betterme commited on
Commit
3a68ef8
1 Parent(s): 522a555

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +192 -26
README.md CHANGED
@@ -1,31 +1,197 @@
1
  ---
2
- tags:
3
- - autotrain
4
- - vision
5
- - image-classification
6
- inference:
7
- parameters:
8
- max_length: 250
9
- temperature: 0.7
10
- top_p: 1
11
- widget:
12
- - text: 用户:帮我写一个英文营销方案,针对iphone\n小元:
13
- - text: 用户:在他们放弃追讨信用卡账单之前,我可以拖欠多久?\n小元:
14
- - text: 用户:帮我用英语写一封求职信,我想找一份深度学习工程师的工作\n小元:
15
- - text: 用户:帮我双两个数之和,54+109\n小元:
16
- - text: 用户:模拟小李和小王关于通用人工智能的潜力和问题的对话,要求先来一个开场白,然后双方展开讨论\n小元:
17
- - text: 用户:帮我生成下面句子的5个相似句子,“linux云主机中了挖矿病毒怎么办”\n小元:
18
- - text: 用户:你好\n小元:我是元语智能公司研发的ChatYuan模型,很高兴为你服务。\n用户:请介绍一下你自己吧?\n小元:
19
- language:
20
- - en
21
- - zh
22
- pipeline_tag: text-classification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  ---
24
 
25
- # Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ```
28
- from transformers import pipeline
29
- p = pipeline("image-classification", model="juliensimon/autotrain-food101-1471154053")
30
- result = p("my_image.jpg")
31
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
4
+ datasets:
5
+ - sst2
6
+ - glue
7
+ model-index:
8
+ - name: distilbert-base-uncased-finetuned-sst-2-english
9
+ results:
10
+ - task:
11
+ type: text-classification
12
+ name: Text Classification
13
+ dataset:
14
+ name: glue
15
+ type: glue
16
+ config: sst2
17
+ split: validation
18
+ metrics:
19
+ - type: accuracy
20
+ value: 0.9105504587155964
21
+ name: Accuracy
22
+ verified: true
23
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2YyOGMxYjY2Y2JhMjkxNjIzN2FmMjNiNmM2ZWViNGY3MTNmNWI2YzhiYjYxZTY0ZGUyN2M1NGIxZjRiMjQwZiIsInZlcnNpb24iOjF9.uui0srxV5ZHRhxbYN6082EZdwpnBgubPJ5R2-Wk8HTWqmxYE3QHidevR9LLAhidqGw6Ih93fK0goAXncld_gBg
24
+ - type: precision
25
+ value: 0.8978260869565218
26
+ name: Precision
27
+ verified: true
28
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzgwYTYwYjA2MmM0ZTYwNDk0M2NmNTBkZmM2NGNhYzQ1OGEyN2NkNDQ3Mzc2NTQyMmZiNDJiNzBhNGVhZGUyOSIsInZlcnNpb24iOjF9.eHjLmw3K02OU69R2Au8eyuSqT3aBDHgZCn8jSzE3_urD6EUSSsLxUpiAYR4BGLD_U6-ZKcdxVo_A2rdXqvUJDA
29
+ - type: recall
30
+ value: 0.9301801801801802
31
+ name: Recall
32
+ verified: true
33
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGIzM2E3MTI2Mzc2MDYwNmU3ZTVjYmZmZDBkNjY4ZTc5MGY0Y2FkNDU3NjY1MmVkNmE3Y2QzMzAwZDZhOWY1NiIsInZlcnNpb24iOjF9.PUZlqmct13-rJWBXdHm5tdkXgETL9F82GNbbSR4hI8MB-v39KrK59cqzFC2Ac7kJe_DtOeUyosj34O_mFt_1DQ
34
+ - type: auc
35
+ value: 0.9716626673402374
36
+ name: AUC
37
+ verified: true
38
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMDM0YWIwZmQ4YjUwOGZmMWU2MjI1YjIxZGQ2MzNjMzRmZmYxMzZkNGFjODhlMDcyZDM1Y2RkMWZlOWQ0MWYwNSIsInZlcnNpb24iOjF9.E7GRlAXmmpEkTHlXheVkuL1W4WNjv4JO3qY_WCVsTVKiO7bUu0UVjPIyQ6g-J1OxsfqZmW3Leli1wY8vPBNNCQ
39
+ - type: f1
40
+ value: 0.9137168141592922
41
+ name: F1
42
+ verified: true
43
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGU4MjNmOGYwZjZjMDQ1ZTkyZTA4YTc1MWYwOTM0NDM4ZWY1ZGVkNDY5MzNhYTQyZGFlNzIyZmUwMDg3NDU0NyIsInZlcnNpb24iOjF9.mW5ftkq50Se58M-jm6a2Pu93QeKa3MfV7xcBwvG3PSB_KNJxZWTCpfMQp-Cmx_EMlmI2siKOyd8akYjJUrzJCA
44
+ - type: loss
45
+ value: 0.39013850688934326
46
+ name: loss
47
+ verified: true
48
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTZiNzAyZDc0MzUzMmE1MGJiN2JlYzFiODE5ZTNlNGE4MmI4YzRiMTc2ODEzMTUwZmEzOTgxNzc4YjJjZTRmNiIsInZlcnNpb24iOjF9.VqIC7uYC-ZZ8ss9zQOlRV39YVOOLc5R36sIzCcVz8lolh61ux_5djm2XjpP6ARc6KqEnXC4ZtfNXsX2HZfrtCQ
49
+ - task:
50
+ type: text-classification
51
+ name: Text Classification
52
+ dataset:
53
+ name: sst2
54
+ type: sst2
55
+ config: default
56
+ split: train
57
+ metrics:
58
+ - type: accuracy
59
+ value: 0.9885521685548412
60
+ name: Accuracy
61
+ verified: true
62
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2I3NzU3YzhmMDkxZTViY2M3OTY1NmI0ZTdmMDQxNjNjYzJiZmQxNzczM2E4YmExYTY5ODY0NDBkY2I4ZjNkOCIsInZlcnNpb24iOjF9.4Gtk3FeVc9sPWSqZIaeUXJ9oVlPzm-NmujnWpK2y5s1Vhp1l6Y1pK5_78wW0-NxSvQqV6qd5KQf_OAEpVAkQDA
63
+ - type: precision
64
+ value: 0.9881965062029833
65
+ name: Precision Macro
66
+ verified: true
67
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDdlZDMzY2I3MTAwYTljNmM4MGMyMzU2YjAzZDg1NDYwN2ZmM2Y5OWZhMjUyMGJiNjY1YmZiMzFhMDI2ODFhNyIsInZlcnNpb24iOjF9.cqmv6yBxu4St2mykRWrZ07tDsiSLdtLTz2hbqQ7Gm1rMzq9tdlkZ8MyJRxtME_Y8UaOG9rs68pV-gKVUs8wABw
68
+ - type: precision
69
+ value: 0.9885521685548412
70
+ name: Precision Micro
71
+ verified: true
72
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZjFlYzAzNmE1YjljNjUwNzBjZjEzZDY0ZDQyMmY5ZWM2OTBhNzNjYjYzYTk1YWE1NjU3YTMxZDQwOTE1Y2FkNyIsInZlcnNpb24iOjF9.jnCHOkUHuAOZZ_ZMVOnetx__OVJCS6LOno4caWECAmfrUaIPnPNV9iJ6izRO3sqkHRmxYpWBb-27GJ4N3LU-BQ
73
+ - type: precision
74
+ value: 0.9885639626373408
75
+ name: Precision Weighted
76
+ verified: true
77
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZGUyODFjNjBlNTE2MTY3ZDAxOGU1N2U0YjUyY2NiZjhkOGVmYThjYjBkNGU3NTRkYzkzNDQ2MmMwMjkwMWNiMyIsInZlcnNpb24iOjF9.zTNabMwApiZyXdr76QUn7WgGB7D7lP-iqS3bn35piqVTNsv3wnKjZOaKFVLIUvtBXq4gKw7N2oWxvWc4OcSNDg
78
+ - type: recall
79
+ value: 0.9886145346602994
80
+ name: Recall Macro
81
+ verified: true
82
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTU1YjlhODU3YTkyNTdiZDcwZGFlZDBiYjY0N2NjMGM2NTRiNjQ3MDNjNGMxOWY2ZGQ4NWU1YmMzY2UwZTI3YSIsInZlcnNpb24iOjF9.xaLPY7U-wHsJ3DDui1yyyM-xWjL0Jz5puRThy7fczal9x05eKEQ9s0a_WD-iLmapvJs0caXpV70hDe2NLcs-DA
83
+ - type: recall
84
+ value: 0.9885521685548412
85
+ name: Recall Micro
86
+ verified: true
87
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODE0YTU0MDBlOGY4YzU0MjY5MzA3OTk2OGNhOGVkMmU5OGRjZmFiZWI2ZjY5ODEzZTQzMTI0N2NiOTVkNDliYiIsInZlcnNpb24iOjF9.SOt1baTBbuZRrsvGcak2sUwoTrQzmNCbyV2m1_yjGsU48SBH0NcKXicidNBSnJ6ihM5jf_Lv_B5_eOBkLfNWDQ
88
+ - type: recall
89
+ value: 0.9885521685548412
90
+ name: Recall Weighted
91
+ verified: true
92
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWNkNmM0ZGRlNmYxYzIwNDk4OTI5MzIwZWU1NzZjZDVhMDcyNDFlMjBhNDQxODU5OWMwMWNhNGEzNjY3ZGUyOSIsInZlcnNpb24iOjF9.b15Fh70GwtlG3cSqPW-8VEZT2oy0CtgvgEOtWiYonOovjkIQ4RSLFVzVG-YfslaIyfg9RzMWzjhLnMY7Bpn2Aw
93
+ - type: f1
94
+ value: 0.9884019815052447
95
+ name: F1 Macro
96
+ verified: true
97
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmM4NjQ5Yjk5ODRhYTU1MTY3MmRhZDBmODM1NTg3OTFiNWM4NDRmYjI0MzZkNmQ1MzE3MzcxODZlYzBkYTMyYSIsInZlcnNpb24iOjF9.74RaDK8nBVuGRl2Se_-hwQvP6c4lvVxGHpcCWB4uZUCf2_HoC9NT9u7P3pMJfH_tK2cpV7U3VWGgSDhQDi-UBQ
98
+ - type: f1
99
+ value: 0.9885521685548412
100
+ name: F1 Micro
101
+ verified: true
102
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDRmYWRmMmQ0YjViZmQxMzhhYTUyOTE1MTc0ZDU1ZjQyZjFhMDYzYzMzZDE0NzZlYzQyOTBhMTBhNmM5NTlkMiIsInZlcnNpb24iOjF9.VMn_psdAHIZTlW6GbjERZDe8MHhwzJ0rbjV_VJyuMrsdOh5QDmko-wEvaBWNEdT0cEKsbggm-6jd3Gh81PfHAQ
103
+ - type: f1
104
+ value: 0.9885546181087554
105
+ name: F1 Weighted
106
+ verified: true
107
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjUyZWFhZDZhMGQ3MzBmYmRiNDVmN2FkZDBjMjk3ODk0OTAxNGZkMWE0NzU5ZjI0NzE0NGZiNzM0N2Y2NDYyOSIsInZlcnNpb24iOjF9.YsXBhnzEEFEW6jw3mQlFUuIrW7Gabad2Ils-iunYJr-myg0heF8NEnEWABKFE1SnvCWt-69jkLza6SupeyLVCA
108
+ - type: loss
109
+ value: 0.040652573108673096
110
+ name: loss
111
+ verified: true
112
+ verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTc3YjU3MjdjMzkxODA5MjU5NGUyY2NkMGVhZDg3ZWEzMmU1YWVjMmI0NmU2OWEyZTkzMTVjNDZiYTc0YjIyNCIsInZlcnNpb24iOjF9.lA90qXZVYiILHMFlr6t6H81Oe8a-4KmeX-vyCC1BDia2ofudegv6Vb46-4RzmbtuKeV6yy6YNNXxXxqVak1pAg
113
  ---
114
 
115
+ # DistilBERT base uncased finetuned SST-2
116
+
117
+ ## Table of Contents
118
+ - [Model Details](#model-details)
119
+ - [How to Get Started With the Model](#how-to-get-started-with-the-model)
120
+ - [Uses](#uses)
121
+ - [Risks, Limitations and Biases](#risks-limitations-and-biases)
122
+ - [Training](#training)
123
+
124
+ ## Model Details
125
+ **Model Description:** This model is a fine-tune checkpoint of [DistilBERT-base-uncased](https://huggingface.co/distilbert-base-uncased), fine-tuned on SST-2.
126
+ This model reaches an accuracy of 91.3 on the dev set (for comparison, Bert bert-base-uncased version reaches an accuracy of 92.7).
127
+ - **Developed by:** Hugging Face
128
+ - **Model Type:** Text Classification
129
+ - **Language(s):** English
130
+ - **License:** Apache-2.0
131
+ - **Parent Model:** For more details about DistilBERT, we encourage users to check out [this model card](https://huggingface.co/distilbert-base-uncased).
132
+ - **Resources for more information:**
133
+ - [Model Documentation](https://huggingface.co/docs/transformers/main/en/model_doc/distilbert#transformers.DistilBertForSequenceClassification)
134
+ - [DistilBERT paper](https://arxiv.org/abs/1910.01108)
135
+
136
+ ## How to Get Started With the Model
137
+
138
+ Example of single-label classification:
139
+ ​​
140
+ ```python
141
+ import torch
142
+ from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
143
+
144
+ tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased")
145
+ model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
146
+
147
+ inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
148
+ with torch.no_grad():
149
+ logits = model(**inputs).logits
150
+
151
+ predicted_class_id = logits.argmax().item()
152
+ model.config.id2label[predicted_class_id]
153
 
154
  ```
155
+
156
+ ## Uses
157
+
158
+ #### Direct Use
159
+
160
+ This model can be used for topic classification. You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you.
161
+
162
+ #### Misuse and Out-of-scope Use
163
+ The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
164
+
165
+
166
+ ## Risks, Limitations and Biases
167
+
168
+ Based on a few experimentations, we observed that this model could produce biased predictions that target underrepresented populations.
169
+
170
+ For instance, for sentences like `This film was filmed in COUNTRY`, this binary classification model will give radically different probabilities for the positive label depending on the country (0.89 if the country is France, but 0.08 if the country is Afghanistan) when nothing in the input indicates such a strong semantic shift. In this [colab](https://colab.research.google.com/gist/ageron/fb2f64fb145b4bc7c49efc97e5f114d3/biasmap.ipynb), [Aurélien Géron](https://twitter.com/aureliengeron) made an interesting map plotting these probabilities for each country.
171
+
172
+ <img src="https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/map.jpeg" alt="Map of positive probabilities per country." width="500"/>
173
+
174
+ We strongly advise users to thoroughly probe these aspects on their use-cases in order to evaluate the risks of this model. We recommend looking at the following bias evaluation datasets as a place to start: [WinoBias](https://huggingface.co/datasets/wino_bias), [WinoGender](https://huggingface.co/datasets/super_glue), [Stereoset](https://huggingface.co/datasets/stereoset).
175
+
176
+
177
+
178
+ # Training
179
+
180
+
181
+ #### Training Data
182
+
183
+
184
+ The authors use the following Stanford Sentiment Treebank([sst2](https://huggingface.co/datasets/sst2)) corpora for the model.
185
+
186
+ #### Training Procedure
187
+
188
+ ###### Fine-tuning hyper-parameters
189
+
190
+
191
+ - learning_rate = 1e-5
192
+ - batch_size = 32
193
+ - warmup = 600
194
+ - max_seq_length = 128
195
+ - num_train_epochs = 3.0
196
+
197
+