File size: 2,965 Bytes
2ece586
 
 
 
 
7a64729
e595a5d
 
 
444a8db
 
99d8c8a
 
 
 
2ece586
 
 
 
 
 
 
fce50e7
2ece586
 
 
 
 
 
 
0a1bdfc
 
fce50e7
0a1bdfc
 
 
 
 
 
 
 
 
fce50e7
0a1bdfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ece586
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9548970
 
 
444a8db
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- biglam/nls_chapbook_illustrations
widget:
- src: https://huggingface.co/davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks/resolve/main/Chapbook_Jack_the_Giant_Killer.jpg
  example_title: Jack the Giant Killer
- src: https://huggingface.co/davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks/resolve/main/PN970_G6_V3_1846_DUP_0011.jpg
  example_title: History of Valentine and Orson
base_model: facebook/detr-resnet-50
model-index:
- name: detr-resnet-50_fine_tuned_nls_chapbooks
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr-resnet-50_fine_tuned_nls_chapbooks

This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the `biglam/nls_chapbook_illustrations` dataset. This dataset contains images of chapbooks with bounding boxes for the illustrations contained on some of the pages. 

## Model description

More information needed

## Intended uses & limitations

### Using in a transformer pipeline 

The easiest way to use this model is via a [Transformers pipeline](https://huggingface.co/docs/transformers/main/en/pipeline_tutorial#vision-pipeline). To do this, you should first load the model and feature extractor:

```python 
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection

extractor = AutoFeatureExtractor.from_pretrained("davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks")

model = AutoModelForObjectDetection.from_pretrained("davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks")
```

Then you can create a pipeline for object detection using the model. 

```python
from transformers import pipeline

pipe = pipeline('object-detection',model=model, feature_extractor=extractor)
```

To use this to make predictions pass in an image (or a file-path/URL for the image):

```python 
>>> pipe("https://huggingface.co/davanstrien/detr-resnet-50_fine_tuned_nls_chapbooks/resolve/main/Chapbook_Jack_the_Giant_Killer.jpg")
[{'box': {'xmax': 290, 'xmin': 70, 'ymax': 510, 'ymin': 261},
  'label': 'early_printed_illustration',
  'score': 0.998455286026001}]
 ```

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results



### Framework versions

- Transformers 4.20.1
- Pytorch 1.12.0+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1

### Example image credits 

https://commons.wikimedia.org/wiki/File:Chapbook_Jack_the_Giant_Killer.jpg
https://archive.org/details/McGillLibrary-PN970_G6_V3_1846-1180/