--- tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 base_model: distilbert-base-uncased model-index: - name: bertweet-base-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.9365 name: Accuracy - type: f1 value: 0.9371 name: F1 - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: default split: test metrics: - type: accuracy value: 0.923 name: Accuracy verified: true - type: precision value: 0.8676576686813523 name: Precision Macro verified: true - type: precision value: 0.923 name: Precision Micro verified: true - type: precision value: 0.9268406401714973 name: Precision Weighted verified: true - type: recall value: 0.8945488803260702 name: Recall Macro verified: true - type: recall value: 0.923 name: Recall Micro verified: true - type: recall value: 0.923 name: Recall Weighted verified: true - type: f1 value: 0.8798961895301041 name: F1 Macro verified: true - type: f1 value: 0.923 name: F1 Micro verified: true - type: f1 value: 0.9241278880972197 name: F1 Weighted verified: true - type: loss value: 0.24626904726028442 name: loss verified: true --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1995 - Accuracy: 0.9365 - F1: 0.9371 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.475 | 1.0 | 503 | 0.2171 | 0.928 | 0.9292 | | 0.1235 | 2.0 | 1006 | 0.1764 | 0.9365 | 0.9372 | | 0.0802 | 3.0 | 1509 | 0.1788 | 0.938 | 0.9388 | | 0.0531 | 4.0 | 2012 | 0.2005 | 0.938 | 0.9388 | | 0.0367 | 5.0 | 2515 | 0.1995 | 0.9365 | 0.9371 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.11.0+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3