|
import logging
|
|
import re
|
|
from typing import Any, Dict, Optional, Set, Tuple, Union
|
|
|
|
import peft
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import transformers
|
|
import transformers.activations
|
|
import transformers.modeling_outputs
|
|
import transformers.models
|
|
from transformers.models.whisper import modeling_whisper as whisper
|
|
|
|
|
|
|
|
from .ultravox_config import LossConfig
|
|
from .ultravox_config import LossFunction
|
|
from .ultravox_config import UltravoxConfig
|
|
|
|
|
|
class UltravoxModel(transformers.LlamaPreTrainedModel):
|
|
"""
|
|
The Ultravox model which consists of an audio encoder and a language model.
|
|
|
|
Audio input is processed by the audio encoder, then every `stack_factor` frames are stacked together and
|
|
projected to the language model's embedding space using a few linear layers.
|
|
The text is embedded by the language model as usual and then the audio and text embeddings are merged together.
|
|
|
|
A special token `<|audio|>` is used to indicate the start of the audio embeddings in the merged embeddings.
|
|
|
|
Parameters:
|
|
config: Model configuration class with all the parameters of the model.
|
|
"""
|
|
|
|
config_class = UltravoxConfig
|
|
config: UltravoxConfig
|
|
|
|
|
|
|
|
_keys_to_ignore_on_load_unexpected = ["audio_tower.*", "language_model.*"]
|
|
|
|
|
|
|
|
_keys_to_ignore_on_load_missing = ["audio_tower.*"]
|
|
|
|
def __init__(self, config: UltravoxConfig):
|
|
super().__init__(config)
|
|
self._register_load_state_dict_pre_hook(self._pre_load_state_dict_hook)
|
|
|
|
self.keep_params: Set[str] = set()
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.audio_tower = self._create_audio_tower(config)
|
|
self.multi_modal_projector = self._create_multi_modal_projector(config)
|
|
self.language_model = self._create_language_model(config)
|
|
|
|
|
|
|
|
|
|
self._no_split_modules = (self.language_model._no_split_modules or []) + (
|
|
self.audio_tower._no_split_modules or []
|
|
)
|
|
|
|
self.loss_config = LossConfig()
|
|
self.post_init()
|
|
|
|
def get_input_embeddings(self):
|
|
return self.language_model.get_input_embeddings()
|
|
|
|
def set_input_embeddings(self, value):
|
|
self.language_model.set_input_embeddings(value)
|
|
|
|
def get_output_embeddings(self):
|
|
return self.language_model.get_output_embeddings()
|
|
|
|
def set_output_embeddings(self, new_embeddings):
|
|
self.language_model.set_output_embeddings(new_embeddings)
|
|
|
|
def set_decoder(self, decoder):
|
|
self.language_model.set_decoder(decoder)
|
|
|
|
def get_decoder(self):
|
|
return self.language_model.get_decoder()
|
|
|
|
def tie_weights(self):
|
|
return self.language_model.tie_weights()
|
|
|
|
def set_loss_config(self, loss_config: LossConfig):
|
|
self.loss_config = loss_config
|
|
|
|
def _setup_cache(
|
|
self, cache_cls, max_batch_size: int, max_cache_len: Optional[int] = None
|
|
):
|
|
self.language_model._setup_cache(cache_cls, max_batch_size, max_cache_len)
|
|
|
|
def _reorder_cache(self, past_key_values, beam_idx):
|
|
return self.language_model._reorder_cache(past_key_values, beam_idx)
|
|
|
|
def resize_token_embeddings(
|
|
self,
|
|
new_num_tokens: Optional[int] = None,
|
|
pad_to_multiple_of: Optional[int] = None,
|
|
) -> nn.Embedding:
|
|
model_embeds = self.language_model.resize_token_embeddings(
|
|
new_num_tokens, pad_to_multiple_of
|
|
)
|
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
|
self.config.vocab_size = model_embeds.num_embeddings
|
|
self.vocab_size = model_embeds.num_embeddings
|
|
return model_embeds
|
|
|
|
def _compute_kl_loss(
|
|
self,
|
|
lm_output: transformers.modeling_outputs.CausalLMOutputWithPast,
|
|
labels: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
|
alt_input_ids: Optional[torch.Tensor] = None,
|
|
alt_attention_mask: Optional[torch.Tensor] = None,
|
|
alt_labels: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
):
|
|
|
|
with torch.no_grad():
|
|
|
|
alt_inputs_embeds = self.get_input_embeddings().forward(alt_input_ids)
|
|
alt_lm_output = self.language_model.forward(
|
|
inputs_embeds=alt_inputs_embeds,
|
|
labels=alt_labels,
|
|
attention_mask=alt_attention_mask,
|
|
past_key_values=past_key_values,
|
|
**kwargs,
|
|
)
|
|
|
|
kl_loss = F.kl_div(
|
|
F.log_softmax(
|
|
lm_output.logits[labels != -100] / self.loss_config.kl_temperature,
|
|
dim=-1,
|
|
),
|
|
F.softmax(
|
|
alt_lm_output.logits[alt_labels != -100]
|
|
/ self.loss_config.kl_temperature,
|
|
dim=-1,
|
|
),
|
|
reduction="batchmean",
|
|
)
|
|
return {"loss": kl_loss}
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
audio_values: Optional[torch.FloatTensor] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
audio_token_start_idx: Optional[torch.Tensor] = None,
|
|
audio_token_len: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
|
|
|
alt_input_ids: Optional[torch.Tensor] = None,
|
|
alt_attention_mask: Optional[torch.Tensor] = None,
|
|
alt_labels: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
) -> Union[Tuple, transformers.modeling_outputs.CausalLMOutputWithPast]:
|
|
"""
|
|
Forward pass for the Ultravox model.
|
|
|
|
`input_ids` are the tokenized text input. They are embedded by the language model as usual.
|
|
`audio_values` are processed by the audio encoder and then every `stack_factor` frames are stacked together and
|
|
projected to the language model's embedding space using a few linear layers.
|
|
The audio and text embeddings are merged together. A special token `<|audio|>` is used to indicate the start
|
|
of the audio embeddings in the merged embeddings.
|
|
|
|
Args:
|
|
input_ids: The tokenized text input.
|
|
audio_values: The processed audio values.
|
|
inputs_embeds: The embeddings for the input tokens.
|
|
labels: The tokenized text labels.
|
|
attention_mask: The attention mask for the input.
|
|
position_ids: The position ids for the input.
|
|
past_key_values: The past key value cache for the language model attention layers.
|
|
**kwargs: Additional keyword arguments. Passed directly to the language model.
|
|
"""
|
|
if inputs_embeds is None:
|
|
|
|
inputs_embeds = self.get_input_embeddings().forward(input_ids)
|
|
|
|
if audio_values is not None:
|
|
assert (
|
|
audio_token_start_idx is not None and audio_token_len is not None
|
|
), "audio_token_start_idx and audio_token_len must be provided if audio_values are provided."
|
|
assert (
|
|
len(audio_token_start_idx) == len(audio_token_len) == len(audio_values)
|
|
), "audio_token_start_idx, audio_token_len, and audio_values must have the same batch size."
|
|
|
|
|
|
audio_tower_output = self.audio_tower.forward(
|
|
audio_values.to(self.audio_tower.dtype)
|
|
).last_hidden_state
|
|
audio_tower_output = audio_tower_output.to(inputs_embeds.dtype)
|
|
|
|
audio_embeds = self.multi_modal_projector.forward(audio_tower_output)
|
|
|
|
|
|
for i, (audio, start, length) in enumerate(
|
|
zip(audio_embeds, audio_token_start_idx, audio_token_len)
|
|
):
|
|
length = min(length, audio.shape[0])
|
|
inputs_embeds[i, start : start + length] = audio[:length]
|
|
|
|
lm_output = self.language_model.forward(
|
|
inputs_embeds=inputs_embeds,
|
|
labels=labels,
|
|
attention_mask=attention_mask,
|
|
past_key_values=past_key_values,
|
|
**kwargs,
|
|
)
|
|
if self.training:
|
|
if self.loss_config.loss_function == LossFunction.CrossEntropy:
|
|
return lm_output
|
|
elif self.loss_config.loss_function == LossFunction.KL_Divergence:
|
|
return self._compute_kl_loss(
|
|
lm_output=lm_output,
|
|
labels=labels,
|
|
past_key_values=past_key_values,
|
|
alt_input_ids=alt_input_ids,
|
|
alt_attention_mask=alt_attention_mask,
|
|
alt_labels=alt_labels,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
f"Unsupported loss function: {self.loss_config.loss_function}"
|
|
)
|
|
else:
|
|
return lm_output
|
|
|
|
def prepare_inputs_for_generation(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
audio_values: Optional[torch.FloatTensor] = None,
|
|
audio_token_start_idx: Optional[torch.Tensor] = None,
|
|
audio_token_len: Optional[torch.Tensor] = None,
|
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
cache_position: Optional[torch.Tensor] = None,
|
|
**kwargs,
|
|
) -> Dict[str, Any]:
|
|
model_input = self.language_model.prepare_inputs_for_generation(
|
|
input_ids=input_ids,
|
|
past_key_values=past_key_values,
|
|
attention_mask=attention_mask,
|
|
inputs_embeds=inputs_embeds,
|
|
cache_position=cache_position,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
|
|
prefill_start_idx = 0 if cache_position is None else cache_position[0]
|
|
if (
|
|
audio_values is not None
|
|
and audio_token_start_idx is not None
|
|
and prefill_start_idx <= torch.max(audio_token_start_idx)
|
|
):
|
|
model_input["audio_values"] = audio_values
|
|
model_input["audio_token_start_idx"] = (
|
|
audio_token_start_idx - prefill_start_idx
|
|
)
|
|
model_input["audio_token_len"] = audio_token_len
|
|
|
|
return model_input
|
|
|
|
@classmethod
|
|
def _create_multi_modal_projector(
|
|
cls, config: UltravoxConfig
|
|
) -> "UltravoxProjector":
|
|
projector = UltravoxProjector(config)
|
|
projector.to(config.torch_dtype)
|
|
return projector
|
|
|
|
@classmethod
|
|
def _create_audio_tower(
|
|
cls, config: UltravoxConfig
|
|
) -> Union[transformers.Wav2Vec2Model, "ModifiedWhisperEncoder"]:
|
|
if config.audio_model_id is not None:
|
|
if "whisper" in config.audio_model_id is not None:
|
|
audio_tower = ModifiedWhisperEncoder.from_pretrained(
|
|
config.audio_model_id, torch_dtype=config.torch_dtype
|
|
)
|
|
else:
|
|
audio_tower = transformers.AutoModel.from_pretrained(
|
|
config.audio_model_id, torch_dtype=config.torch_dtype
|
|
)
|
|
else:
|
|
if "whisper" in config.audio_config._name_or_path:
|
|
audio_tower = ModifiedWhisperEncoder(config.audio_config)
|
|
else:
|
|
with transformers.modeling_utils.no_init_weights():
|
|
|
|
|
|
audio_tower = transformers.AutoModel.from_config(
|
|
config.audio_config
|
|
)
|
|
|
|
if isinstance(
|
|
audio_tower,
|
|
(transformers.Wav2Vec2BertModel, transformers.WhisperModel),
|
|
):
|
|
|
|
|
|
|
|
audio_tower = audio_tower.encoder
|
|
|
|
audio_tower = apply_lora(audio_tower, config.audio_model_lora_config)
|
|
return audio_tower
|
|
|
|
@classmethod
|
|
def _create_language_model(
|
|
cls, config: UltravoxConfig
|
|
) -> transformers.LlamaForCausalLM:
|
|
if config.text_model_id is not None:
|
|
language_model = transformers.AutoModelForCausalLM.from_pretrained(
|
|
config.text_model_id,
|
|
attn_implementation=config._attn_implementation,
|
|
torch_dtype=config.torch_dtype,
|
|
)
|
|
else:
|
|
with transformers.modeling_utils.no_init_weights():
|
|
|
|
|
|
language_model = transformers.AutoModelForCausalLM.from_config(
|
|
config.text_config,
|
|
attn_implementation=config._attn_implementation,
|
|
torch_dtype=config.torch_dtype,
|
|
)
|
|
|
|
language_model = apply_lora(language_model, config.text_model_lora_config)
|
|
return language_model
|
|
|
|
def merge_and_unload(self):
|
|
if isinstance(self.language_model, peft.PeftModel):
|
|
self.language_model = self.language_model.merge_and_unload()
|
|
|
|
self.config.text_model_id = None
|
|
self.keep_params.update(
|
|
set(
|
|
[
|
|
f"language_model.{name}"
|
|
for name, _ in self.language_model.named_parameters()
|
|
]
|
|
)
|
|
)
|
|
|
|
if isinstance(self.audio_tower, peft.PeftModel):
|
|
self.audio_tower = self.audio_tower.merge_and_unload()
|
|
|
|
self.config.audio_model_id = None
|
|
self.keep_params.update(
|
|
set(
|
|
[
|
|
f"audio_tower.{name}"
|
|
for name, _ in self.audio_tower.named_parameters()
|
|
]
|
|
)
|
|
)
|
|
|
|
for param in ["text_model_lora_config", "audio_model_lora_config"]:
|
|
if hasattr(self.config, param):
|
|
delattr(self.config, param)
|
|
|
|
def push_to_hub(self, *args, **kwargs):
|
|
self.merge_and_unload()
|
|
return super().push_to_hub(*args, **kwargs)
|
|
|
|
def save_pretrained(
|
|
self, *args, state_dict: Optional[Dict[str, Any]] = None, **kwargs
|
|
):
|
|
if state_dict is None:
|
|
state_dict = super().state_dict()
|
|
|
|
named_params = dict(self.named_parameters())
|
|
|
|
state_dict = {
|
|
k: v
|
|
for k, v in state_dict.items()
|
|
if k in self.keep_params
|
|
or (k in named_params and named_params[k].requires_grad)
|
|
}
|
|
|
|
super().save_pretrained(*args, state_dict=state_dict, **kwargs)
|
|
|
|
def _pre_load_state_dict_hook(self, state_dict: Dict[str, Any], *args, **kwargs):
|
|
self.keep_params.update(set(state_dict.keys()))
|
|
|
|
def print_trainable_parameters(self):
|
|
"""
|
|
Prints the number of trainable parameters in the model (reuses Peft model's method)
|
|
"""
|
|
count_params = peft.peft_model.PeftModel.get_nb_trainable_parameters
|
|
|
|
trainable_params, all_param = count_params(self)
|
|
|
|
logging.info(
|
|
f"trainable params: {trainable_params:,d} || all params: {all_param:,d}"
|
|
f" || trainable%: {100 * trainable_params / all_param:.1f}%"
|
|
)
|
|
|
|
lm_trainable_params, lm_all_params = count_params(self.language_model)
|
|
audio_trainable_params, audio_all_params = count_params(self.audio_tower)
|
|
|
|
projector_trainable_params = (
|
|
trainable_params - lm_trainable_params - audio_trainable_params
|
|
)
|
|
projector_all_params = all_param - lm_all_params - audio_all_params
|
|
|
|
logging.info(
|
|
f"Trainable%: "
|
|
f" LLM: {100 * lm_trainable_params / lm_all_params:.1f}%"
|
|
f" || Audio Encoder: {100 * audio_trainable_params / audio_all_params:.1f}%"
|
|
f" || Projector: {100 * projector_trainable_params / projector_all_params:.1f}%"
|
|
)
|
|
|
|
|
|
|
|
def is_cache_empty(
|
|
past_key_values: Optional[Union[Tuple, transformers.cache_utils.Cache]]
|
|
) -> bool:
|
|
"""
|
|
Check if the cache is empty.
|
|
"""
|
|
if past_key_values is None:
|
|
return True
|
|
if isinstance(past_key_values, tuple):
|
|
return all(len(c) == 0 for c in past_key_values)
|
|
return past_key_values.get_seq_length() == 0
|
|
|
|
|
|
def apply_lora(model: torch.nn.Module, lora_config: dict) -> torch.nn.Module:
|
|
"""
|
|
Applies LoRA finetuning to the model. If the `r` parameter is set to 0, the model is frozen instead.
|
|
"""
|
|
unfreeze_layers = lora_config.pop("unfreeze_layers", None)
|
|
lora_config = peft.LoraConfig(**lora_config or {})
|
|
|
|
if lora_config.r == 0:
|
|
|
|
for name, param in model.named_parameters():
|
|
if not unfreeze_layers or not any(
|
|
re.match(layer, name) for layer in unfreeze_layers
|
|
):
|
|
param.requires_grad = False
|
|
else:
|
|
logging.info(f"Unfreezing layer: {name} with #{param.numel()} params")
|
|
else:
|
|
model = peft.get_peft_model(model, lora_config)
|
|
|
|
return model
|
|
|
|
|
|
class StackAudioFrames(nn.Module):
|
|
"""
|
|
Stack the audio embedding frames to reduce the sequence length by a factor of `stack_factor`.
|
|
|
|
The number of output frames will be `ceil(T / stack_factor) + 1` where `T` is the number of input frames.
|
|
NOTE: the extra +1 is intentional: in case the number of audio tokens are over-estimated by the processor,
|
|
we want to make sure `processor.audio_token_replacement` (i.e. EOS) doesn't get leaked into the middle of embeddings.
|
|
In most cases this extra padding will get removed in the model's forward function so it has no effect.
|
|
"""
|
|
|
|
def __init__(self, stack_factor: int = 8):
|
|
super().__init__()
|
|
self.stack_factor = stack_factor
|
|
|
|
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
|
|
B, T, C = audio_embeds.shape
|
|
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
|
|
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T + self.stack_factor))
|
|
B, T, C = audio_embeds.shape
|
|
audio_embeds = audio_embeds.view(
|
|
B, T // self.stack_factor, C * self.stack_factor
|
|
)
|
|
return audio_embeds
|
|
|
|
|
|
class RMSNorm(transformers.models.llama.modeling_llama.LlamaRMSNorm):
|
|
def __init__(self, hidden_size: int, init: float = 1, eps: float = 1e-6):
|
|
super().__init__(hidden_size=hidden_size, eps=eps)
|
|
self.weight.data.fill_(init)
|
|
|
|
|
|
class SwiGLU(nn.Module):
|
|
def forward(self, x):
|
|
x, gate = x.chunk(2, dim=-1)
|
|
return F.silu(gate) * x
|
|
|
|
|
|
class UltravoxProjector(nn.Sequential):
|
|
def __init__(self, config: UltravoxConfig):
|
|
super().__init__()
|
|
self.hidden_dim = config.hidden_size
|
|
self._pad_and_stack = StackAudioFrames(config.stack_factor)
|
|
dim = config.audio_config.hidden_size * config.stack_factor
|
|
self.ln_pre = RMSNorm(dim, init=config.norm_init)
|
|
self.linear_1 = nn.Linear(dim, self.hidden_dim, bias=False)
|
|
dim = self.hidden_dim
|
|
self.act = transformers.activations.get_activation(config.projector_act)
|
|
dim = dim // 2 if config.projector_act == "swiglu" else dim
|
|
self.linear_2 = nn.Linear(dim, config.text_config.hidden_size, bias=False)
|
|
self.ln_post = RMSNorm(config.text_config.hidden_size, init=config.norm_init)
|
|
|
|
def forward(self, audio_features: torch.Tensor) -> torch.Tensor:
|
|
audio_features = self._pad_and_stack(audio_features)
|
|
audio_features = self.ln_pre(audio_features)
|
|
hidden_states = self.linear_1(audio_features)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states = self.linear_2(hidden_states)
|
|
hidden_states = self.ln_post(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class ModifiedWhisperEncoder(whisper.WhisperEncoder):
|
|
"""
|
|
Encoder portion of OpenAI's Whisper model.
|
|
|
|
This implementation is a slightly modified version of HF Transformers' Whisper Encoder, with only a few fixes:
|
|
1. base_model_prefix updated to allow for doing `.from_pretrained` directly on the encoder
|
|
2. allow less than 30 second of audio padding to be passed in:
|
|
- relaxed ValueError check for `input_features` length to be less than or equal to `expected_seq_length` instead of strictly equal
|
|
- embed_pos is now sliced to match the length of `inputs_embeds`
|
|
|
|
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
|
|
"""
|
|
|
|
base_model_prefix = "model.encoder"
|
|
_no_split_modules = ["WhisperEncoderLayer"]
|
|
|
|
def forward(
|
|
self,
|
|
input_features,
|
|
attention_mask=None,
|
|
head_mask=None,
|
|
output_attentions=None,
|
|
output_hidden_states=None,
|
|
return_dict=None,
|
|
):
|
|
expected_seq_length = (
|
|
self.config.max_source_positions
|
|
* self.conv1.stride[0]
|
|
* self.conv2.stride[0]
|
|
)
|
|
if input_features.shape[-1] > expected_seq_length:
|
|
raise ValueError(
|
|
f"Whisper expects the mel input features to be of length {expected_seq_length} or less, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}."
|
|
)
|
|
|
|
output_attentions = (
|
|
output_attentions
|
|
if output_attentions is not None
|
|
else self.config.output_attentions
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states
|
|
if output_hidden_states is not None
|
|
else self.config.output_hidden_states
|
|
)
|
|
return_dict = (
|
|
return_dict if return_dict is not None else self.config.use_return_dict
|
|
)
|
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
|
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
|
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1)
|
|
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
|
|
|
|
hidden_states = inputs_embeds + embed_pos
|
|
hidden_states = nn.functional.dropout(
|
|
hidden_states, p=self.dropout, training=self.training
|
|
)
|
|
|
|
encoder_states = () if output_hidden_states else None
|
|
all_attentions = () if output_attentions else None
|
|
|
|
|
|
if head_mask is not None:
|
|
assert head_mask.size()[0] == (
|
|
len(self.layers)
|
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
|
|
|
|
for idx, encoder_layer in enumerate(self.layers):
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
to_drop = False
|
|
if self.training:
|
|
dropout_probability = torch.rand([])
|
|
if dropout_probability < self.layerdrop:
|
|
to_drop = True
|
|
|
|
if to_drop:
|
|
layer_outputs = (None, None)
|
|
else:
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
encoder_layer.__call__,
|
|
hidden_states,
|
|
None,
|
|
(head_mask[idx] if head_mask is not None else None),
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = encoder_layer(
|
|
hidden_states,
|
|
None,
|
|
layer_head_mask=(
|
|
head_mask[idx] if head_mask is not None else None
|
|
),
|
|
output_attentions=output_attentions,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if output_attentions:
|
|
all_attentions = all_attentions + (layer_outputs[1],)
|
|
|
|
hidden_states = self.layer_norm(hidden_states)
|
|
if output_hidden_states:
|
|
encoder_states = encoder_states + (hidden_states,)
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, encoder_states, all_attentions]
|
|
if v is not None
|
|
)
|
|
return transformers.modeling_outputs.BaseModelOutput(
|
|
last_hidden_state=hidden_states,
|
|
hidden_states=encoder_states,
|
|
attentions=all_attentions,
|
|
)
|
|
|
|
|
|
UltravoxConfig.register_for_auto_class()
|
|
UltravoxModel.register_for_auto_class()
|
|
|
|
transformers.AutoConfig.register("ultravox", UltravoxConfig)
|
|
transformers.AutoModel.register(UltravoxConfig, UltravoxModel)
|
|
|
|
transformers.activations.ACT2FN["swiglu"] = SwiGLU
|
|
|