metadata
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: bertweet-base-finetuned-emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- type: accuracy
value: 0.9365
name: Accuracy
- type: f1
value: 0.9371
name: F1
- task:
type: text-classification
name: Text Classification
dataset:
name: emotion
type: emotion
config: default
split: test
metrics:
- type: accuracy
value: 0.923
name: Accuracy
verified: true
- type: precision
value: 0.8676576686813523
name: Precision Macro
verified: true
- type: precision
value: 0.923
name: Precision Micro
verified: true
- type: precision
value: 0.9268406401714973
name: Precision Weighted
verified: true
- type: recall
value: 0.8945488803260702
name: Recall Macro
verified: true
- type: recall
value: 0.923
name: Recall Micro
verified: true
- type: recall
value: 0.923
name: Recall Weighted
verified: true
- type: f1
value: 0.8798961895301041
name: F1 Macro
verified: true
- type: f1
value: 0.923
name: F1 Micro
verified: true
- type: f1
value: 0.9241278880972197
name: F1 Weighted
verified: true
- type: loss
value: 0.24626904726028442
name: loss
verified: true
distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1995
- Accuracy: 0.9365
- F1: 0.9371
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.475 | 1.0 | 503 | 0.2171 | 0.928 | 0.9292 |
0.1235 | 2.0 | 1006 | 0.1764 | 0.9365 | 0.9372 |
0.0802 | 3.0 | 1509 | 0.1788 | 0.938 | 0.9388 |
0.0531 | 4.0 | 2012 | 0.2005 | 0.938 | 0.9388 |
0.0367 | 5.0 | 2515 | 0.1995 | 0.9365 | 0.9371 |
Framework versions
- Transformers 4.13.0
- Pytorch 1.11.0+cu113
- Datasets 1.16.1
- Tokenizers 0.10.3