--- library_name: transformers license: mit base_model: belisards/congretimbau tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: belisards/congretimbau results: [] --- # belisards/congretimbau This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co/belisards/congretimbau) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1176 - Accuracy: 0.8027 - F1: 0.7358 - Recall: 0.7544 - Precision: 0.7236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 5151 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.3405 | 1.0 | 18 | 0.2083 | 0.7232 | 0.4751 | 0.5104 | 0.5393 | | 0.1467 | 2.0 | 36 | 0.1258 | 0.4107 | 0.4105 | 0.5463 | 0.5486 | | 0.1198 | 3.0 | 54 | 0.1127 | 0.6607 | 0.5988 | 0.6140 | 0.5964 | | 0.107 | 4.0 | 72 | 0.0999 | 0.6696 | 0.6339 | 0.6762 | 0.6380 | | 0.0987 | 5.0 | 90 | 0.0943 | 0.6339 | 0.6113 | 0.6745 | 0.6339 | | 0.0911 | 6.0 | 108 | 0.0930 | 0.6875 | 0.6492 | 0.6882 | 0.6492 | | 0.078 | 7.0 | 126 | 0.0953 | 0.7321 | 0.6883 | 0.7183 | 0.6805 | | 0.0671 | 8.0 | 144 | 0.0934 | 0.7232 | 0.6850 | 0.7235 | 0.6798 | | 0.0534 | 9.0 | 162 | 0.1065 | 0.8036 | 0.7441 | 0.7441 | 0.7441 | | 0.0355 | 10.0 | 180 | 0.1363 | 0.8214 | 0.7724 | 0.7786 | 0.7670 | | 0.0263 | 11.0 | 198 | 0.1411 | 0.8214 | 0.7724 | 0.7786 | 0.7670 | | 0.013 | 12.0 | 216 | 0.2712 | 0.8214 | 0.7560 | 0.7449 | 0.7710 | | 0.0074 | 13.0 | 234 | 0.3198 | 0.7946 | 0.7294 | 0.7268 | 0.7321 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0