--- library_name: transformers license: mit base_model: belisards/congretimbau tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: belisards/congretimbau results: [] --- # belisards/congretimbau This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co/belisards/congretimbau) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1076 - Accuracy: 0.8503 - F1: 0.7896 - Recall: 0.7959 - Precision: 0.7839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 5151 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 18 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1548 | 1.0 | 35 | 0.1456 | 0.7411 | 0.4571 | 0.5112 | 0.6227 | | 0.1572 | 2.0 | 70 | 0.1354 | 0.7411 | 0.6588 | 0.6570 | 0.6607 | | 0.1305 | 3.0 | 105 | 0.1212 | 0.7768 | 0.6402 | 0.6251 | 0.7194 | | 0.1069 | 4.0 | 140 | 0.1155 | 0.8393 | 0.7857 | 0.7794 | 0.7930 | | 0.0937 | 5.0 | 175 | 0.1216 | 0.8304 | 0.7764 | 0.7734 | 0.7798 | | 0.0639 | 6.0 | 210 | 0.1257 | 0.8482 | 0.7899 | 0.7742 | 0.8125 | | 0.0437 | 7.0 | 245 | 0.1610 | 0.8393 | 0.7614 | 0.7345 | 0.8195 | | 0.0254 | 8.0 | 280 | 0.2101 | 0.8482 | 0.7842 | 0.7630 | 0.8197 | | 0.0067 | 9.0 | 315 | 0.2555 | 0.8482 | 0.7899 | 0.7742 | 0.8125 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0