File size: 5,805 Bytes
c487467 5c7782a c487467 5c7782a ea5895e 5c7782a c487467 5c7782a fb30a58 8ef7446 ea5895e 63c09f2 86c88ea 5c7782a fb30a58 5c7782a fb30a58 5c7782a fb30a58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
pipeline_tag: text-generation
inference: true
widget:
- text: '<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>'
example_title: Fix has_close_elements
group: Python
license: bigcode-openrail-m
datasets:
- bigcode/commitpack-subset-cf
metrics:
- code_eval
library_name: transformers
tags:
- code
model-index:
- name: SantaCoderPack
results:
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Python
metrics:
- name: pass@1
type: pass@1
value: 3.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix JavaScript
metrics:
- name: pass@1
type: pass@1
value: 4.9
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Java
metrics:
- name: pass@1
type: pass@1
value: 1.8
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Go
metrics:
- name: pass@1
type: pass@1
value: 3.6
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix C++
metrics:
- name: pass@1
type: pass@1
value: 4.2
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Rust
metrics:
- name: pass@1
type: pass@1
value: 1.7
verified: false
- task:
type: text-generation
dataset:
type: bigcode/humanevalpack
name: HumanEvalFix Average
metrics:
- name: pass@1
type: pass@1
value: 3.3
verified: false
---
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true)
# Table of Contents
1. [Model Summary](#model-summary)
2. [Use](#use)
3. [Training](#training)
4. [Citation](#citation)
# Model Summary
SantaCoderPack is an pre-trained model with the same architecture of SantaCoder on <th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a> using this format:
```
<commit_before>code_before<commit_msg>message<commit_after>code_after
```
- **Repository:** [bigcode/octopack](https://github.com/bigcode-project/octopack)
- **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124)
- **Languages:** Python, JavaScript, Java, C++, Go, Rust
- **SantaCoderPack:**
<table>
<tr>
<th>Data</t>
<th><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></th>
<td>4TB of GitHub commits across 350 programming languages</td>
</tr>
<tr>
<th>Model</t>
<th><a href=https://huggingface.co/bigcode/octocoder>SantaCoderPack</a></th>
<td>SantaCoderPack (1.1B parameters) pre-trained on CommitPack</td>
</tr>
<tr>
<th>Evaluation </t>
<th><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack/HumanEvalFix</a></th>
<td>Extension of OpenAI's HumanEval to HumanEvalFix</td>
</tr>
</table>
# Use
## Intended use
The model follows instructions provided in the input. We recommend prefacing your input with "<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>"
**Feel free to share your generations in the Community tab!**
## Generation
```python
# pip install -q transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "bigcode/santacoderpack"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
inputs = tokenizer.encode("Q<commit_before>def has_close_elements(numbers: List[float], threshold: float) -> bool:\n for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False<commit_message>Fix bugs in has_close_elements.<commit_after>", return_tensors="pt").to(device)
outputs = model.generate(inputs)
print(tokenizer.decode(outputs[0]))
```
# Training
## Model
- **Architecture:** GPT-2 model with multi-query attention
- **Steps:** 250k pretraining
- **Pretraining tokens:** 131B
- **Precision:** bfloat16
## Hardware
- **Pretraining:**
- **GPUs:** 32 Tesla A100
- **Training time:** 15 days
## Software
- **Orchestration:** [Megatron-LM/Transformers](https://github.com/bigcode-project/santacoderpack#training)
- **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
# Citation
```bibtex
@article{muennighoff2023octopack,
title={OctoPack: Instruction Tuning Code Large Language Models},
author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre},
journal={arXiv preprint arXiv:2308.07124},
year={2023}
}
``` |