--- library_name: peft license: apache-2.0 base_model: AdaptLLM/biomed-Qwen2-VL-2B-Instruct tags: - llama-factory - lora - generated_from_trainer model-index: - name: qwenvl-2B-cadica-stenosis-detect-scale4 results: [] --- # qwenvl-2B-cadica-stenosis-detect-scale4 This model is a fine-tuned version of [AdaptLLM/biomed-Qwen2-VL-2B-Instruct](https://huggingface.co/AdaptLLM/biomed-Qwen2-VL-2B-Instruct) on the CADICA狹窄分析選擇題scale4(TRAIN) and the CADICA狹窄分析千問定位題scale4(Train) datasets. It achieves the following results on the evaluation set: - Loss: 0.4146 - Num Input Tokens Seen: 35706848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - training_steps: 3400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 1.3506 | 0.0129 | 50 | 1.1727 | 524648 | | 0.7577 | 0.0258 | 100 | 0.7517 | 1049816 | | 0.7018 | 0.0386 | 150 | 0.7310 | 1573376 | | 0.7594 | 0.0515 | 200 | 0.7274 | 2099008 | | 0.7346 | 0.0644 | 250 | 0.7182 | 2625352 | | 0.6815 | 0.0773 | 300 | 0.7074 | 3149032 | | 0.6932 | 0.0901 | 350 | 0.7045 | 3673152 | | 0.7089 | 0.1030 | 400 | 0.6848 | 4197072 | | 0.6732 | 0.1159 | 450 | 0.6526 | 4722528 | | 0.6304 | 0.1288 | 500 | 0.6272 | 5246640 | | 0.5596 | 0.1416 | 550 | 0.5833 | 5774880 | | 0.5794 | 0.1545 | 600 | 0.6039 | 6299656 | | 0.5959 | 0.1674 | 650 | 0.5542 | 6824008 | | 0.5014 | 0.1803 | 700 | 0.5440 | 7347040 | | 0.541 | 0.1931 | 750 | 0.5274 | 7870520 | | 0.5291 | 0.2060 | 800 | 0.5219 | 8393696 | | 0.5063 | 0.2189 | 850 | 0.5526 | 8919608 | | 0.5251 | 0.2318 | 900 | 0.4960 | 9443616 | | 0.5862 | 0.2447 | 950 | 0.5085 | 9970600 | | 0.483 | 0.2575 | 1000 | 0.5305 | 10495592 | | 0.4628 | 0.2704 | 1050 | 0.5040 | 11021656 | | 0.4825 | 0.2833 | 1100 | 0.4799 | 11547008 | | 0.4553 | 0.2962 | 1150 | 0.4538 | 12071088 | | 0.454 | 0.3090 | 1200 | 0.4925 | 12596208 | | 0.4725 | 0.3219 | 1250 | 0.4340 | 13125624 | | 0.4794 | 0.3348 | 1300 | 0.4992 | 13650264 | | 0.3994 | 0.3477 | 1350 | 0.4608 | 14173240 | | 0.437 | 0.3605 | 1400 | 0.4662 | 14697136 | | 0.4065 | 0.3734 | 1450 | 0.4395 | 15222568 | | 0.4338 | 0.3863 | 1500 | 0.4548 | 15744848 | | 0.3872 | 0.3992 | 1550 | 0.4417 | 16269896 | | 0.3914 | 0.4121 | 1600 | 0.4658 | 16798768 | | 0.3755 | 0.4249 | 1650 | 0.4727 | 17323232 | | 0.3796 | 0.4378 | 1700 | 0.4555 | 17845600 | | 0.3767 | 0.4507 | 1750 | 0.4234 | 18371928 | | 0.4484 | 0.4636 | 1800 | 0.4194 | 18898888 | | 0.3941 | 0.4764 | 1850 | 0.4510 | 19424688 | | 0.2877 | 0.4893 | 1900 | 0.4512 | 19950480 | | 0.365 | 0.5022 | 1950 | 0.4764 | 20476176 | | 0.3814 | 0.5151 | 2000 | 0.5098 | 21002032 | | 0.3389 | 0.5279 | 2050 | 0.4328 | 21527496 | | 0.3983 | 0.5408 | 2100 | 0.4818 | 22050376 | | 0.3687 | 0.5537 | 2150 | 0.4505 | 22574104 | | 0.3232 | 0.5666 | 2200 | 0.4517 | 23101488 | | 0.325 | 0.5794 | 2250 | 0.4991 | 23626952 | | 0.3322 | 0.5923 | 2300 | 0.4960 | 24154624 | | 0.3651 | 0.6052 | 2350 | 0.4146 | 24678768 | | 0.3445 | 0.6181 | 2400 | 0.4281 | 25206168 | | 0.3413 | 0.6310 | 2450 | 0.4691 | 25730432 | | 0.363 | 0.6438 | 2500 | 0.4471 | 26252584 | | 0.3195 | 0.6567 | 2550 | 0.4373 | 26776816 | | 0.3075 | 0.6696 | 2600 | 0.4505 | 27301776 | | 0.324 | 0.6825 | 2650 | 0.5080 | 27827480 | | 0.3076 | 0.6953 | 2700 | 0.4338 | 28352368 | | 0.2817 | 0.7082 | 2750 | 0.4440 | 28877960 | | 0.3567 | 0.7211 | 2800 | 0.4282 | 29402040 | | 0.3024 | 0.7340 | 2850 | 0.4704 | 29928032 | | 0.3167 | 0.7468 | 2900 | 0.4632 | 30455480 | | 0.2899 | 0.7597 | 2950 | 0.4720 | 30979312 | | 0.3522 | 0.7726 | 3000 | 0.4726 | 31503344 | | 0.3137 | 0.7855 | 3050 | 0.4747 | 32030016 | | 0.2856 | 0.7984 | 3100 | 0.4740 | 32553288 | | 0.2669 | 0.8112 | 3150 | 0.4687 | 33078960 | | 0.3322 | 0.8241 | 3200 | 0.4703 | 33604328 | | 0.2836 | 0.8370 | 3250 | 0.4657 | 34129832 | | 0.3135 | 0.8499 | 3300 | 0.4714 | 34654480 | | 0.3253 | 0.8627 | 3350 | 0.4715 | 35179104 | | 0.3187 | 0.8756 | 3400 | 0.4702 | 35706848 | ### Framework versions - PEFT 0.12.0 - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3