--- library_name: transformers license: mit base_model: belisards/congretimbau tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: modelos results: [] --- # modelos This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co/belisards/congretimbau) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5239 - Accuracy: 0.8254 - F1: 0.7442 - Recall: 0.7267 - Precision: 0.7727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 5151 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.5681 | 1.0323 | 32 | 0.5508 | 0.75 | 0.4286 | 0.5 | 0.375 | | 0.5233 | 2.0645 | 64 | 0.5138 | 0.7381 | 0.5146 | 0.5317 | 0.5897 | | 0.4339 | 3.0968 | 96 | 0.4529 | 0.7917 | 0.6875 | 0.6706 | 0.7240 | | 0.3907 | 4.1290 | 128 | 0.4087 | 0.8393 | 0.7683 | 0.75 | 0.7970 | | 0.2166 | 5.1613 | 160 | 0.4054 | 0.8452 | 0.7867 | 0.7778 | 0.7976 | | 0.14 | 6.1935 | 192 | 0.4474 | 0.8274 | 0.7716 | 0.7738 | 0.7696 | | 0.0673 | 7.2258 | 224 | 0.5118 | 0.8393 | 0.7726 | 0.7579 | 0.7932 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1