--- license: cc-by-4.0 base_model: Helsinki-NLP/opus-mt-tc-big-tr-en tags: - generated_from_trainer datasets: - opus_infopankki metrics: - bleu model-index: - name: opus-mt-tc-big-tr-en-finetuned-tr-to-en results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: opus_infopankki type: opus_infopankki config: en-tr split: train args: en-tr metrics: - name: Bleu type: bleu value: 50.6479 --- # opus-mt-tc-big-tr-en-finetuned-tr-to-en This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tc-big-tr-en](https://huggingface.co/Helsinki-NLP/opus-mt-tc-big-tr-en) on the opus_infopankki dataset. It achieves the following results on the evaluation set: - Loss: 0.7193 - Bleu: 50.6479 - Gen Len: 15.1365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 36 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.5846 | 1.0 | 2477 | 0.7193 | 50.6479 | 15.1365 | ### Framework versions - Transformers 4.36.1 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0