File size: 3,149 Bytes
4b370a8 b6e0869 4b370a8 b6e0869 11350fa 4b370a8 495222d 4b370a8 495222d 4b370a8 495222d 4b370a8 495222d 4b370a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: bertweet-base-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9365
- name: F1
type: f1
value: 0.9371
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- name: Accuracy
type: accuracy
value: 0.923
verified: true
- name: Precision Macro
type: precision
value: 0.8676576686813523
verified: true
- name: Precision Micro
type: precision
value: 0.923
verified: true
- name: Precision Weighted
type: precision
value: 0.9268406401714973
verified: true
- name: Recall Macro
type: recall
value: 0.8945488803260702
verified: true
- name: Recall Micro
type: recall
value: 0.923
verified: true
- name: Recall Weighted
type: recall
value: 0.923
verified: true
- name: F1 Macro
type: f1
value: 0.8798961895301041
verified: true
- name: F1 Micro
type: f1
value: 0.923
verified: true
- name: F1 Weighted
type: f1
value: 0.9241278880972197
verified: true
- name: loss
type: loss
value: 0.24626904726028442
verified: true
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1995
- Accuracy: 0.9365
- F1: 0.9371
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.475 | 1.0 | 503 | 0.2171 | 0.928 | 0.9292 |
| 0.1235 | 2.0 | 1006 | 0.1764 | 0.9365 | 0.9372 |
| 0.0802 | 3.0 | 1509 | 0.1788 | 0.938 | 0.9388 |
| 0.0531 | 4.0 | 2012 | 0.2005 | 0.938 | 0.9388 |
| 0.0367 | 5.0 | 2515 | 0.1995 | 0.9365 | 0.9371 |
### Framework versions
- Transformers 4.13.0
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3
|