630
+ "content": "<unused71>",
631
+ "lstrip": false,
632
+ "normalized": false,
633
+ "rstrip": false,
634
+ "single_word": false,
635
+ "special": false
636
+ },
637
+ "79": {
638
+ "content": "<unused72>",
639
+ "lstrip": false,
640
+ "normalized": false,
641
+ "rstrip": false,
642
+ "single_word": false,
643
+ "special": false
644
+ },
645
+ "80": {
646
+ "content": "<unused73>",
647
+ "lstrip": false,
648
+ "normalized": false,
649
+ "rstrip": false,
650
+ "single_word": false,
651
+ "special": false
652
+ },
653
+ "81": {
654
+ "content": "<unused74>",
655
+ "lstrip": false,
656
+ "normalized": false,
657
+ "rstrip": false,
658
+ "single_word": false,
659
+ "special": false
660
+ },
661
+ "82": {
662
+ "content": "<unused75>",
663
+ "lstrip": false,
664
+ "normalized": false,
665
+ "rstrip": false,
666
+ "single_word": false,
667
+ "special": false
668
+ },
669
+ "83": {
670
+ "content": "<unused76>",
671
+ "lstrip": false,
672
+ "normalized": false,
673
+ "rstrip": false,
674
+ "single_word": false,
675
+ "special": false
676
+ },
677
+ "84": {
678
+ "content": "<unused77>",
679
+ "lstrip": false,
680
+ "normalized": false,
681
+ "rstrip": false,
682
+ "single_word": false,
683
+ "special": false
684
+ },
685
+ "85": {
686
+ "content": "<unused78>",
687
+ "lstrip": false,
688
+ "normalized": false,
689
+ "rstrip": false,
690
+ "single_word": false,
691
+ "special": false
692
+ },
693
+ "86": {
694
+ "content": "<unused79>",
695
+ "lstrip": false,
696
+ "normalized": false,
697
+ "rstrip": false,
698
+ "single_word": false,
699
+ "special": false
700
+ },
701
+ "87": {
702
+ "content": "<unused80>",
703
+ "lstrip": false,
704
+ "normalized": false,
705
+ "rstrip": false,
706
+ "single_word": false,
707
+ "special": false
708
+ },
709
+ "88": {
710
+ "content": "<unused81>",
711
+ "lstrip": false,
712
+ "normalized": false,
713
+ "rstrip": false,
714
+ "single_word": false,
715
+ "special": false
716
+ },
717
+ "89": {
718
+ "content": "<unused82>",
719
+ "lstrip": false,
720
+ "normalized": false,
721
+ "rstrip": false,
722
+ "single_word": false,
723
+ "special": false
724
+ },
725
+ "90": {
726
+ "content": "<unused83>",
727
+ "lstrip": false,
728
+ "normalized": false,
729
+ "rstrip": false,
730
+ "single_word": false,
731
+ "special": false
732
+ },
733
+ "91": {
734
+ "content": "<unused84>",
735
+ "lstrip": false,
736
+ "normalized": false,
737
+ "rstrip": false,
738
+ "single_word": false,
739
+ "special": false
740
+ },
741
+ "92": {
742
+ "content": "<unused85>",
743
+ "lstrip": false,
744
+ "normalized": false,
745
+ "rstrip": false,
746
+ "single_word": false,
747
+ "special": false
748
+ },
749
+ "93": {
750
+ "content": "<unused86>",
751
+ "lstrip": false,
752
+ "normalized": false,
753
+ "rstrip": false,
754
+ "single_word": false,
755
+ "special": false
756
+ },
757
+ "94": {
758
+ "content": "<unused87>",
759
+ "lstrip": false,
760
+ "normalized": false,
761
+ "rstrip": false,
762
+ "single_word": false,
763
+ "special": false
764
+ },
765
+ "95": {
766
+ "content": "<unused88>",
767
+ "lstrip": false,
768
+ "normalized": false,
769
+ "rstrip": false,
770
+ "single_word": false,
771
+ "special": false
772
+ },
773
+ "96": {
774
+ "content": "<unused89>",
775
+ "lstrip": false,
776
+ "normalized": false,
777
+ "rstrip": false,
778
+ "single_word": false,
779
+ "special": false
780
+ },
781
+ "97": {
782
+ "content": "<unused90>",
783
+ "lstrip": false,
784
+ "normalized": false,
785
+ "rstrip": false,
786
+ "single_word": false,
787
+ "special": false
788
+ },
789
+ "98": {
790
+ "content": "<unused91>",
791
+ "lstrip": false,
792
+ "normalized": false,
793
+ "rstrip": false,
794
+ "single_word": false,
795
+ "special": false
796
+ },
797
+ "99": {
798
+ "content": "<unused92>",
799
+ "lstrip": false,
800
+ "normalized": false,
801
+ "rstrip": false,
802
+ "single_word": false,
803
+ "special": false
804
+ },
805
+ "100": {
806
+ "content": "<unused93>",
807
+ "lstrip": false,
808
+ "normalized": false,
809
+ "rstrip": false,
810
+ "single_word": false,
811
+ "special": false
812
+ },
813
+ "101": {
814
+ "content": "<unused94>",
815
+ "lstrip": false,
816
+ "normalized": false,
817
+ "rstrip": false,
818
+ "single_word": false,
819
+ "special": false
820
+ },
821
+ "102": {
822
+ "content": "<unused95>",
823
+ "lstrip": false,
824
+ "normalized": false,
825
+ "rstrip": false,
826
+ "single_word": false,
827
+ "special": false
828
+ },
829
+ "103": {
830
+ "content": "<unused96>",
831
+ "lstrip": false,
832
+ "normalized": false,
833
+ "rstrip": false,
834
+ "single_word": false,
835
+ "special": false
836
+ },
837
+ "104": {
838
+ "content": "<unused97>",
839
+ "lstrip": false,
840
+ "normalized": false,
841
+ "rstrip": false,
842
+ "single_word": false,
843
+ "special": false
844
+ },
845
+ "105": {
846
+ "content": "<unused98>",
847
+ "lstrip": false,
848
+ "normalized": false,
849
+ "rstrip": false,
850
+ "single_word": false,
851
+ "special": false
852
+ },
853
+ "106": {
854
+ "content": "<start_of_turn>",
855
+ "lstrip": false,
856
+ "normalized": false,
857
+ "rstrip": false,
858
+ "single_word": false,
859
+ "special": true
860
+ },
861
+ "107": {
862
+ "content": "<end_of_turn>",
863
+ "lstrip": false,
864
+ "normalized": false,
865
+ "rstrip": false,
866
+ "single_word": false,
867
+ "special": true
868
+ },
869
+ "108": {
870
+ "content": "\n",
871
+ "lstrip": false,
872
+ "normalized": false,
873
+ "rstrip": false,
874
+ "single_word": false,
875
+ "special": false
876
+ },
877
+ "109": {
878
+ "content": "\n\n",
879
+ "lstrip": false,
880
+ "normalized": false,
881
+ "rstrip": false,
882
+ "single_word": false,
883
+ "special": false
884
+ },
885
+ "110": {
886
+ "content": "\n\n\n",
887
+ "lstrip": false,
888
+ "normalized": false,
889
+ "rstrip": false,
890
+ "single_word": false,
891
+ "special": false
892
+ },
893
+ "111": {
894
+ "content": "\n\n\n\n",
895
+ "lstrip": false,
896
+ "normalized": false,
897
+ "rstrip": false,
898
+ "single_word": false,
899
+ "special": false
900
+ },
901
+ "112": {
902
+ "content": "\n\n\n\n\n",
903
+ "lstrip": false,
904
+ "normalized": false,
905
+ "rstrip": false,
906
+ "single_word": false,
907
+ "special": false
908
+ },
909
+ "113": {
910
+ "content": "\n\n\n\n\n\n",
911
+ "lstrip": false,
912
+ "normalized": false,
913
+ "rstrip": false,
914
+ "single_word": false,
915
+ "special": false
916
+ },
917
+ "114": {
918
+ "content": "\n\n\n\n\n\n\n",
919
+ "lstrip": false,
920
+ "normalized": false,
921
+ "rstrip": false,
922
+ "single_word": false,
923
+ "special": false
924
+ },
925
+ "115": {
926
+ "content": "\n\n\n\n\n\n\n\n",
927
+ "lstrip": false,
928
+ "normalized": false,
929
+ "rstrip": false,
930
+ "single_word": false,
931
+ "special": false
932
+ },
933
+ "116": {
934
+ "content": "\n\n\n\n\n\n\n\n\n",
935
+ "lstrip": false,
936
+ "normalized": false,
937
+ "rstrip": false,
938
+ "single_word": false,
939
+ "special": false
940
+ },
941
+ "117": {
942
+ "content": "\n\n\n\n\n\n\n\n\n\n",
943
+ "lstrip": false,
944
+ "normalized": false,
945
+ "rstrip": false,
946
+ "single_word": false,
947
+ "special": false
948
+ },
949
+ "118": {
950
+ "content": "\n\n\n\n\n\n\n\n\n\n\n",
951
+ "lstrip": false,
952
+ "normalized": false,
953
+ "rstrip": false,
954
+ "single_word": false,
955
+ "special": false
956
+ },
957
+ "119": {
958
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n",
959
+ "lstrip": false,
960
+ "normalized": false,
961
+ "rstrip": false,
962
+ "single_word": false,
963
+ "special": false
964
+ },
965
+ "120": {
966
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
967
+ "lstrip": false,
968
+ "normalized": false,
969
+ "rstrip": false,
970
+ "single_word": false,
971
+ "special": false
972
+ },
973
+ "121": {
974
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
975
+ "lstrip": false,
976
+ "normalized": false,
977
+ "rstrip": false,
978
+ "single_word": false,
979
+ "special": false
980
+ },
981
+ "122": {
982
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
983
+ "lstrip": false,
984
+ "normalized": false,
985
+ "rstrip": false,
986
+ "single_word": false,
987
+ "special": false
988
+ },
989
+ "123": {
990
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
991
+ "lstrip": false,
992
+ "normalized": false,
993
+ "rstrip": false,
994
+ "single_word": false,
995
+ "special": false
996
+ },
997
+ "124": {
998
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
999
+ "lstrip": false,
1000
+ "normalized": false,
1001
+ "rstrip": false,
1002
+ "single_word": false,
1003
+ "special": false
1004
+ },
1005
+ "125": {
1006
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1007
+ "lstrip": false,
1008
+ "normalized": false,
1009
+ "rstrip": false,
1010
+ "single_word": false,
1011
+ "special": false
1012
+ },
1013
+ "126": {
1014
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1015
+ "lstrip": false,
1016
+ "normalized": false,
1017
+ "rstrip": false,
1018
+ "single_word": false,
1019
+ "special": false
1020
+ },
1021
+ "127": {
1022
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1023
+ "lstrip": false,
1024
+ "normalized": false,
1025
+ "rstrip": false,
1026
+ "single_word": false,
1027
+ "special": false
1028
+ },
1029
+ "128": {
1030
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1031
+ "lstrip": false,
1032
+ "normalized": false,
1033
+ "rstrip": false,
1034
+ "single_word": false,
1035
+ "special": false
1036
+ },
1037
+ "129": {
1038
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1039
+ "lstrip": false,
1040
+ "normalized": false,
1041
+ "rstrip": false,
1042
+ "single_word": false,
1043
+ "special": false
1044
+ },
1045
+ "130": {
1046
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1047
+ "lstrip": false,
1048
+ "normalized": false,
1049
+ "rstrip": false,
1050
+ "single_word": false,
1051
+ "special": false
1052
+ },
1053
+ "131": {
1054
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1055
+ "lstrip": false,
1056
+ "normalized": false,
1057
+ "rstrip": false,
1058
+ "single_word": false,
1059
+ "special": false
1060
+ },
1061
+ "132": {
1062
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1063
+ "lstrip": false,
1064
+ "normalized": false,
1065
+ "rstrip": false,
1066
+ "single_word": false,
1067
+ "special": false
1068
+ },
1069
+ "133": {
1070
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1071
+ "lstrip": false,
1072
+ "normalized": false,
1073
+ "rstrip": false,
1074
+ "single_word": false,
1075
+ "special": false
1076
+ },
1077
+ "134": {
1078
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1079
+ "lstrip": false,
1080
+ "normalized": false,
1081
+ "rstrip": false,
1082
+ "single_word": false,
1083
+ "special": false
1084
+ },
1085
+ "135": {
1086
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1087
+ "lstrip": false,
1088
+ "normalized": false,
1089
+ "rstrip": false,
1090
+ "single_word": false,
1091
+ "special": false
1092
+ },
1093
+ "136": {
1094
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1095
+ "lstrip": false,
1096
+ "normalized": false,
1097
+ "rstrip": false,
1098
+ "single_word": false,
1099
+ "special": false
1100
+ },
1101
+ "137": {
1102
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1103
+ "lstrip": false,
1104
+ "normalized": false,
1105
+ "rstrip": false,
1106
+ "single_word": false,
1107
+ "special": false
1108
+ },
1109
+ "138": {
1110
+ "content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
1111
+ "lstrip": false,
1112
+ "normalized": false,
1113
+ "rstrip": false,
1114
+ "single_word": false,
1115
+ "special": false
1116
+ },
1117
+ "139": {
1118
+ "content": "▁▁",
1119
+ "lstrip": false,
1120
+ "normalized": false,
1121
+ "rstrip": false,
1122
+ "single_word": false,
1123
+ "special": false
1124
+ },
1125
+ "140": {
1126
+ "content": "▁▁▁",
1127
+ "lstrip": false,
1128
+ "normalized": false,
1129
+ "rstrip": false,
1130
+ "single_word": false,
1131
+ "special": false
1132
+ },
1133
+ "141": {
1134
+ "content": "▁▁▁▁",
1135
+ "lstrip": false,
1136
+ "normalized": false,
1137
+ "rstrip": false,
1138
+ "single_word": false,
1139
+ "special": false
1140
+ },
1141
+ "142": {
1142
+ "content": "▁▁▁▁▁",
1143
+ "lstrip": false,
1144
+ "normalized": false,
1145
+ "rstrip": false,
1146
+ "single_word": false,
1147
+ "special": false
1148
+ },
1149
+ "143": {
1150
+ "content": "▁▁▁▁▁▁",
1151
+ "lstrip": false,
1152
+ "normalized": false,
1153
+ "rstrip": false,
1154
+ "single_word": false,
1155
+ "special": false
1156
+ },
1157
+ "144": {
1158
+ "content": "▁▁▁▁▁▁▁",
1159
+ "lstrip": false,
1160
+ "normalized": false,
1161
+ "rstrip": false,
1162
+ "single_word": false,
1163
+ "special": false
1164
+ },
1165
+ "145": {
1166
+ "content": "▁▁▁▁▁▁▁▁",
1167
+ "lstrip": false,
1168
+ "normalized": false,
1169
+ "rstrip": false,
1170
+ "single_word": false,
1171
+ "special": false
1172
+ },
1173
+ "146": {
1174
+ "content": "▁▁▁▁▁▁▁▁▁",
1175
+ "lstrip": false,
1176
+ "normalized": false,
1177
+ "rstrip": false,
1178
+ "single_word": false,
1179
+ "special": false
1180
+ },
1181
+ "147": {
1182
+ "content": "▁▁▁▁▁▁▁▁▁▁",
1183
+ "lstrip": false,
1184
+ "normalized": false,
1185
+ "rstrip": false,
1186
+ "single_word": false,
1187
+ "special": false
1188
+ },
1189
+ "148": {
1190
+ "content": "▁▁▁▁▁▁▁▁▁▁▁",
1191
+ "lstrip": false,
1192
+ "normalized": false,
1193
+ "rstrip": false,
1194
+ "single_word": false,
1195
+ "special": false
1196
+ },
1197
+ "149": {
1198
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁",
1199
+ "lstrip": false,
1200
+ "normalized": false,
1201
+ "rstrip": false,
1202
+ "single_word": false,
1203
+ "special": false
1204
+ },
1205
+ "150": {
1206
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
1207
+ "lstrip": false,
1208
+ "normalized": false,
1209
+ "rstrip": false,
1210
+ "single_word": false,
1211
+ "special": false
1212
+ },
1213
+ "151": {
1214
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1215
+ "lstrip": false,
1216
+ "normalized": false,
1217
+ "rstrip": false,
1218
+ "single_word": false,
1219
+ "special": false
1220
+ },
1221
+ "152": {
1222
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1223
+ "lstrip": false,
1224
+ "normalized": false,
1225
+ "rstrip": false,
1226
+ "single_word": false,
1227
+ "special": false
1228
+ },
1229
+ "153": {
1230
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1231
+ "lstrip": false,
1232
+ "normalized": false,
1233
+ "rstrip": false,
1234
+ "single_word": false,
1235
+ "special": false
1236
+ },
1237
+ "154": {
1238
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1239
+ "lstrip": false,
1240
+ "normalized": false,
1241
+ "rstrip": false,
1242
+ "single_word": false,
1243
+ "special": false
1244
+ },
1245
+ "155": {
1246
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1247
+ "lstrip": false,
1248
+ "normalized": false,
1249
+ "rstrip": false,
1250
+ "single_word": false,
1251
+ "special": false
1252
+ },
1253
+ "156": {
1254
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1255
+ "lstrip": false,
1256
+ "normalized": false,
1257
+ "rstrip": false,
1258
+ "single_word": false,
1259
+ "special": false
1260
+ },
1261
+ "157": {
1262
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1263
+ "lstrip": false,
1264
+ "normalized": false,
1265
+ "rstrip": false,
1266
+ "single_word": false,
1267
+ "special": false
1268
+ },
1269
+ "158": {
1270
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1271
+ "lstrip": false,
1272
+ "normalized": false,
1273
+ "rstrip": false,
1274
+ "single_word": false,
1275
+ "special": false
1276
+ },
1277
+ "159": {
1278
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1279
+ "lstrip": false,
1280
+ "normalized": false,
1281
+ "rstrip": false,
1282
+ "single_word": false,
1283
+ "special": false
1284
+ },
1285
+ "160": {
1286
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1287
+ "lstrip": false,
1288
+ "normalized": false,
1289
+ "rstrip": false,
1290
+ "single_word": false,
1291
+ "special": false
1292
+ },
1293
+ "161": {
1294
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1295
+ "lstrip": false,
1296
+ "normalized": false,
1297
+ "rstrip": false,
1298
+ "single_word": false,
1299
+ "special": false
1300
+ },
1301
+ "162": {
1302
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1303
+ "lstrip": false,
1304
+ "normalized": false,
1305
+ "rstrip": false,
1306
+ "single_word": false,
1307
+ "special": false
1308
+ },
1309
+ "163": {
1310
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1311
+ "lstrip": false,
1312
+ "normalized": false,
1313
+ "rstrip": false,
1314
+ "single_word": false,
1315
+ "special": false
1316
+ },
1317
+ "164": {
1318
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1319
+ "lstrip": false,
1320
+ "normalized": false,
1321
+ "rstrip": false,
1322
+ "single_word": false,
1323
+ "special": false
1324
+ },
1325
+ "165": {
1326
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1327
+ "lstrip": false,
1328
+ "normalized": false,
1329
+ "rstrip": false,
1330
+ "single_word": false,
1331
+ "special": false
1332
+ },
1333
+ "166": {
1334
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1335
+ "lstrip": false,
1336
+ "normalized": false,
1337
+ "rstrip": false,
1338
+ "single_word": false,
1339
+ "special": false
1340
+ },
1341
+ "167": {
1342
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1343
+ "lstrip": false,
1344
+ "normalized": false,
1345
+ "rstrip": false,
1346
+ "single_word": false,
1347
+ "special": false
1348
+ },
1349
+ "168": {
1350
+ "content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
1351
+ "lstrip": false,
1352
+ "normalized": false,
1353
+ "rstrip": false,
1354
+ "single_word": false,
1355
+ "special": false
1356
+ },
1357
+ "169": {
1358
+ "content": "<table>",
1359
+ "lstrip": false,
1360
+ "normalized": false,
1361
+ "rstrip": false,
1362
+ "single_word": false,
1363
+ "special": false
1364
+ },
1365
+ "170": {
1366
+ "content": "<caption>",
1367
+ "lstrip": false,
1368
+ "normalized": false,
1369
+ "rstrip": false,
1370
+ "single_word": false,
1371
+ "special": false
1372
+ },
1373
+ "171": {
1374
+ "content": "<thead>",
1375
+ "lstrip": false,
1376
+ "normalized": false,
1377
+ "rstrip": false,
1378
+ "single_word": false,
1379
+ "special": false
1380
+ },
1381
+ "172": {
1382
+ "content": "<tbody>",
1383
+ "lstrip": false,
1384
+ "normalized": false,
1385
+ "rstrip": false,
1386
+ "single_word": false,
1387
+ "special": false
1388
+ },
1389
+ "173": {
1390
+ "content": "<tfoot>",
1391
+ "lstrip": false,
1392
+ "normalized": false,
1393
+ "rstrip": false,
1394
+ "single_word": false,
1395
+ "special": false
1396
+ },
1397
+ "174": {
1398
+ "content": "<tr>",
1399
+ "lstrip": false,
1400
+ "normalized": false,
1401
+ "rstrip": false,
1402
+ "single_word": false,
1403
+ "special": false
1404
+ },
1405
+ "175": {
1406
+ "content": "<th>",
1407
+ "lstrip": false,
1408
+ "normalized": false,
1409
+ "rstrip": false,
1410
+ "single_word": false,
1411
+ "special": false
1412
+ },
1413
+ "176": {
1414
+ "content": "<td>",
1415
+ "lstrip": false,
1416
+ "normalized": false,
1417
+ "rstrip": false,
1418
+ "single_word": false,
1419
+ "special": false
1420
+ },
1421
+ "177": {
1422
+ "content": "</table>",
1423
+ "lstrip": false,
1424
+ "normalized": false,
1425
+ "rstrip": false,
1426
+ "single_word": false,
1427
+ "special": false
1428
+ },
1429
+ "178": {
1430
+ "content": "</caption>",
1431
+ "lstrip": false,
1432
+ "normalized": false,
1433
+ "rstrip": false,
1434
+ "single_word": false,
1435
+ "special": false
1436
+ },
1437
+ "179": {
1438
+ "content": "</thead>",
1439
+ "lstrip": false,
1440
+ "normalized": false,
1441
+ "rstrip": false,
1442
+ "single_word": false,
1443
+ "special": false
1444
+ },
1445
+ "180": {
1446
+ "content": "</tbody>",
1447
+ "lstrip": false,
1448
+ "normalized": false,
1449
+ "rstrip": false,
1450
+ "single_word": false,
1451
+ "special": false
1452
+ },
1453
+ "181": {
1454
+ "content": "</tfoot>",
1455
+ "lstrip": false,
1456
+ "normalized": false,
1457
+ "rstrip": false,
1458
+ "single_word": false,
1459
+ "special": false
1460
+ },
1461
+ "182": {
1462
+ "content": "</tr>",
1463
+ "lstrip": false,
1464
+ "normalized": false,
1465
+ "rstrip": false,
1466
+ "single_word": false,
1467
+ "special": false
1468
+ },
1469
+ "183": {
1470
+ "content": "</th>",
1471
+ "lstrip": false,
1472
+ "normalized": false,
1473
+ "rstrip": false,
1474
+ "single_word": false,
1475
+ "special": false
1476
+ },
1477
+ "184": {
1478
+ "content": "</td>",
1479
+ "lstrip": false,
1480
+ "normalized": false,
1481
+ "rstrip": false,
1482
+ "single_word": false,
1483
+ "special": false
1484
+ },
1485
+ "185": {
1486
+ "content": "<h1>",
1487
+ "lstrip": false,
1488
+ "normalized": false,
1489
+ "rstrip": false,
1490
+ "single_word": false,
1491
+ "special": false
1492
+ },
1493
+ "186": {
1494
+ "content": "<h2>",
1495
+ "lstrip": false,
1496
+ "normalized": false,
1497
+ "rstrip": false,
1498
+ "single_word": false,
1499
+ "special": false
1500
+ },
1501
+ "187": {
1502
+ "content": "<h3>",
1503
+ "lstrip": false,
1504
+ "normalized": false,
1505
+ "rstrip": false,
1506
+ "single_word": false,
1507
+ "special": false
1508
+ },
1509
+ "188": {
1510
+ "content": "<h4>",
1511
+ "lstrip": false,
1512
+ "normalized": false,
1513
+ "rstrip": false,
1514
+ "single_word": false,
1515
+ "special": false
1516
+ },
1517
+ "189": {
1518
+ "content": "<h5>",
1519
+ "lstrip": false,
1520
+ "normalized": false,
1521
+ "rstrip": false,
1522
+ "single_word": false,
1523
+ "special": false
1524
+ },
1525
+ "190": {
1526
+ "content": "<h6>",
1527
+ "lstrip": false,
1528
+ "normalized": false,
1529
+ "rstrip": false,
1530
+ "single_word": false,
1531
+ "special": false
1532
+ },
1533
+ "191": {
1534
+ "content": "<blockquote>",
1535
+ "lstrip": false,
1536
+ "normalized": false,
1537
+ "rstrip": false,
1538
+ "single_word": false,
1539
+ "special": false
1540
+ },
1541
+ "192": {
1542
+ "content": "</h1>",
1543
+ "lstrip": false,
1544
+ "normalized": false,
1545
+ "rstrip": false,
1546
+ "single_word": false,
1547
+ "special": false
1548
+ },
1549
+ "193": {
1550
+ "content": "</h2>",
1551
+ "lstrip": false,
1552
+ "normalized": false,
1553
+ "rstrip": false,
1554
+ "single_word": false,
1555
+ "special": false
1556
+ },
1557
+ "194": {
1558
+ "content": "</h3>",
1559
+ "lstrip": false,
1560
+ "normalized": false,
1561
+ "rstrip": false,
1562
+ "single_word": false,
1563
+ "special": false
1564
+ },
1565
+ "195": {
1566
+ "content": "</h4>",
1567
+ "lstrip": false,
1568
+ "normalized": false,
1569
+ "rstrip": false,
1570
+ "single_word": false,
1571
+ "special": false
1572
+ },
1573
+ "196": {
1574
+ "content": "</h5>",
1575
+ "lstrip": false,
1576
+ "normalized": false,
1577
+ "rstrip": false,
1578
+ "single_word": false,
1579
+ "special": false
1580
+ },
1581
+ "197": {
1582
+ "content": "</h6>",
1583
+ "lstrip": false,
1584
+ "normalized": false,
1585
+ "rstrip": false,
1586
+ "single_word": false,
1587
+ "special": false
1588
+ },
1589
+ "198": {
1590
+ "content": "</blockquote>",
1591
+ "lstrip": false,
1592
+ "normalized": false,
1593
+ "rstrip": false,
1594
+ "single_word": false,
1595
+ "special": false
1596
+ },
1597
+ "199": {
1598
+ "content": "<strong>",
1599
+ "lstrip": false,
1600
+ "normalized": false,
1601
+ "rstrip": false,
1602
+ "single_word": false,
1603
+ "special": false
1604
+ },
1605
+ "200": {
1606
+ "content": "<em>",
1607
+ "lstrip": false,
1608
+ "normalized": false,
1609
+ "rstrip": false,
1610
+ "single_word": false,
1611
+ "special": false
1612
+ },
1613
+ "201": {
1614
+ "content": "<b>",
1615
+ "lstrip": false,
1616
+ "normalized": false,
1617
+ "rstrip": false,
1618
+ "single_word": false,
1619
+ "special": false
1620
+ },
1621
+ "202": {
1622
+ "content": "<i>",
1623
+ "lstrip": false,
1624
+ "normalized": false,
1625
+ "rstrip": false,
1626
+ "single_word": false,
1627
+ "special": false
1628
+ },
1629
+ "203": {
1630
+ "content": "<u>",
1631
+ "lstrip": false,
1632
+ "normalized": false,
1633
+ "rstrip": false,
1634
+ "single_word": false,
1635
+ "special": false
1636
+ },
1637
+ "204": {
1638
+ "content": "<s>",
1639
+ "lstrip": false,
1640
+ "normalized": false,
1641
+ "rstrip": false,
1642
+ "single_word": false,
1643
+ "special": false
1644
+ },
1645
+ "205": {
1646
+ "content": "<sub>",
1647
+ "lstrip": false,
1648
+ "normalized": false,
1649
+ "rstrip": false,
1650
+ "single_word": false,
1651
+ "special": false
1652
+ },
1653
+ "206": {
1654
+ "content": "<sup>",
1655
+ "lstrip": false,
1656
+ "normalized": false,
1657
+ "rstrip": false,
1658
+ "single_word": false,
1659
+ "special": false
1660
+ },
1661
+ "207": {
1662
+ "content": "<code>",
1663
+ "lstrip": false,
1664
+ "normalized": false,
1665
+ "rstrip": false,
1666
+ "single_word": false,
1667
+ "special": false
1668
+ },
1669
+ "208": {
1670
+ "content": "</strong>",
1671
+ "lstrip": false,
1672
+ "normalized": false,
1673
+ "rstrip": false,
1674
+ "single_word": false,
1675
+ "special": false
1676
+ },
1677
+ "209": {
1678
+ "content": "</em>",
1679
+ "lstrip": false,
1680
+ "normalized": false,
1681
+ "rstrip": false,
1682
+ "single_word": false,
1683
+ "special": false
1684
+ },
1685
+ "210": {
1686
+ "content": "</b>",
1687
+ "lstrip": false,
1688
+ "normalized": false,
1689
+ "rstrip": false,
1690
+ "single_word": false,
1691
+ "special": false
1692
+ },
1693
+ "211": {
1694
+ "content": "</i>",
1695
+ "lstrip": false,
1696
+ "normalized": false,
1697
+ "rstrip": false,
1698
+ "single_word": false,
1699
+ "special": false
1700
+ },
1701
+ "212": {
1702
+ "content": "</u>",
1703
+ "lstrip": false,
1704
+ "normalized": false,
1705
+ "rstrip": false,
1706
+ "single_word": false,
1707
+ "special": false
1708
+ },
1709
+ "213": {
1710
+ "content": "</s>",
1711
+ "lstrip": false,
1712
+ "normalized": false,
1713
+ "rstrip": false,
1714
+ "single_word": false,
1715
+ "special": false
1716
+ },
1717
+ "214": {
1718
+ "content": "</sub>",
1719
+ "lstrip": false,
1720
+ "normalized": false,
1721
+ "rstrip": false,
1722
+ "single_word": false,
1723
+ "special": false
1724
+ },
1725
+ "215": {
1726
+ "content": "</sup>",
1727
+ "lstrip": false,
1728
+ "normalized": false,
1729
+ "rstrip": false,
1730
+ "single_word": false,
1731
+ "special": false
1732
+ },
1733
+ "216": {
1734
+ "content": "</code>",
1735
+ "lstrip": false,
1736
+ "normalized": false,
1737
+ "rstrip": false,
1738
+ "single_word": false,
1739
+ "special": false
1740
+ },
1741
+ "255968": {
1742
+ "content": "[toxicity=0]",
1743
+ "lstrip": false,
1744
+ "normalized": false,
1745
+ "rstrip": false,
1746
+ "single_word": false,
1747
+ "special": false
1748
+ },
1749
+ "255969": {
1750
+ "content": "\t\t",
1751
+ "lstrip": false,
1752
+ "normalized": false,
1753
+ "rstrip": false,
1754
+ "single_word": false,
1755
+ "special": false
1756
+ },
1757
+ "255970": {
1758
+ "content": "\t\t\t",
1759
+ "lstrip": false,
1760
+ "normalized": false,
1761
+ "rstrip": false,
1762
+ "single_word": false,
1763
+ "special": false
1764
+ },
1765
+ "255971": {
1766
+ "content": "\t\t\t\t",
1767
+ "lstrip": false,
1768
+ "normalized": false,
1769
+ "rstrip": false,
1770
+ "single_word": false,
1771
+ "special": false
1772
+ },
1773
+ "255972": {
1774
+ "content": "\t\t\t\t\t",
1775
+ "lstrip": false,
1776
+ "normalized": false,
1777
+ "rstrip": false,
1778
+ "single_word": false,
1779
+ "special": false
1780
+ },
1781
+ "255973": {
1782
+ "content": "\t\t\t\t\t\t",
1783
+ "lstrip": false,
1784
+ "normalized": false,
1785
+ "rstrip": false,
1786
+ "single_word": false,
1787
+ "special": false
1788
+ },
1789
+ "255974": {
1790
+ "content": "\t\t\t\t\t\t\t",
1791
+ "lstrip": false,
1792
+ "normalized": false,
1793
+ "rstrip": false,
1794
+ "single_word": false,
1795
+ "special": false
1796
+ },
1797
+ "255975": {
1798
+ "content": "\t\t\t\t\t\t\t\t",
1799
+ "lstrip": false,
1800
+ "normalized": false,
1801
+ "rstrip": false,
1802
+ "single_word": false,
1803
+ "special": false
1804
+ },
1805
+ "255976": {
1806
+ "content": "\t\t\t\t\t\t\t\t\t",
1807
+ "lstrip": false,
1808
+ "normalized": false,
1809
+ "rstrip": false,
1810
+ "single_word": false,
1811
+ "special": false
1812
+ },
1813
+ "255977": {
1814
+ "content": "\t\t\t\t\t\t\t\t\t\t",
1815
+ "lstrip": false,
1816
+ "normalized": false,
1817
+ "rstrip": false,
1818
+ "single_word": false,
1819
+ "special": false
1820
+ },
1821
+ "255978": {
1822
+ "content": "\t\t\t\t\t\t\t\t\t\t\t",
1823
+ "lstrip": false,
1824
+ "normalized": false,
1825
+ "rstrip": false,
1826
+ "single_word": false,
1827
+ "special": false
1828
+ },
1829
+ "255979": {
1830
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t",
1831
+ "lstrip": false,
1832
+ "normalized": false,
1833
+ "rstrip": false,
1834
+ "single_word": false,
1835
+ "special": false
1836
+ },
1837
+ "255980": {
1838
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
1839
+ "lstrip": false,
1840
+ "normalized": false,
1841
+ "rstrip": false,
1842
+ "single_word": false,
1843
+ "special": false
1844
+ },
1845
+ "255981": {
1846
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1847
+ "lstrip": false,
1848
+ "normalized": false,
1849
+ "rstrip": false,
1850
+ "single_word": false,
1851
+ "special": false
1852
+ },
1853
+ "255982": {
1854
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1855
+ "lstrip": false,
1856
+ "normalized": false,
1857
+ "rstrip": false,
1858
+ "single_word": false,
1859
+ "special": false
1860
+ },
1861
+ "255983": {
1862
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1863
+ "lstrip": false,
1864
+ "normalized": false,
1865
+ "rstrip": false,
1866
+ "single_word": false,
1867
+ "special": false
1868
+ },
1869
+ "255984": {
1870
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1871
+ "lstrip": false,
1872
+ "normalized": false,
1873
+ "rstrip": false,
1874
+ "single_word": false,
1875
+ "special": false
1876
+ },
1877
+ "255985": {
1878
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1879
+ "lstrip": false,
1880
+ "normalized": false,
1881
+ "rstrip": false,
1882
+ "single_word": false,
1883
+ "special": false
1884
+ },
1885
+ "255986": {
1886
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1887
+ "lstrip": false,
1888
+ "normalized": false,
1889
+ "rstrip": false,
1890
+ "single_word": false,
1891
+ "special": false
1892
+ },
1893
+ "255987": {
1894
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1895
+ "lstrip": false,
1896
+ "normalized": false,
1897
+ "rstrip": false,
1898
+ "single_word": false,
1899
+ "special": false
1900
+ },
1901
+ "255988": {
1902
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1903
+ "lstrip": false,
1904
+ "normalized": false,
1905
+ "rstrip": false,
1906
+ "single_word": false,
1907
+ "special": false
1908
+ },
1909
+ "255989": {
1910
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1911
+ "lstrip": false,
1912
+ "normalized": false,
1913
+ "rstrip": false,
1914
+ "single_word": false,
1915
+ "special": false
1916
+ },
1917
+ "255990": {
1918
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1919
+ "lstrip": false,
1920
+ "normalized": false,
1921
+ "rstrip": false,
1922
+ "single_word": false,
1923
+ "special": false
1924
+ },
1925
+ "255991": {
1926
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1927
+ "lstrip": false,
1928
+ "normalized": false,
1929
+ "rstrip": false,
1930
+ "single_word": false,
1931
+ "special": false
1932
+ },
1933
+ "255992": {
1934
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1935
+ "lstrip": false,
1936
+ "normalized": false,
1937
+ "rstrip": false,
1938
+ "single_word": false,
1939
+ "special": false
1940
+ },
1941
+ "255993": {
1942
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1943
+ "lstrip": false,
1944
+ "normalized": false,
1945
+ "rstrip": false,
1946
+ "single_word": false,
1947
+ "special": false
1948
+ },
1949
+ "255994": {
1950
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1951
+ "lstrip": false,
1952
+ "normalized": false,
1953
+ "rstrip": false,
1954
+ "single_word": false,
1955
+ "special": false
1956
+ },
1957
+ "255995": {
1958
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1959
+ "lstrip": false,
1960
+ "normalized": false,
1961
+ "rstrip": false,
1962
+ "single_word": false,
1963
+ "special": false
1964
+ },
1965
+ "255996": {
1966
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1967
+ "lstrip": false,
1968
+ "normalized": false,
1969
+ "rstrip": false,
1970
+ "single_word": false,
1971
+ "special": false
1972
+ },
1973
+ "255997": {
1974
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1975
+ "lstrip": false,
1976
+ "normalized": false,
1977
+ "rstrip": false,
1978
+ "single_word": false,
1979
+ "special": false
1980
+ },
1981
+ "255998": {
1982
+ "content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
1983
+ "lstrip": false,
1984
+ "normalized": false,
1985
+ "rstrip": false,
1986
+ "single_word": false,
1987
+ "special": false
1988
+ },
1989
+ "255999": {
1990
+ "content": "<unused99>",
1991
+ "lstrip": false,
1992
+ "normalized": false,
1993
+ "rstrip": false,
1994
+ "single_word": false,
1995
+ "special": false
1996
+ }
1997
+ },
1998
+ "additional_special_tokens": [
1999
+ "<start_of_turn>",
2000
+ "<end_of_turn>"
2001
+ ],
2002
+ "bos_token": "<bos>",
2003
+ "clean_up_tokenization_spaces": false,
2004
+ "eos_token": "<eos>",
2005
+ "model_max_length": 1000000000000000019884624838656,
2006
+ "pad_token": "<pad>",
2007
+ "sp_model_kwargs": {},
2008
+ "spaces_between_special_tokens": false,
2009
+ "tokenizer_class": "GemmaTokenizer",
2010
+ "unk_token": "<unk>",
2011
+ "use_default_system_prompt": false
2012
+ }
cal_data.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70a9a3256903c0915ffd5f5c1ed5c52547bd717f1f71b6552e57583082a9c2dc
3
+ size 1638488
hidden_states.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c3792d3afb47bef55baba76f2050eed270ddaf6a55af4d1b5d5268e071d2c5
3
+ size 1887445592
job_new.json ADDED
The diff for this file is too large to render. See raw diff
 
measurement.json ADDED
The diff for this file is too large to render. See raw diff
 
out_tensor/model.layers.0.mlp.down_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2edb50847068d249fd17b57ebea37ee42bb56763ba9efb56c0f8cd954320301
3
+ size 11807960
out_tensor/model.layers.0.mlp.gate_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:003009306f40d1854edb77e44c621688ec96051cc499178f2c0cea95c85a75d1
3
+ size 11253696
out_tensor/model.layers.0.mlp.up_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d833214f664d36476c9f4ac26ab0e60418e6dba54a6e3824632005db1ca591ce
3
+ size 11622328
out_tensor/model.layers.0.self_attn.k_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2963b6d3c3d67d489703ee92ee183e1dcb994f521fbb1660326e1fffbe71af2
3
+ size 1240816
out_tensor/model.layers.0.self_attn.o_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3601d3ef6fda80a4e54a78eb30ee989ce3ca68524a4de5cf91f138e01cd01bfe
3
+ size 2478808
out_tensor/model.layers.0.self_attn.q_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:490cd38cb9e0af07b8a7424005ffa7df7fcfd972fea25587f8878e0d0088f56b
3
+ size 2471664
out_tensor/model.layers.0.self_attn.v_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dae9865b4f598ffb36cdcdd102b1b3d641b32f3d77c9c48a9d6928035f04280
3
+ size 1259464
out_tensor/model.layers.1.self_attn.k_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4784ffd2c379e18e2d802a82920bc8ec16f3218b134777edc4c16985322bb515
3
+ size 1788548
out_tensor/model.layers.1.self_attn.o_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:558e1de0bac39b09867bfb5286291a83689c3e2655fbcf3b859330573675908d
3
+ size 3566200
out_tensor/model.layers.1.self_attn.q_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d398f5db36ea429f7377a4c60e7c1ca67dc3b9a55d337ff5f97b39b0ce590968
3
+ size 3567236
out_tensor/model.layers.1.self_attn.v_proj.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3ba91db45cab6520c19d0113e85374d61de030fd8a49957ee4f6c90b172936c
3
+ size 1788548