benjamin-paine
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,39 +1,35 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
-
This repository contains a pruned and partially reorganized version of [
|
5 |
|
6 |
```
|
7 |
-
@misc{
|
8 |
-
title={
|
9 |
-
author={
|
10 |
year={2024},
|
11 |
-
eprint={2403.
|
12 |
archivePrefix={arXiv},
|
13 |
primaryClass={cs.CV}
|
14 |
}
|
15 |
```
|
16 |
|
17 |
-
<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/64429aaf7feb866811b12f73/wZku1I_4L4VwWeXXKgXqb.mp4"></video>
|
18 |
-
|
19 |
-
Video credit: [Polina Tankilevitch, Pexels](https://www.pexels.com/video/a-young-woman-dancing-hip-hop-3873100/)
|
20 |
-
|
21 |
-
Image credit: [Andrea Piacquadio, Pexels](https://www.pexels.com/photo/man-in-black-jacket-wearing-black-headphones-3831645/)
|
22 |
-
|
23 |
# Usage
|
24 |
|
25 |
-
|
|
|
|
|
26 |
|
27 |
```sh
|
28 |
-
pip install git+https://github.com/painebenjamin/
|
29 |
```
|
30 |
|
31 |
Now, you can create the pipeline, automatically pulling the weights from this repository, either as individual models:
|
32 |
|
33 |
```py
|
34 |
-
from
|
35 |
-
pipeline =
|
36 |
-
"benjamin-paine/
|
37 |
torch_dtype=torch.float16,
|
38 |
variant="fp16",
|
39 |
device="cuda"
|
@@ -43,30 +39,242 @@ pipeline = CHAMPPipeline.from_pretrained(
|
|
43 |
Or, as a single file:
|
44 |
|
45 |
```py
|
46 |
-
from
|
47 |
-
pipeline =
|
48 |
-
"benjamin-paine/
|
49 |
torch_dtype=torch.float16,
|
50 |
variant="fp16",
|
51 |
device="cuda"
|
52 |
).to("cuda", dtype=torch.float16)
|
53 |
```
|
54 |
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
```py
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
).videos
|
67 |
-
# Result is a list of PIL Images
|
68 |
```
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
This repository contains a pruned and partially reorganized version of [AniPortrait](https://fudan-generative-vision.github.io/champ/#/).
|
5 |
|
6 |
```
|
7 |
+
@misc{wei2024aniportrait,
|
8 |
+
title={AniPortrait: Audio-Driven Synthesis of Photorealistic Portrait Animations},
|
9 |
+
author={Huawei Wei and Zejun Yang and Zhisheng Wang},
|
10 |
year={2024},
|
11 |
+
eprint={2403.17694},
|
12 |
archivePrefix={arXiv},
|
13 |
primaryClass={cs.CV}
|
14 |
}
|
15 |
```
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Usage
|
18 |
|
19 |
+
## Installation
|
20 |
+
|
21 |
+
First, install the AniPortrait package into your python environment. If you're creating a new environment for AniPortrait, be sure you also specify the version of torch you want with CUDA support, or else this will try to run only on CPU.
|
22 |
|
23 |
```sh
|
24 |
+
pip install git+https://github.com/painebenjamin/aniportrait.git
|
25 |
```
|
26 |
|
27 |
Now, you can create the pipeline, automatically pulling the weights from this repository, either as individual models:
|
28 |
|
29 |
```py
|
30 |
+
from aniportrait import AniPortraitPipeline
|
31 |
+
pipeline = AniPortraitPipeline.from_pretrained(
|
32 |
+
"benjamin-paine/aniportrait",
|
33 |
torch_dtype=torch.float16,
|
34 |
variant="fp16",
|
35 |
device="cuda"
|
|
|
39 |
Or, as a single file:
|
40 |
|
41 |
```py
|
42 |
+
from aniportrait import AniPortraitPipeline
|
43 |
+
pipeline = AniPortraitPipeline.from_single_file(
|
44 |
+
"benjamin-paine/aniportrait",
|
45 |
torch_dtype=torch.float16,
|
46 |
variant="fp16",
|
47 |
device="cuda"
|
48 |
).to("cuda", dtype=torch.float16)
|
49 |
```
|
50 |
|
51 |
+
The `AniPortraitPipeline` is a mega pipeline, capable of instantiating and executing other pipelines. It provides the following functions:
|
52 |
+
|
53 |
+
## Workflows
|
54 |
+
|
55 |
+
### img2img
|
56 |
+
|
57 |
+
```py
|
58 |
+
pipeline.img2img(
|
59 |
+
reference_image: PIL.Image.Image,
|
60 |
+
pose_reference_image: PIL.Image.Image,
|
61 |
+
num_inference_steps: int,
|
62 |
+
guidance_scale: float,
|
63 |
+
eta: float=0.0,
|
64 |
+
reference_pose_image: Optional[Image.Image]=None,
|
65 |
+
generation: Optional[Union[torch.Generator, List[torch.Generator]]]=None,
|
66 |
+
output_type: Optional[str]="pil",
|
67 |
+
return_dict: bool=True,
|
68 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]]=None,
|
69 |
+
callback_steps: Optional[int]=None,
|
70 |
+
width: Optional[int]=None,
|
71 |
+
height: Optional[int]=None,
|
72 |
+
**kwargs: Any
|
73 |
+
) -> Pose2VideoPipelineOutput
|
74 |
+
```
|
75 |
+
|
76 |
+
Using a reference image (for structure) and a pose reference image (for pose), render an image of the former in the pose of the latter.
|
77 |
+
- The pose reference image here is an unprocessed image, from which the face pose will be extracted.
|
78 |
+
- Optionally pass `reference_pose_image` to designate the pose of `reference_image`. When not passed, the pose of `reference_image` is automatically detected.
|
79 |
+
|
80 |
+
### vid2vid
|
81 |
+
|
82 |
+
```py
|
83 |
+
pipeline.vid2vid(
|
84 |
+
reference_image: PIL.Image.Image,
|
85 |
+
pose_reference_images: List[PIL.Image.Image],
|
86 |
+
num_inference_steps: int,
|
87 |
+
guidance_scale: float,
|
88 |
+
eta: float=0.0,
|
89 |
+
reference_pose_image: Optional[Image.Image]=None,
|
90 |
+
generation: Optional[Union[torch.Generator, List[torch.Generator]]]=None,
|
91 |
+
output_type: Optional[str]="pil",
|
92 |
+
return_dict: bool=True,
|
93 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]]=None,
|
94 |
+
callback_steps: Optional[int]=None,
|
95 |
+
width: Optional[int]=None,
|
96 |
+
height: Optional[int]=None,
|
97 |
+
video_length: Optional[int]=None,
|
98 |
+
context_schedule: str="uniform",
|
99 |
+
context_frames: int=16,
|
100 |
+
context_overlap: int=4,
|
101 |
+
context_batch_size: int=1,
|
102 |
+
interpolation_factor: int=1,
|
103 |
+
use_long_video: bool=True,
|
104 |
+
**kwargs: Any
|
105 |
+
) -> Pose2VideoPipelineOutput
|
106 |
+
```
|
107 |
+
|
108 |
+
Using a reference image (for structure) and a sequence of pose reference images (for pose), render a video of the former in the poses of the latter, using context windowing for long-video generation when the poses are longer than 16 frames.
|
109 |
+
- Optionally pass `use_long_video = false` to disable using the long video pipeline.
|
110 |
+
- Optionally pass `reference_pose_image` to designate the pose of `reference_image`. When not passed, the pose of `reference_image` is automatically detected.
|
111 |
+
- Optionally pass `video_length` to use this many frames. Default is the same as the length of the pose reference images.
|
112 |
+
|
113 |
+
### audio2vid
|
114 |
+
|
115 |
+
```py
|
116 |
+
pipeline.audio2vid(
|
117 |
+
audio: str,
|
118 |
+
reference_image: PIL.Image.Image,
|
119 |
+
num_inference_steps: int,
|
120 |
+
guidance_scale: float,
|
121 |
+
fps: int=30,
|
122 |
+
eta: float=0.0,
|
123 |
+
reference_pose_image: Optional[Image.Image]=None,
|
124 |
+
pose_reference_images: Optional[List[PIL.Image.Image]]=None,
|
125 |
+
generation: Optional[Union[torch.Generator, List[torch.Generator]]]=None,
|
126 |
+
output_type: Optional[str]="pil",
|
127 |
+
return_dict: bool=True,
|
128 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]]=None,
|
129 |
+
callback_steps: Optional[int]=None,
|
130 |
+
width: Optional[int]=None,
|
131 |
+
height: Optional[int]=None,
|
132 |
+
video_length: Optional[int]=None,
|
133 |
+
context_schedule: str="uniform",
|
134 |
+
context_frames: int=16,
|
135 |
+
context_overlap: int=4,
|
136 |
+
context_batch_size: int=1,
|
137 |
+
interpolation_factor: int=1,
|
138 |
+
use_long_video: bool=True,
|
139 |
+
**kwargs: Any
|
140 |
+
) -> Pose2VideoPipelineOutput
|
141 |
+
```
|
142 |
+
|
143 |
+
Using an audio file, draw `fps` face pose images per second for the duration of the audio. Then, using those face pose images, render a video.
|
144 |
+
- Optionally include a list of images to extract the poses from prior to merging with audio-generated poses (in essence, pass a video here to control non-speech motion). The default is a moderately active loop of head movement.
|
145 |
+
- Optionally pass width/height to modify the size. Defaults to reference image size.
|
146 |
+
- Optionally pass `use_long_video = false` to disable using the long video pipeline.
|
147 |
+
- Optionally pass `reference_pose_image` to designate the pose of `reference_image`. When not passed, the pose of `reference_image` is automatically detected.
|
148 |
+
- Optionally pass `video_length` to use this many frames. Default is the same as the length of the pose reference images.
|
149 |
+
|
150 |
+
## Internals/Helpers
|
151 |
+
|
152 |
+
### img2pose
|
153 |
+
|
154 |
+
```py
|
155 |
+
pipeline.img2pose(
|
156 |
+
reference_image: PIL.Image.Image,
|
157 |
+
width: Optional[int]=None,
|
158 |
+
height: Optional[int]=None
|
159 |
+
) -> PIL.Image.Image
|
160 |
+
```
|
161 |
+
|
162 |
+
Detects face landmarks in an image and draws a face pose image.
|
163 |
+
- Optionally modify the original width and height.
|
164 |
+
|
165 |
+
### vid2pose
|
166 |
+
|
167 |
+
```py
|
168 |
+
pipeline.vid2pose(
|
169 |
+
reference_image: PIL.Image.Image,
|
170 |
+
retarget_image: Optional[PIL.Image.Image],
|
171 |
+
width: Optional[int]=None,
|
172 |
+
height: Optional[int]=None
|
173 |
+
) -> List[PIL.Image.Image]
|
174 |
+
```
|
175 |
+
|
176 |
+
Detects face landmarks in a series of images and draws pose images.
|
177 |
+
- Optionally modify the original width and height.
|
178 |
+
- Optionally retarget to a different face position, useful for video-to-video tasks.
|
179 |
+
|
180 |
+
### audio2pose
|
181 |
|
182 |
```py
|
183 |
+
pipeline.audio2pose(
|
184 |
+
audio_path: str,
|
185 |
+
fps: int=30,
|
186 |
+
reference_image: Optional[PIL.Image.Image]=None,
|
187 |
+
pose_reference_images: Optional[List[PIL.Image.Image]]=None,
|
188 |
+
width: Optional[int]=None,
|
189 |
+
height: Optional[int]=None
|
190 |
+
) -> List[PIL.Image.Image]
|
|
|
|
|
191 |
```
|
192 |
|
193 |
+
Using an audio file, draw `fps` face pose images per second for the duration of the audio.
|
194 |
+
- Optionally include a reference image to extract the face shape and initial position from. Default has a generic androgynous face shape.
|
195 |
+
- Optionally include a list of images to extract the poses from prior to merging with audio-generated poses (in essence, pass a video here to control non-speech motion). The default is a moderately active loop of head movement.
|
196 |
+
- Optionally pass width/height to modify the size. Defaults to reference image size, then pose image sizes, then 256.
|
197 |
+
|
198 |
+
### pose2img
|
199 |
+
|
200 |
+
```py
|
201 |
+
pipeline.pose2img(
|
202 |
+
reference_image: PIL.Image.Image,
|
203 |
+
pose_image: PIL.Image.Image,
|
204 |
+
num_inference_steps: int,
|
205 |
+
guidance_scale: float,
|
206 |
+
eta: float=0.0,
|
207 |
+
reference_pose_image: Optional[Image.Image]=None,
|
208 |
+
generation: Optional[Union[torch.Generator, List[torch.Generator]]]=None,
|
209 |
+
output_type: Optional[str]="pil",
|
210 |
+
return_dict: bool=True,
|
211 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]]=None,
|
212 |
+
callback_steps: Optional[int]=None,
|
213 |
+
width: Optional[int]=None,
|
214 |
+
height: Optional[int]=None,
|
215 |
+
**kwargs: Any
|
216 |
+
) -> Pose2VideoPipelineOutput
|
217 |
+
```
|
218 |
+
|
219 |
+
Using a reference image (for structure) and a pose image (for pose), render an image of the former in the pose of the latter.
|
220 |
+
- The pose image here is a processed face pose. To pass a non-processed face pose, see `img2img`.
|
221 |
+
- Optionally pass `reference_pose_image` to designate the pose of `reference_image`. When not passed, the pose of `reference_image` is automatically detected.
|
222 |
+
|
223 |
+
### pose2vid
|
224 |
+
|
225 |
+
```py
|
226 |
+
pipeline.pose2vid(
|
227 |
+
reference_image: PIL.Image.Image,
|
228 |
+
pose_images: List[PIL.Image.Image],
|
229 |
+
num_inference_steps: int,
|
230 |
+
guidance_scale: float,
|
231 |
+
eta: float=0.0,
|
232 |
+
reference_pose_image: Optional[Image.Image]=None,
|
233 |
+
generation: Optional[Union[torch.Generator, List[torch.Generator]]]=None,
|
234 |
+
output_type: Optional[str]="pil",
|
235 |
+
return_dict: bool=True,
|
236 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]]=None,
|
237 |
+
callback_steps: Optional[int]=None,
|
238 |
+
width: Optional[int]=None,
|
239 |
+
height: Optional[int]=None,
|
240 |
+
video_length: Optional[int]=None,
|
241 |
+
**kwargs: Any
|
242 |
+
) -> Pose2VideoPipelineOutput
|
243 |
+
```
|
244 |
+
|
245 |
+
Using a reference image (for structure) and pose images (for pose), render a video of the former in the poses of the latter.
|
246 |
+
- The pose images here are a processed face poses. To non-processed face poses, see `vid2vid`.
|
247 |
+
- Optionally pass `reference_pose_image` to designate the pose of `reference_image`. When not passed, the pose of `reference_image` is automatically detected.
|
248 |
+
- Optionally pass `video_length` to use this many frames. Default is the same as the length of the pose images.
|
249 |
+
|
250 |
+
### pose2vid_long
|
251 |
+
|
252 |
+
```py
|
253 |
+
pipeline.pose2vid_long(
|
254 |
+
reference_image: PIL.Image.Image,
|
255 |
+
pose_images: List[PIL.Image.Image],
|
256 |
+
num_inference_steps: int,
|
257 |
+
guidance_scale: float,
|
258 |
+
eta: float=0.0,
|
259 |
+
reference_pose_image: Optional[Image.Image]=None,
|
260 |
+
generation: Optional[Union[torch.Generator, List[torch.Generator]]]=None,
|
261 |
+
output_type: Optional[str]="pil",
|
262 |
+
return_dict: bool=True,
|
263 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]]=None,
|
264 |
+
callback_steps: Optional[int]=None,
|
265 |
+
width: Optional[int]=None,
|
266 |
+
height: Optional[int]=None,
|
267 |
+
video_length: Optional[int]=None,
|
268 |
+
context_schedule: str="uniform",
|
269 |
+
context_frames: int=16,
|
270 |
+
context_overlap: int=4,
|
271 |
+
context_batch_size: int=1,
|
272 |
+
interpolation_factor: int=1,
|
273 |
+
**kwargs: Any
|
274 |
+
) -> Pose2VideoPipelineOutput
|
275 |
+
```
|
276 |
|
277 |
+
Using a reference image (for structure) and pose images (for pose), render a video of the former in the poses of the latter, using context windowing for long-video generation.
|
278 |
+
- The pose images here are a processed face poses. To non-processed face poses, see `vid2vid`.
|
279 |
+
- Optionally pass `reference_pose_image` to designate the pose of `reference_image`. When not passed, the pose of `reference_image` is automatically detected.
|
280 |
+
- Optionally pass `video_length` to use this many frames. Default is the same as the length of the pose images.
|