Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.38 +/- 0.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1644b6c0d62f1c3685a4ad154f03fc4d48289b5b4df841bd8e99556931ba81c
|
3 |
+
size 109835
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7fca316700>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f7fca313570>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 8,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676739829098334037,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAg6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAnXIovzkAoz+/L9U/NZ/fPi6LvD+N8y0+Olkvvy0Ug7/L0Lk+ZIttP+4szz9IhAS+tKVQvpJriT9MEMC/s28Vv4cthj9UuZe/Kue0v37G0z/tMDa/LC/PPjVKlr5wlIe/lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAACDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuUaA5LCEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]]",
|
60 |
+
"desired_goal": "[[-0.65799886 1.2734443 1.6655196 ]\n [ 0.43676153 1.4729974 0.16987438]\n [-0.68495524 -1.0240532 0.3629211 ]\n [ 0.9279082 1.6185586 -0.12941086]\n [-0.2037571 1.0735953 -1.5004973 ]\n [-0.58373564 1.0482644 -1.1853433 ]\n [-1.4133046 1.654495 -0.71168405]\n [ 0.40465677 -0.2935349 -1.0592175 ]]",
|
61 |
+
"observation": "[[0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAixnfPTD7VTwxm2g+Qq3rPCWttj3wIIY9zGh+PUcCa7wLqxw+eXBBO6FwQT1GFDY+NqZLPX6ILz2WIIk9lE7APFPnKz1vKY8+sOkvvUw/h71BS1A+dsjmvWGVHTxcSJY+lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.10893544 0.01306038 0.22715451]\n [ 0.02876914 0.08919743 0.06549251]\n [ 0.06211166 -0.0143438 0.15299623]\n [ 0.00295165 0.04722655 0.17781171]\n [ 0.04971906 0.04285478 0.06695668]\n [ 0.02347497 0.04196865 0.279613 ]\n [-0.04294747 -0.0660387 0.20341207]\n [-0.11268704 0.00961813 0.2935208 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItWtCWmPQ0b+UhpRSlIwBbJRLMowBdJRHQKROsMpgCwN1fZQoaAZoCWgPQwhJZB9kWbDsv5SGlFKUaBVLMmgWR0CkTnX84xUOdX2UKGgGaAloD0MIaverAN9t37+UhpRSlGgVSzJoFkdApE4uZE2HcnV9lChoBmgJaA9DCAzIXu/+eN+/lIaUUpRoFUsyaBZHQKRN8/5+H8F1fZQoaAZoCWgPQwjYDdsWZTbjv5SGlFKUaBVLMmgWR0CkUZDMvAXVdX2UKGgGaAloD0MIyhXe5SI+4r+UhpRSlGgVSzJoFkdApFFRsl9jPXV9lChoBmgJaA9DCLmrV5HRgeq/lIaUUpRoFUsyaBZHQKRRFaufVZt1fZQoaAZoCWgPQwg4hCo1e6Dev5SGlFKUaBVLMmgWR0CkUNlXiiqRdX2UKGgGaAloD0MIacTMPo/R4L+UhpRSlGgVSzJoFkdApFCd+3H7xnV9lChoBmgJaA9DCOOL9nghHeO/lIaUUpRoFUsyaBZHQKRQYyP+4sp1fZQoaAZoCWgPQwhSnQ5kPbXYv5SGlFKUaBVLMmgWR0CkUBt65XlsdX2UKGgGaAloD0MI96xrtBzoy7+UhpRSlGgVSzJoFkdApE/hF7Uoa3V9lChoBmgJaA9DCHbj3ZGxWvC/lIaUUpRoFUsyaBZHQKRTiMnZ00Z1fZQoaAZoCWgPQwjc9Gc/UkTQv5SGlFKUaBVLMmgWR0CkU0nHeaa1dX2UKGgGaAloD0MIDykGSDSB5r+UhpRSlGgVSzJoFkdApFMNuk1uSHV9lChoBmgJaA9DCL+dRIR/Ed6/lIaUUpRoFUsyaBZHQKRS0bkwN9Z1fZQoaAZoCWgPQwiwr3WpEfrYv5SGlFKUaBVLMmgWR0CkUpZlnRLLdX2UKGgGaAloD0MIx9eeWRKg6r+UhpRSlGgVSzJoFkdApFJbngYP5HV9lChoBmgJaA9DCE5HADeLl+6/lIaUUpRoFUsyaBZHQKRSE/Spiqh1fZQoaAZoCWgPQwirX+l8eBbhv5SGlFKUaBVLMmgWR0CkUdlz+3pfdX2UKGgGaAloD0MI7gc8MIDw3r+UhpRSlGgVSzJoFkdApFV50bLlm3V9lChoBmgJaA9DCBKFlnX/WNm/lIaUUpRoFUsyaBZHQKRVOsvIwM91fZQoaAZoCWgPQwiy2ZHqO7/cv5SGlFKUaBVLMmgWR0CkVP7dSEUTdX2UKGgGaAloD0MInZ/iOPBq2r+UhpRSlGgVSzJoFkdApFTC06YE4nV9lChoBmgJaA9DCIxIFFrW/cu/lIaUUpRoFUsyaBZHQKRUh3PiT+x1fZQoaAZoCWgPQwhvoMA7+fTav5SGlFKUaBVLMmgWR0CkVEyiVSn+dX2UKGgGaAloD0MIs89jlGde3r+UhpRSlGgVSzJoFkdApFQE/hVENXV9lChoBmgJaA9DCDUmxFxStdy/lIaUUpRoFUsyaBZHQKRTypbUwzt1fZQoaAZoCWgPQwhp5POKp57lv5SGlFKUaBVLMmgWR0CkV4wAlv61dX2UKGgGaAloD0MIB5YjZCDP0r+UhpRSlGgVSzJoFkdApFdM7GNrCXV9lChoBmgJaA9DCIv5uaEpO9i/lIaUUpRoFUsyaBZHQKRXEPatcOd1fZQoaAZoCWgPQwilu+tsyD/Nv5SGlFKUaBVLMmgWR0CkVtTS1E3LdX2UKGgGaAloD0MIliTP9X044L+UhpRSlGgVSzJoFkdApFaZQJokA3V9lChoBmgJaA9DCO571F+vsOG/lIaUUpRoFUsyaBZHQKRWXnq3VkN1fZQoaAZoCWgPQwiSeHk6VxTkv5SGlFKUaBVLMmgWR0CkVhbQ1JlKdX2UKGgGaAloD0MImfT3UnjQyr+UhpRSlGgVSzJoFkdApFXcZP2wmnV9lChoBmgJaA9DCNyeILHdveC/lIaUUpRoFUsyaBZHQKRZcnR9gF51fZQoaAZoCWgPQwgr3sg88gfev5SGlFKUaBVLMmgWR0CkWTNpmEoOdX2UKGgGaAloD0MINX7hlSTP4b+UhpRSlGgVSzJoFkdApFj3b212JXV9lChoBmgJaA9DCBfX+Ez2z9+/lIaUUpRoFUsyaBZHQKRYuzMRpUR1fZQoaAZoCWgPQwgPZD21+urjv5SGlFKUaBVLMmgWR0CkWH/l6qsEdX2UKGgGaAloD0MItW0YBcHj3r+UhpRSlGgVSzJoFkdApFhFG9YfXHV9lChoBmgJaA9DCBZNZyeDI+C/lIaUUpRoFUsyaBZHQKRX/XT3IuJ1fZQoaAZoCWgPQwiOdtzwu+nWv5SGlFKUaBVLMmgWR0CkV8MAmzBzdX2UKGgGaAloD0MIPMCTFi6r1b+UhpRSlGgVSzJoFkdApFt7FERao3V9lChoBmgJaA9DCPRvl/2609e/lIaUUpRoFUsyaBZHQKRbPBu4wyt1fZQoaAZoCWgPQwhcOuY8Y1/Yv5SGlFKUaBVLMmgWR0CkWwAzHjp+dX2UKGgGaAloD0MI+rMfKSLD4L+UhpRSlGgVSzJoFkdApFrEHfMwDnV9lChoBmgJaA9DCIaNsn4zMdG/lIaUUpRoFUsyaBZHQKRaiNx2jfx1fZQoaAZoCWgPQwj1EmOZfonWv5SGlFKUaBVLMmgWR0CkWk4c/+sHdX2UKGgGaAloD0MIV3ptNlZi1b+UhpRSlGgVSzJoFkdApFoGevpyInV9lChoBmgJaA9DCGJmn8coT+C/lIaUUpRoFUsyaBZHQKRZzOGj9GZ1fZQoaAZoCWgPQwhi2GFM+nvcv5SGlFKUaBVLMmgWR0CkXhHBciW3dX2UKGgGaAloD0MIA3rhzoWR2b+UhpRSlGgVSzJoFkdApF3TrNW2gHV9lChoBmgJaA9DCIj2sYLfhtq/lIaUUpRoFUsyaBZHQKRdmGW2PT51fZQoaAZoCWgPQwgKLIApA4fkv5SGlFKUaBVLMmgWR0CkXV0Zm7J5dX2UKGgGaAloD0MIY9NKIZBL2r+UhpRSlGgVSzJoFkdApF0ii9IwunV9lChoBmgJaA9DCKYLsfojjOW/lIaUUpRoFUsyaBZHQKRc6UHpr1x1fZQoaAZoCWgPQwhqLjcY6rDkv5SGlFKUaBVLMmgWR0CkXKJyZKFqdX2UKGgGaAloD0MIhJ7Nqs/V4r+UhpRSlGgVSzJoFkdApFxo2XLNfXV9lChoBmgJaA9DCO/GgsKgTNG/lIaUUpRoFUsyaBZHQKRhfp8F6iV1fZQoaAZoCWgPQwhLdJZZhGLcv5SGlFKUaBVLMmgWR0CkYUCOFQEZdX2UKGgGaAloD0MICtl5G5ud4L+UhpRSlGgVSzJoFkdApGEHE4vN/3V9lChoBmgJaA9DCHDP86eN6tC/lIaUUpRoFUsyaBZHQKRgzAi3XqZ1fZQoaAZoCWgPQwjMKJZbWo3gv5SGlFKUaBVLMmgWR0CkYJGyX2M9dX2UKGgGaAloD0MIQnkfR3Pk5b+UhpRSlGgVSzJoFkdApGBX5Lytm3V9lChoBmgJaA9DCOcb0T3rGt+/lIaUUpRoFUsyaBZHQKRgEVJL/S91fZQoaAZoCWgPQwiH/DOD+EDkv5SGlFKUaBVLMmgWR0CkX9fetSyddX2UKGgGaAloD0MI5LuUumQc1r+UhpRSlGgVSzJoFkdApGTUtsenynV9lChoBmgJaA9DCAHAsWfPZdq/lIaUUpRoFUsyaBZHQKRklmLcbit1fZQoaAZoCWgPQwhb64uEtpzPv5SGlFKUaBVLMmgWR0CkZFtDMNc4dX2UKGgGaAloD0MInUZaKm9H2L+UhpRSlGgVSzJoFkdApGQgDxLCenV9lChoBmgJaA9DCPLPDOIDO+G/lIaUUpRoFUsyaBZHQKRj5W4mTkh1fZQoaAZoCWgPQwhHrTB9ryHjv5SGlFKUaBVLMmgWR0CkY6twBHTadX2UKGgGaAloD0MInwCKkSVz2r+UhpRSlGgVSzJoFkdApGNkxIre7HV9lChoBmgJaA9DCN9t3jgpzNO/lIaUUpRoFUsyaBZHQKRjKzch1T11fZQoaAZoCWgPQwh+w0SDFDzXv5SGlFKUaBVLMmgWR0CkZ5Ek0JnhdX2UKGgGaAloD0MIw5rKorCL2L+UhpRSlGgVSzJoFkdApGdSLsKLKnV9lChoBmgJaA9DCDRpU3WPbNe/lIaUUpRoFUsyaBZHQKRnFjYI0Il1fZQoaAZoCWgPQwhI3c6+8iDdv5SGlFKUaBVLMmgWR0CkZtoZQ53ldX2UKGgGaAloD0MIJCU9DK1O3b+UhpRSlGgVSzJoFkdApGaevwEyL3V9lChoBmgJaA9DCDv7yoP0FNe/lIaUUpRoFUsyaBZHQKRmY/XXiBJ1fZQoaAZoCWgPQwhblq/L8J/Xv5SGlFKUaBVLMmgWR0CkZhxZMcp9dX2UKGgGaAloD0MIMdEgBU+h4b+UhpRSlGgVSzJoFkdApGXh+SbH63V9lChoBmgJaA9DCDcY6rDCrem/lIaUUpRoFUsyaBZHQKRpfG4qgAZ1fZQoaAZoCWgPQwg1Cd6QRgXfv5SGlFKUaBVLMmgWR0CkaT1lwtJ4dX2UKGgGaAloD0MIXhH8byU71L+UhpRSlGgVSzJoFkdApGkBc/t6X3V9lChoBmgJaA9DCC4CY30DE+q/lIaUUpRoFUsyaBZHQKRoxV7x/d91fZQoaAZoCWgPQwhOtRZmoZ3bv5SGlFKUaBVLMmgWR0CkaIn4fwI/dX2UKGgGaAloD0MIGt8Xl6o05L+UhpRSlGgVSzJoFkdApGhPN5dGAnV9lChoBmgJaA9DCOP6d33mrOO/lIaUUpRoFUsyaBZHQKRoB5TqB3B1fZQoaAZoCWgPQwjobAGh9fDVv5SGlFKUaBVLMmgWR0CkZ81jqfOEdX2UKGgGaAloD0MIWrvtQnOd3L+UhpRSlGgVSzJoFkdApGt3fj0cwXV9lChoBmgJaA9DCHQn2H+dm+e/lIaUUpRoFUsyaBZHQKRrOJWNm191fZQoaAZoCWgPQwiIvOXqxybcv5SGlFKUaBVLMmgWR0Ckavyn1nM/dX2UKGgGaAloD0MIi8HDtG/u3L+UhpRSlGgVSzJoFkdApGrAmois4nV9lChoBmgJaA9DCB/bMuAsJd2/lIaUUpRoFUsyaBZHQKRqhVHWjGl1fZQoaAZoCWgPQwhPP6iLFMrZv5SGlFKUaBVLMmgWR0CkakqDsdDIdX2UKGgGaAloD0MITtL8Ma1N0r+UhpRSlGgVSzJoFkdApGoC31BdEHV9lChoBmgJaA9DCI/gRsoWSdu/lIaUUpRoFUsyaBZHQKRpyIfKZD11ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 25000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2ab039feebb1512b10e8cff124c80a6ee2c943d76f2b8ddebfa5fd3f4a4cea8
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c98e267cdceeeb2d3d6ac19c73c1106295d5949b2d5f45fc7586e83a3f00748
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f7fca316700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7fca313570>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 8, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676739829098334037, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAAg6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/g6vVPlCsATx9pxQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAnXIovzkAoz+/L9U/NZ/fPi6LvD+N8y0+Olkvvy0Ug7/L0Lk+ZIttP+4szz9IhAS+tKVQvpJriT9MEMC/s28Vv4cthj9UuZe/Kue0v37G0z/tMDa/LC/PPjVKlr5wlIe/lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAACDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuDq9U+UKwBPH2nFD+J+Wo77ODKOrv1YTuUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]\n [0.41732416 0.00791462 0.58068067]]", "desired_goal": "[[-0.65799886 1.2734443 1.6655196 ]\n [ 0.43676153 1.4729974 0.16987438]\n [-0.68495524 -1.0240532 0.3629211 ]\n [ 0.9279082 1.6185586 -0.12941086]\n [-0.2037571 1.0735953 -1.5004973 ]\n [-0.58373564 1.0482644 -1.1853433 ]\n [-1.4133046 1.654495 -0.71168405]\n [ 0.40465677 -0.2935349 -1.0592175 ]]", "observation": "[[0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]\n [0.41732416 0.00791462 0.58068067 0.00358543 0.00154784 0.00344787]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVewIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolmAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolmAAAAAAAAAAixnfPTD7VTwxm2g+Qq3rPCWttj3wIIY9zGh+PUcCa7wLqxw+eXBBO6FwQT1GFDY+NqZLPX6ILz2WIIk9lE7APFPnKz1vKY8+sOkvvUw/h71BS1A+dsjmvWGVHTxcSJY+lGgOSwhLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LCEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10893544 0.01306038 0.22715451]\n [ 0.02876914 0.08919743 0.06549251]\n [ 0.06211166 -0.0143438 0.15299623]\n [ 0.00295165 0.04722655 0.17781171]\n [ 0.04971906 0.04285478 0.06695668]\n [ 0.02347497 0.04196865 0.279613 ]\n [-0.04294747 -0.0660387 0.20341207]\n [-0.11268704 0.00961813 0.2935208 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItWtCWmPQ0b+UhpRSlIwBbJRLMowBdJRHQKROsMpgCwN1fZQoaAZoCWgPQwhJZB9kWbDsv5SGlFKUaBVLMmgWR0CkTnX84xUOdX2UKGgGaAloD0MIaverAN9t37+UhpRSlGgVSzJoFkdApE4uZE2HcnV9lChoBmgJaA9DCAzIXu/+eN+/lIaUUpRoFUsyaBZHQKRN8/5+H8F1fZQoaAZoCWgPQwjYDdsWZTbjv5SGlFKUaBVLMmgWR0CkUZDMvAXVdX2UKGgGaAloD0MIyhXe5SI+4r+UhpRSlGgVSzJoFkdApFFRsl9jPXV9lChoBmgJaA9DCLmrV5HRgeq/lIaUUpRoFUsyaBZHQKRRFaufVZt1fZQoaAZoCWgPQwg4hCo1e6Dev5SGlFKUaBVLMmgWR0CkUNlXiiqRdX2UKGgGaAloD0MIacTMPo/R4L+UhpRSlGgVSzJoFkdApFCd+3H7xnV9lChoBmgJaA9DCOOL9nghHeO/lIaUUpRoFUsyaBZHQKRQYyP+4sp1fZQoaAZoCWgPQwhSnQ5kPbXYv5SGlFKUaBVLMmgWR0CkUBt65XlsdX2UKGgGaAloD0MI96xrtBzoy7+UhpRSlGgVSzJoFkdApE/hF7Uoa3V9lChoBmgJaA9DCHbj3ZGxWvC/lIaUUpRoFUsyaBZHQKRTiMnZ00Z1fZQoaAZoCWgPQwjc9Gc/UkTQv5SGlFKUaBVLMmgWR0CkU0nHeaa1dX2UKGgGaAloD0MIDykGSDSB5r+UhpRSlGgVSzJoFkdApFMNuk1uSHV9lChoBmgJaA9DCL+dRIR/Ed6/lIaUUpRoFUsyaBZHQKRS0bkwN9Z1fZQoaAZoCWgPQwiwr3WpEfrYv5SGlFKUaBVLMmgWR0CkUpZlnRLLdX2UKGgGaAloD0MIx9eeWRKg6r+UhpRSlGgVSzJoFkdApFJbngYP5HV9lChoBmgJaA9DCE5HADeLl+6/lIaUUpRoFUsyaBZHQKRSE/Spiqh1fZQoaAZoCWgPQwirX+l8eBbhv5SGlFKUaBVLMmgWR0CkUdlz+3pfdX2UKGgGaAloD0MI7gc8MIDw3r+UhpRSlGgVSzJoFkdApFV50bLlm3V9lChoBmgJaA9DCBKFlnX/WNm/lIaUUpRoFUsyaBZHQKRVOsvIwM91fZQoaAZoCWgPQwiy2ZHqO7/cv5SGlFKUaBVLMmgWR0CkVP7dSEUTdX2UKGgGaAloD0MInZ/iOPBq2r+UhpRSlGgVSzJoFkdApFTC06YE4nV9lChoBmgJaA9DCIxIFFrW/cu/lIaUUpRoFUsyaBZHQKRUh3PiT+x1fZQoaAZoCWgPQwhvoMA7+fTav5SGlFKUaBVLMmgWR0CkVEyiVSn+dX2UKGgGaAloD0MIs89jlGde3r+UhpRSlGgVSzJoFkdApFQE/hVENXV9lChoBmgJaA9DCDUmxFxStdy/lIaUUpRoFUsyaBZHQKRTypbUwzt1fZQoaAZoCWgPQwhp5POKp57lv5SGlFKUaBVLMmgWR0CkV4wAlv61dX2UKGgGaAloD0MIB5YjZCDP0r+UhpRSlGgVSzJoFkdApFdM7GNrCXV9lChoBmgJaA9DCIv5uaEpO9i/lIaUUpRoFUsyaBZHQKRXEPatcOd1fZQoaAZoCWgPQwilu+tsyD/Nv5SGlFKUaBVLMmgWR0CkVtTS1E3LdX2UKGgGaAloD0MIliTP9X044L+UhpRSlGgVSzJoFkdApFaZQJokA3V9lChoBmgJaA9DCO571F+vsOG/lIaUUpRoFUsyaBZHQKRWXnq3VkN1fZQoaAZoCWgPQwiSeHk6VxTkv5SGlFKUaBVLMmgWR0CkVhbQ1JlKdX2UKGgGaAloD0MImfT3UnjQyr+UhpRSlGgVSzJoFkdApFXcZP2wmnV9lChoBmgJaA9DCNyeILHdveC/lIaUUpRoFUsyaBZHQKRZcnR9gF51fZQoaAZoCWgPQwgr3sg88gfev5SGlFKUaBVLMmgWR0CkWTNpmEoOdX2UKGgGaAloD0MINX7hlSTP4b+UhpRSlGgVSzJoFkdApFj3b212JXV9lChoBmgJaA9DCBfX+Ez2z9+/lIaUUpRoFUsyaBZHQKRYuzMRpUR1fZQoaAZoCWgPQwgPZD21+urjv5SGlFKUaBVLMmgWR0CkWH/l6qsEdX2UKGgGaAloD0MItW0YBcHj3r+UhpRSlGgVSzJoFkdApFhFG9YfXHV9lChoBmgJaA9DCBZNZyeDI+C/lIaUUpRoFUsyaBZHQKRX/XT3IuJ1fZQoaAZoCWgPQwiOdtzwu+nWv5SGlFKUaBVLMmgWR0CkV8MAmzBzdX2UKGgGaAloD0MIPMCTFi6r1b+UhpRSlGgVSzJoFkdApFt7FERao3V9lChoBmgJaA9DCPRvl/2609e/lIaUUpRoFUsyaBZHQKRbPBu4wyt1fZQoaAZoCWgPQwhcOuY8Y1/Yv5SGlFKUaBVLMmgWR0CkWwAzHjp+dX2UKGgGaAloD0MI+rMfKSLD4L+UhpRSlGgVSzJoFkdApFrEHfMwDnV9lChoBmgJaA9DCIaNsn4zMdG/lIaUUpRoFUsyaBZHQKRaiNx2jfx1fZQoaAZoCWgPQwj1EmOZfonWv5SGlFKUaBVLMmgWR0CkWk4c/+sHdX2UKGgGaAloD0MIV3ptNlZi1b+UhpRSlGgVSzJoFkdApFoGevpyInV9lChoBmgJaA9DCGJmn8coT+C/lIaUUpRoFUsyaBZHQKRZzOGj9GZ1fZQoaAZoCWgPQwhi2GFM+nvcv5SGlFKUaBVLMmgWR0CkXhHBciW3dX2UKGgGaAloD0MIA3rhzoWR2b+UhpRSlGgVSzJoFkdApF3TrNW2gHV9lChoBmgJaA9DCIj2sYLfhtq/lIaUUpRoFUsyaBZHQKRdmGW2PT51fZQoaAZoCWgPQwgKLIApA4fkv5SGlFKUaBVLMmgWR0CkXV0Zm7J5dX2UKGgGaAloD0MIY9NKIZBL2r+UhpRSlGgVSzJoFkdApF0ii9IwunV9lChoBmgJaA9DCKYLsfojjOW/lIaUUpRoFUsyaBZHQKRc6UHpr1x1fZQoaAZoCWgPQwhqLjcY6rDkv5SGlFKUaBVLMmgWR0CkXKJyZKFqdX2UKGgGaAloD0MIhJ7Nqs/V4r+UhpRSlGgVSzJoFkdApFxo2XLNfXV9lChoBmgJaA9DCO/GgsKgTNG/lIaUUpRoFUsyaBZHQKRhfp8F6iV1fZQoaAZoCWgPQwhLdJZZhGLcv5SGlFKUaBVLMmgWR0CkYUCOFQEZdX2UKGgGaAloD0MICtl5G5ud4L+UhpRSlGgVSzJoFkdApGEHE4vN/3V9lChoBmgJaA9DCHDP86eN6tC/lIaUUpRoFUsyaBZHQKRgzAi3XqZ1fZQoaAZoCWgPQwjMKJZbWo3gv5SGlFKUaBVLMmgWR0CkYJGyX2M9dX2UKGgGaAloD0MIQnkfR3Pk5b+UhpRSlGgVSzJoFkdApGBX5Lytm3V9lChoBmgJaA9DCOcb0T3rGt+/lIaUUpRoFUsyaBZHQKRgEVJL/S91fZQoaAZoCWgPQwiH/DOD+EDkv5SGlFKUaBVLMmgWR0CkX9fetSyddX2UKGgGaAloD0MI5LuUumQc1r+UhpRSlGgVSzJoFkdApGTUtsenynV9lChoBmgJaA9DCAHAsWfPZdq/lIaUUpRoFUsyaBZHQKRklmLcbit1fZQoaAZoCWgPQwhb64uEtpzPv5SGlFKUaBVLMmgWR0CkZFtDMNc4dX2UKGgGaAloD0MInUZaKm9H2L+UhpRSlGgVSzJoFkdApGQgDxLCenV9lChoBmgJaA9DCPLPDOIDO+G/lIaUUpRoFUsyaBZHQKRj5W4mTkh1fZQoaAZoCWgPQwhHrTB9ryHjv5SGlFKUaBVLMmgWR0CkY6twBHTadX2UKGgGaAloD0MInwCKkSVz2r+UhpRSlGgVSzJoFkdApGNkxIre7HV9lChoBmgJaA9DCN9t3jgpzNO/lIaUUpRoFUsyaBZHQKRjKzch1T11fZQoaAZoCWgPQwh+w0SDFDzXv5SGlFKUaBVLMmgWR0CkZ5Ek0JnhdX2UKGgGaAloD0MIw5rKorCL2L+UhpRSlGgVSzJoFkdApGdSLsKLKnV9lChoBmgJaA9DCDRpU3WPbNe/lIaUUpRoFUsyaBZHQKRnFjYI0Il1fZQoaAZoCWgPQwhI3c6+8iDdv5SGlFKUaBVLMmgWR0CkZtoZQ53ldX2UKGgGaAloD0MIJCU9DK1O3b+UhpRSlGgVSzJoFkdApGaevwEyL3V9lChoBmgJaA9DCDv7yoP0FNe/lIaUUpRoFUsyaBZHQKRmY/XXiBJ1fZQoaAZoCWgPQwhblq/L8J/Xv5SGlFKUaBVLMmgWR0CkZhxZMcp9dX2UKGgGaAloD0MIMdEgBU+h4b+UhpRSlGgVSzJoFkdApGXh+SbH63V9lChoBmgJaA9DCDcY6rDCrem/lIaUUpRoFUsyaBZHQKRpfG4qgAZ1fZQoaAZoCWgPQwg1Cd6QRgXfv5SGlFKUaBVLMmgWR0CkaT1lwtJ4dX2UKGgGaAloD0MIXhH8byU71L+UhpRSlGgVSzJoFkdApGkBc/t6X3V9lChoBmgJaA9DCC4CY30DE+q/lIaUUpRoFUsyaBZHQKRoxV7x/d91fZQoaAZoCWgPQwhOtRZmoZ3bv5SGlFKUaBVLMmgWR0CkaIn4fwI/dX2UKGgGaAloD0MIGt8Xl6o05L+UhpRSlGgVSzJoFkdApGhPN5dGAnV9lChoBmgJaA9DCOP6d33mrOO/lIaUUpRoFUsyaBZHQKRoB5TqB3B1fZQoaAZoCWgPQwjobAGh9fDVv5SGlFKUaBVLMmgWR0CkZ81jqfOEdX2UKGgGaAloD0MIWrvtQnOd3L+UhpRSlGgVSzJoFkdApGt3fj0cwXV9lChoBmgJaA9DCHQn2H+dm+e/lIaUUpRoFUsyaBZHQKRrOJWNm191fZQoaAZoCWgPQwiIvOXqxybcv5SGlFKUaBVLMmgWR0Ckavyn1nM/dX2UKGgGaAloD0MIi8HDtG/u3L+UhpRSlGgVSzJoFkdApGrAmois4nV9lChoBmgJaA9DCB/bMuAsJd2/lIaUUpRoFUsyaBZHQKRqhVHWjGl1fZQoaAZoCWgPQwhPP6iLFMrZv5SGlFKUaBVLMmgWR0CkakqDsdDIdX2UKGgGaAloD0MITtL8Ma1N0r+UhpRSlGgVSzJoFkdApGoC31BdEHV9lChoBmgJaA9DCI/gRsoWSdu/lIaUUpRoFUsyaBZHQKRpyIfKZD11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 25000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (312 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.3787186849338468, "std_reward": 0.17081906002114203, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T17:47:22.127613"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1cecddb19c1fbe197387d2c8a8cc7bec0243c634116537729a64976526e65ff
|
3 |
+
size 3056
|