File size: 6,671 Bytes
e224c94
 
 
 
 
 
ad8abce
e224c94
 
 
 
 
 
 
 
 
 
 
ad8abce
e224c94
ad8abce
e224c94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
library_name: peft
license: apache-2.0
base_model: AdaptLLM/biomed-Qwen2-VL-2B-Instruct
tags:
- llama-factory
- lora
- generated_from_trainer
model-index:
- name: qwenvl-2B-cadica-stenosis-classify-scale4-frozenVision
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qwenvl-2B-cadica-stenosis-classify-scale4-frozenVision

This model is a fine-tuned version of [AdaptLLM/biomed-Qwen2-VL-2B-Instruct](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) on the CADICA狹窄分析選擇題scale4(TRAIN) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6319
- Num Input Tokens Seen: 39760664

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 6
- total_train_batch_size: 24
- total_eval_batch_size: 4
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 3400

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| 0.9157        | 0.0258 | 50   | 0.9192          | 584856            |
| 0.901         | 0.0515 | 100  | 0.9078          | 1169664           |
| 0.9032        | 0.0773 | 150  | 0.8962          | 1754512           |
| 0.9053        | 0.1030 | 200  | 0.8982          | 2339304           |
| 0.9098        | 0.1288 | 250  | 0.8956          | 2924016           |
| 0.8893        | 0.1545 | 300  | 0.8909          | 3508888           |
| 0.9075        | 0.1803 | 350  | 0.8920          | 4093688           |
| 0.9004        | 0.2060 | 400  | 0.9086          | 4678384           |
| 0.9076        | 0.2318 | 450  | 0.8962          | 5263304           |
| 0.8962        | 0.2575 | 500  | 0.8988          | 5848048           |
| 0.9013        | 0.2833 | 550  | 0.9001          | 6432936           |
| 0.9046        | 0.3090 | 600  | 0.9053          | 7017576           |
| 0.904         | 0.3348 | 650  | 0.9033          | 7602512           |
| 0.8972        | 0.3605 | 700  | 0.9029          | 8187320           |
| 0.9005        | 0.3863 | 750  | 0.8982          | 8772104           |
| 0.8881        | 0.4121 | 800  | 0.8973          | 9357016           |
| 0.9035        | 0.4378 | 850  | 0.8779          | 9941896           |
| 0.8961        | 0.4636 | 900  | 0.8914          | 10526712          |
| 0.8852        | 0.4893 | 950  | 0.8916          | 11111520          |
| 0.8635        | 0.5151 | 1000 | 0.8602          | 11696200          |
| 0.8844        | 0.5408 | 1050 | 0.8446          | 12281072          |
| 0.8427        | 0.5666 | 1100 | 0.7743          | 12865992          |
| 0.8185        | 0.5923 | 1150 | 0.7827          | 13450720          |
| 0.8061        | 0.6181 | 1200 | 0.7594          | 14035544          |
| 0.7917        | 0.6438 | 1250 | 0.7407          | 14620336          |
| 0.7724        | 0.6696 | 1300 | 0.7190          | 15205064          |
| 0.7278        | 0.6953 | 1350 | 0.7129          | 15789848          |
| 0.7359        | 0.7211 | 1400 | 0.6644          | 16374784          |
| 0.6291        | 0.7468 | 1450 | 0.7531          | 16959632          |
| 0.6021        | 0.7726 | 1500 | 0.6329          | 17544440          |
| 0.667         | 0.7984 | 1550 | 0.6618          | 18129304          |
| 0.6564        | 0.8241 | 1600 | 0.6319          | 18714072          |
| 0.5668        | 0.8499 | 1650 | 0.6635          | 19298848          |
| 0.5701        | 0.8756 | 1700 | 0.7144          | 19883504          |
| 0.546         | 0.9014 | 1750 | 0.6723          | 20468200          |
| 0.412         | 0.9271 | 1800 | 0.6769          | 21053080          |
| 0.4347        | 0.9529 | 1850 | 0.6808          | 21637848          |
| 0.3737        | 0.9786 | 1900 | 0.7730          | 22222632          |
| 0.3783        | 1.0041 | 1950 | 0.6983          | 22801512          |
| 0.3328        | 1.0299 | 2000 | 0.7485          | 23386232          |
| 0.3602        | 1.0556 | 2050 | 0.7191          | 23971048          |
| 0.3351        | 1.0814 | 2100 | 0.8075          | 24555904          |
| 0.3699        | 1.1071 | 2150 | 0.8524          | 25140752          |
| 0.4016        | 1.1329 | 2200 | 0.7535          | 25725560          |
| 0.3442        | 1.1586 | 2250 | 0.7066          | 26310336          |
| 0.3877        | 1.1844 | 2300 | 0.7277          | 26895096          |
| 0.3871        | 1.2101 | 2350 | 0.7660          | 27479840          |
| 0.3486        | 1.2359 | 2400 | 0.7411          | 28064552          |
| 0.2966        | 1.2617 | 2450 | 0.7486          | 28649256          |
| 0.3221        | 1.2874 | 2500 | 0.7222          | 29233968          |
| 0.3231        | 1.3132 | 2550 | 0.7146          | 29818856          |
| 0.2779        | 1.3389 | 2600 | 0.6957          | 30403640          |
| 0.2962        | 1.3647 | 2650 | 0.7657          | 30988344          |
| 0.3163        | 1.3904 | 2700 | 0.7473          | 31573240          |
| 0.164         | 1.4162 | 2750 | 0.7807          | 32158144          |
| 0.2939        | 1.4419 | 2800 | 0.7913          | 32743032          |
| 0.2848        | 1.4677 | 2850 | 0.8045          | 33327720          |
| 0.29          | 1.4934 | 2900 | 0.8113          | 33912440          |
| 0.2494        | 1.5192 | 2950 | 0.8177          | 34497216          |
| 0.2259        | 1.5449 | 3000 | 0.8406          | 35082056          |
| 0.2851        | 1.5707 | 3050 | 0.8474          | 35666976          |
| 0.2351        | 1.5964 | 3100 | 0.8651          | 36251744          |
| 0.2638        | 1.6222 | 3150 | 0.8634          | 36836560          |
| 0.312         | 1.6480 | 3200 | 0.8680          | 37421416          |
| 0.2785        | 1.6737 | 3250 | 0.8640          | 38006200          |
| 0.2752        | 1.6995 | 3300 | 0.8644          | 38591128          |
| 0.2674        | 1.7252 | 3350 | 0.8666          | 39175888          |
| 0.1797        | 1.7510 | 3400 | 0.8603          | 39760664          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.47.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3