--- language: zh license: mit --- # roberta-base-wechsel-chinese Model trained with WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. See the code here: https://github.com/CPJKU/wechsel And the paper here: https://arxiv.org/abs/2112.06598 ## Performance ### RoBERTa | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-french` | **82.43** | **90.88** | **86.65** | | `camembert-base` | 80.88 | 90.26 | 85.57 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-german` | **81.79** | **89.72** | **85.76** | | `deepset/gbert-base` | 78.64 | 89.46 | 84.05 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-chinese` | **78.32** | 80.55 | **79.44** | | `bert-base-chinese` | 76.55 | **82.05** | 79.30 | | Model | NLI Score | NER Score | Avg Score | |---|---|---|---| | `roberta-base-wechsel-swahili` | **75.05** | **87.39** | **81.22** | | `xlm-roberta-base` | 69.18 | 87.37 | 78.28 | ### GPT2 | Model | PPL | |---|---| | `gpt2-wechsel-french` | **19.71** | | `gpt2` (retrained from scratch) | 20.47 | | Model | PPL | |---|---| | `gpt2-wechsel-german` | **26.8** | | `gpt2` (retrained from scratch) | 27.63 | | Model | PPL | |---|---| | `gpt2-wechsel-chinese` | **51.97** | | `gpt2` (retrained from scratch) | 52.98 | | Model | PPL | |---|---| | `gpt2-wechsel-swahili` | **10.14** | | `gpt2` (retrained from scratch) | 10.58 | See our paper for details. ## Citation Please cite WECHSEL as ``` @misc{minixhofer2021wechsel, title={WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models}, author={Benjamin Minixhofer and Fabian Paischer and Navid Rekabsaz}, year={2021}, eprint={2112.06598}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```