librarian-bot commited on
Commit
740efe3
1 Parent(s): 11350fa

Librarian Bot: Add base_model information to model

Browse files

This pull request aims to enrich the metadata of your model by adding [`distilbert-base-uncased`](https://huggingface.co/distilbert-base-uncased) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.

How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.

**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.

For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).

This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot). If you have any feedback, queries, or need assistance, please don't hesitate to reach out to [@davanstrien](https://huggingface.co/davanstrien).

If you want to automatically add `base_model` metadata to more of your modes you can use the [Librarian Bot](https://huggingface.co/librarian-bot) [Metadata Request Service](https://huggingface.co/spaces/librarian-bots/metadata_request_service)!

Files changed (1) hide show
  1. README.md +28 -27
README.md CHANGED
@@ -6,23 +6,24 @@ datasets:
6
  metrics:
7
  - accuracy
8
  - f1
 
9
  model-index:
10
  - name: bertweet-base-finetuned-emotion
11
  results:
12
  - task:
13
- name: Text Classification
14
  type: text-classification
 
15
  dataset:
16
  name: emotion
17
  type: emotion
18
  args: default
19
  metrics:
20
- - name: Accuracy
21
- type: accuracy
22
  value: 0.9365
23
- - name: F1
24
- type: f1
25
  value: 0.9371
 
26
  - task:
27
  type: text-classification
28
  name: Text Classification
@@ -32,49 +33,49 @@ model-index:
32
  config: default
33
  split: test
34
  metrics:
35
- - name: Accuracy
36
- type: accuracy
37
  value: 0.923
 
38
  verified: true
39
- - name: Precision Macro
40
- type: precision
41
  value: 0.8676576686813523
 
42
  verified: true
43
- - name: Precision Micro
44
- type: precision
45
  value: 0.923
 
46
  verified: true
47
- - name: Precision Weighted
48
- type: precision
49
  value: 0.9268406401714973
 
50
  verified: true
51
- - name: Recall Macro
52
- type: recall
53
  value: 0.8945488803260702
 
54
  verified: true
55
- - name: Recall Micro
56
- type: recall
57
  value: 0.923
 
58
  verified: true
59
- - name: Recall Weighted
60
- type: recall
61
  value: 0.923
 
62
  verified: true
63
- - name: F1 Macro
64
- type: f1
65
  value: 0.8798961895301041
 
66
  verified: true
67
- - name: F1 Micro
68
- type: f1
69
  value: 0.923
 
70
  verified: true
71
- - name: F1 Weighted
72
- type: f1
73
  value: 0.9241278880972197
 
74
  verified: true
75
- - name: loss
76
- type: loss
77
  value: 0.24626904726028442
 
78
  verified: true
79
  ---
80
 
 
6
  metrics:
7
  - accuracy
8
  - f1
9
+ base_model: distilbert-base-uncased
10
  model-index:
11
  - name: bertweet-base-finetuned-emotion
12
  results:
13
  - task:
 
14
  type: text-classification
15
+ name: Text Classification
16
  dataset:
17
  name: emotion
18
  type: emotion
19
  args: default
20
  metrics:
21
+ - type: accuracy
 
22
  value: 0.9365
23
+ name: Accuracy
24
+ - type: f1
25
  value: 0.9371
26
+ name: F1
27
  - task:
28
  type: text-classification
29
  name: Text Classification
 
33
  config: default
34
  split: test
35
  metrics:
36
+ - type: accuracy
 
37
  value: 0.923
38
+ name: Accuracy
39
  verified: true
40
+ - type: precision
 
41
  value: 0.8676576686813523
42
+ name: Precision Macro
43
  verified: true
44
+ - type: precision
 
45
  value: 0.923
46
+ name: Precision Micro
47
  verified: true
48
+ - type: precision
 
49
  value: 0.9268406401714973
50
+ name: Precision Weighted
51
  verified: true
52
+ - type: recall
 
53
  value: 0.8945488803260702
54
+ name: Recall Macro
55
  verified: true
56
+ - type: recall
 
57
  value: 0.923
58
+ name: Recall Micro
59
  verified: true
60
+ - type: recall
 
61
  value: 0.923
62
+ name: Recall Weighted
63
  verified: true
64
+ - type: f1
 
65
  value: 0.8798961895301041
66
+ name: F1 Macro
67
  verified: true
68
+ - type: f1
 
69
  value: 0.923
70
+ name: F1 Micro
71
  verified: true
72
+ - type: f1
 
73
  value: 0.9241278880972197
74
+ name: F1 Weighted
75
  verified: true
76
+ - type: loss
 
77
  value: 0.24626904726028442
78
+ name: loss
79
  verified: true
80
  ---
81