--- tags: - autotrain - text-generation-inference - text-generation - peft - mlx library_name: transformers base_model: ben-at-jorah/emergency-llama32-1b-finetune-rmsys3 widget: - messages: - role: user content: What is your favorite condiment? license: other datasets: - ben-at-jorah/emergency-training-data_2024-11-20 --- # ben-at-jorah/emergency-llama32-1b-finetune-rmsys3_mlx-8bit The Model [ben-at-jorah/emergency-llama32-1b-finetune-rmsys3_mlx-8bit](https://huggingface.co/ben-at-jorah/emergency-llama32-1b-finetune-rmsys3_mlx-8bit) was converted to MLX format from [ben-at-jorah/emergency-llama32-1b-finetune-rmsys3](https://huggingface.co/ben-at-jorah/emergency-llama32-1b-finetune-rmsys3) using mlx-lm version **0.19.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("ben-at-jorah/emergency-llama32-1b-finetune-rmsys3_mlx-8bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```