--- license: apache-2.0 datasets: - go_emotions metrics: - accuracy base_model: microsoft/xtremedistil-l6-h384-uncased model-index: - name: xtremedistil-emotion results: - task: type: multi_label_classification name: Multi Label Text Classification dataset: name: go_emotions type: emotion args: default metrics: - type: accuracy value: NaN name: Accuracy --- # xtremedistil-l6-h384-go-emotion This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the [go_emotions dataset](https://huggingface.co/datasets/go_emotions). See notebook for how the model was trained and converted to ONNX format [![Training Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jobergum/emotion/blob/main/TrainGoEmotions.ipynb) This model is deployed to [aiserv.cloud](https://aiserv.cloud/) for live demo of the model. See [https://github.com/jobergum/browser-ml-inference](https://github.com/jobergum/browser-ml-inference) for how to reproduce. ### Training hyperparameters - batch size 128 - learning_rate=3e-05 - epocs 4
Num examples = 211225 Num Epochs = 4 Instantaneous batch size per device = 128 Total train batch size (w. parallel, distributed & accumulation) = 128 Gradient Accumulation steps = 1 Total optimization steps = 6604 [6604/6604 53:23, Epoch 4/4] Step Training Loss 500 0.263200 1000 0.156900 1500 0.152500 2000 0.145400 2500 0.140500 3000 0.135900 3500 0.132800 4000 0.129400 4500 0.127200 5000 0.125700 5500 0.124400 6000 0.124100 6500 0.123400