--- library_name: transformers license: mit base_model: belisards/congretimbau tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: MyDrive results: [] --- # MyDrive This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co/belisards/congretimbau) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1336 - Accuracy: 0.8776 - F1: 0.8115 - Recall: 0.7919 - Precision: 0.8389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 5151 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 150 - num_epochs: 14 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1343 | 2.8333 | 51 | 0.1396 | 0.7679 | 0.5492 | 0.5629 | 0.7832 | | 0.1057 | 5.6667 | 102 | 0.1280 | 0.8036 | 0.6777 | 0.6543 | 0.7887 | | 0.053 | 8.5 | 153 | 0.1457 | 0.8482 | 0.7899 | 0.7742 | 0.8125 | | 0.0159 | 11.3333 | 204 | 0.2345 | 0.8482 | 0.7952 | 0.7854 | 0.8072 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0