--- library_name: transformers license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: neuralmind/bert-base-portuguese-cased results: [] --- # neuralmind/bert-base-portuguese-cased This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0500 - Accuracy: 0.7415 - F1: 0.6919 - Recall: 0.7472 - Precision: 0.6838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 5151 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.0667 | 1.0 | 18 | 0.0661 | 0.5536 | 0.4531 | 0.4520 | 0.4571 | | 0.0624 | 2.0 | 36 | 0.0646 | 0.6696 | 0.5743 | 0.5752 | 0.5736 | | 0.0625 | 3.0 | 54 | 0.0628 | 0.7321 | 0.6510 | 0.6510 | 0.6510 | | 0.0612 | 4.0 | 72 | 0.0603 | 0.7411 | 0.6733 | 0.6795 | 0.6687 | | 0.0566 | 5.0 | 90 | 0.0568 | 0.7768 | 0.7184 | 0.7260 | 0.7125 | | 0.0544 | 6.0 | 108 | 0.0530 | 0.7589 | 0.7216 | 0.7588 | 0.7119 | | 0.0488 | 7.0 | 126 | 0.0497 | 0.8214 | 0.7812 | 0.8010 | 0.7688 | | 0.0398 | 8.0 | 144 | 0.0498 | 0.7946 | 0.7629 | 0.8054 | 0.75 | | 0.0276 | 9.0 | 162 | 0.0540 | 0.8125 | 0.7681 | 0.7838 | 0.7575 | | 0.0184 | 10.0 | 180 | 0.0674 | 0.7679 | 0.7156 | 0.7312 | 0.7065 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0