--- language: - ak - ar - as - bm - bn - ca - code - en - es - eu - fon - fr - gu - hi - id - ig - ki - kn - lg - ln - ml - mr - ne - nso - ny - or - pa - pt - rn - rw - sn - st - sw - ta - te - tn - ts - tum - tw - ur - vi - wo - xh - yo - zh - zu license: bigscience-bloom-rail-1.0 tags: - ggml - bloom datasets: - bigscience/xP3 programming_language: - C - C++ - C# - Go - Java - JavaScript - Lua - PHP - Python - Ruby - Rust - Scala - TypeScript pipeline_tag: text-generation widget: - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative? example_title: zh-en sentiment - text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? example_title: zh-zh sentiment - text: Suggest at least five related search terms to "Mạng neural nhân tạo". example_title: vi-en query - text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels». example_title: fr-fr query - text: Explain in a sentence in Telugu what is backpropagation in neural networks. example_title: te-en qa - text: Why is the sky blue? example_title: en-en qa - text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):' example_title: es-en fable - text: 'Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):' example_title: hi-en fable model-index: - name: bloomz-7b1 results: - task: type: Coreference resolution dataset: name: Winogrande XL (xl) type: winogrande config: xl split: validation revision: a80f460359d1e9a67c006011c94de42a8759430c metrics: - type: Accuracy value: 55.8 - task: type: Coreference resolution dataset: name: XWinograd (en) type: Muennighoff/xwinograd config: en split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 66.02 - task: type: Coreference resolution dataset: name: XWinograd (fr) type: Muennighoff/xwinograd config: fr split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 57.83 - task: type: Coreference resolution dataset: name: XWinograd (jp) type: Muennighoff/xwinograd config: jp split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 52.87 - task: type: Coreference resolution dataset: name: XWinograd (pt) type: Muennighoff/xwinograd config: pt split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 57.79 - task: type: Coreference resolution dataset: name: XWinograd (ru) type: Muennighoff/xwinograd config: ru split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 54.92 - task: type: Coreference resolution dataset: name: XWinograd (zh) type: Muennighoff/xwinograd config: zh split: test revision: 9dd5ea5505fad86b7bedad667955577815300cee metrics: - type: Accuracy value: 63.69 - task: type: Natural language inference dataset: name: ANLI (r1) type: anli config: r1 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 42.1 - task: type: Natural language inference dataset: name: ANLI (r2) type: anli config: r2 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 39.5 - task: type: Natural language inference dataset: name: ANLI (r3) type: anli config: r3 split: validation revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 metrics: - type: Accuracy value: 41.0 - task: type: Natural language inference dataset: name: SuperGLUE (cb) type: super_glue config: cb split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 80.36 - task: type: Natural language inference dataset: name: SuperGLUE (rte) type: super_glue config: rte split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 84.12 - task: type: Natural language inference dataset: name: XNLI (ar) type: xnli config: ar split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 53.25 - task: type: Natural language inference dataset: name: XNLI (bg) type: xnli config: bg split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 43.61 - task: type: Natural language inference dataset: name: XNLI (de) type: xnli config: de split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 46.83 - task: type: Natural language inference dataset: name: XNLI (el) type: xnli config: el split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 41.53 - task: type: Natural language inference dataset: name: XNLI (en) type: xnli config: en split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 59.68 - task: type: Natural language inference dataset: name: XNLI (es) type: xnli config: es split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 55.1 - task: type: Natural language inference dataset: name: XNLI (fr) type: xnli config: fr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 55.26 - task: type: Natural language inference dataset: name: XNLI (hi) type: xnli config: hi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 50.88 - task: type: Natural language inference dataset: name: XNLI (ru) type: xnli config: ru split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 47.75 - task: type: Natural language inference dataset: name: XNLI (sw) type: xnli config: sw split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 46.63 - task: type: Natural language inference dataset: name: XNLI (th) type: xnli config: th split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 40.12 - task: type: Natural language inference dataset: name: XNLI (tr) type: xnli config: tr split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 37.55 - task: type: Natural language inference dataset: name: XNLI (ur) type: xnli config: ur split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 46.51 - task: type: Natural language inference dataset: name: XNLI (vi) type: xnli config: vi split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 52.93 - task: type: Natural language inference dataset: name: XNLI (zh) type: xnli config: zh split: validation revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 metrics: - type: Accuracy value: 53.61 - task: type: Program synthesis dataset: name: HumanEval type: openai_humaneval config: None split: test revision: e8dc562f5de170c54b5481011dd9f4fa04845771 metrics: - type: Pass@1 value: 8.06 - type: Pass@10 value: 15.03 - type: Pass@100 value: 27.49 - task: type: Sentence completion dataset: name: StoryCloze (2016) type: story_cloze config: '2016' split: validation revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db metrics: - type: Accuracy value: 90.43 - task: type: Sentence completion dataset: name: SuperGLUE (copa) type: super_glue config: copa split: validation revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 metrics: - type: Accuracy value: 86.0 - task: type: Sentence completion dataset: name: XCOPA (et) type: xcopa config: et split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 50.0 - task: type: Sentence completion dataset: name: XCOPA (ht) type: xcopa config: ht split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 54.0 - task: type: Sentence completion dataset: name: XCOPA (id) type: xcopa config: id split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 76.0 - task: type: Sentence completion dataset: name: XCOPA (it) type: xcopa config: it split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 61.0 - task: type: Sentence completion dataset: name: XCOPA (qu) type: xcopa config: qu split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 60.0 - task: type: Sentence completion dataset: name: XCOPA (sw) type: xcopa config: sw split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 63.0 - task: type: Sentence completion dataset: name: XCOPA (ta) type: xcopa config: ta split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 64.0 - task: type: Sentence completion dataset: name: XCOPA (th) type: xcopa config: th split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 57.0 - task: type: Sentence completion dataset: name: XCOPA (tr) type: xcopa config: tr split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 53.0 - task: type: Sentence completion dataset: name: XCOPA (vi) type: xcopa config: vi split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 79.0 - task: type: Sentence completion dataset: name: XCOPA (zh) type: xcopa config: zh split: validation revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 metrics: - type: Accuracy value: 81.0 - task: type: Sentence completion dataset: name: XStoryCloze (ar) type: Muennighoff/xstory_cloze config: ar split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 83.26 - task: type: Sentence completion dataset: name: XStoryCloze (es) type: Muennighoff/xstory_cloze config: es split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 88.95 - task: type: Sentence completion dataset: name: XStoryCloze (eu) type: Muennighoff/xstory_cloze config: eu split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 73.33 - task: type: Sentence completion dataset: name: XStoryCloze (hi) type: Muennighoff/xstory_cloze config: hi split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 80.61 - task: type: Sentence completion dataset: name: XStoryCloze (id) type: Muennighoff/xstory_cloze config: id split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 84.25 - task: type: Sentence completion dataset: name: XStoryCloze (my) type: Muennighoff/xstory_cloze config: my split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 52.55 - task: type: Sentence completion dataset: name: XStoryCloze (ru) type: Muennighoff/xstory_cloze config: ru split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 65.32 - task: type: Sentence completion dataset: name: XStoryCloze (sw) type: Muennighoff/xstory_cloze config: sw split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 71.67 - task: type: Sentence completion dataset: name: XStoryCloze (te) type: Muennighoff/xstory_cloze config: te split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 74.72 - task: type: Sentence completion dataset: name: XStoryCloze (zh) type: Muennighoff/xstory_cloze config: zh split: validation revision: 8bb76e594b68147f1a430e86829d07189622b90d metrics: - type: Accuracy value: 85.37 --- ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true) # Table of Contents 1. [Model Summary](#model-summary) 2. [Use](#use) 3. [Limitations](#limitations) 4. [Training](#training) 5. [Evaluation](#evaluation) 7. [Citation](#citation) # Model Summary > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find the resulting models capable of crosslingual generalization to unseen tasks & languages. - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf) - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786) - **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co) - **Languages:** Refer to [bloom](https://huggingface.co/bigscience/bloom) for pretraining & [xP3](https://huggingface.co/datasets/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages. - **BLOOMZ & mT0 Model Family:**
Multitask finetuned on xP3. Recommended for prompting in English. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | 300M | 580M | 1.2B | 3.7B | 13B | 560M | 1.1B | 1.7B | 3B | 7.1B | 176B |
Finetuned Model | mt0-small | mt0-base | mt0-large | mt0-xl | mt0-xxl | bloomz-560m | bloomz-1b1 | bloomz-1b7 | bloomz-3b | bloomz-7b1 | bloomz |
Multitask finetuned on xP3mt. Recommended for prompting in non-English. | |||||||||||
Finetuned Model | mt0-xxl-mt | bloomz-7b1-mt | bloomz-mt | Multitask finetuned on P3. Released for research purposes only. Strictly inferior to above models! | |||||||
Finetuned Model | mt0-xxl-p3 | bloomz-7b1-p3 | bloomz-p3 | Original pretrained checkpoints. Not recommended. | |||||||
Pretrained Model | mt5-small | mt5-base | mt5-large | mt5-xl | mt5-xxl | bloom-560m | bloom-1b1 | bloom-1b7 | bloom-3b | bloom-7b1 | bloom |