Text2Text Generation
Transformers
PyTorch
Safetensors
mt5
Eval Results
Inference Endpoints
Muennighoff commited on
Commit
8aa74f1
1 Parent(s): 3b742ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +750 -265
README.md CHANGED
@@ -1,7 +1,9 @@
1
  ---
 
 
 
2
  license: apache-2.0
3
- language:
4
- - multilingual
5
  - af
6
  - am
7
  - ar
@@ -103,315 +105,798 @@ language:
103
  - yo
104
  - zh
105
  - zu
106
- datasets:
107
- - mc4
108
- - bigscience/xP3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  ---
110
 
111
- Multilingual Text-to-Text Transfer Transformer Zero (MT0)
112
- Version 1. / 28 October 2022
113
-
114
- ---
115
-
116
- # Models
117
-
118
- mT5 is pretrained on the [mC4](https://www.tensorflow.org/datasets/catalog/c4#c4multilingual) corpus, covering 101 languages:
119
-
120
- Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusian, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.
121
-
122
- mt5 was then finetuned on:
123
- - [xP3](https://huggingface.co/bigscience/xP3) to obtain [mt0-small](https://huggingface.co/bigscience/mt0-small)/[mt0-base](https://huggingface.co/bigscience/mt0-base)/[mt0-large](https://huggingface.co/bigscience/mt0-large)/[mt0-xl](https://huggingface.co/bigscience/mt0-xl)/[mt0-xxl](https://huggingface.co/bigscience/mt0-xxl)
124
- - [P3](https://huggingface.co/bigscience/P3) to obtain [mt0-p3-xxl](https://huggingface.co/bigscience/mt0-p3-xxl)
125
- - [xP3mt](https://huggingface.co/bigscience/xP3mt) to obtain [mt0-mt-xxl](https://huggingface.co/bigscience/mt5-mt-xxl)
126
-
127
- ## Model Flavors
128
-
129
- Multilingual model capable of following user instructions in a variety of languages. Together with our paper [TODO: LINK], we release the following models:
130
-
131
- ----
132
- - [mt0-small](https://huggingface.co/bigscience/mt0-small): 300M parameters multitask finetuned version of [mt5-small](https://huggingface.co/google/mt5-small) on [xP3](https://huggingface.co/bigscience/xP3)
133
- - [mt0-base](https://huggingface.co/bigscience/mt0-base): 580M parameters multitask finetuned version of [mt5-base](https://huggingface.co/google/mt5-base) on [xP3](https://huggingface.co/bigscience/xP3)
134
- - [mt0-large](https://huggingface.co/bigscience/mt0-large): 1.2B parameters multitask finetuned version of [mt5-large](https://huggingface.co/google/mt5-large) on [xP3](https://huggingface.co/bigscience/xP3)
135
- - [mt0-xl](https://huggingface.co/bigscience/mt0-xl): 3.7B parameters multitask finetuned version of [mt5-xl](https://huggingface.co/google/mt5-xl) on [xP3](https://huggingface.co/bigscience/xP3)
136
- - [mt0-xxl](https://huggingface.co/bigscience/mt0-xxl): 13B parameters multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3](https://huggingface.co/bigscience/xP3)
137
- ----
138
- - [mt0-p3-xxl](https://huggingface.co/bigscience/mt0-p3-xxl): 13B parameters multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [P3](https://huggingface.co/bigscience/P3)
139
- - [mt0-mt-xxl](https://huggingface.co/bigscience/mt5-mt-xxl): 13B parameters multitask finetuned version of [mt5-xxl](https://huggingface.co/google/mt5-xxl) on [xP3mt](https://huggingface.co/bigscience/xP3mt)
140
-
141
- ## Basics
142
- *This section provides information about the model type, version, license, funders, release date, developers, and contact information.*
143
- *It is useful for anyone who wants to reference the model.*
144
-
145
- <details>
146
- <summary>Click to expand</summary>
147
-
148
- *All collaborators are either volunteers or have an agreement with their employer. (Further breakdown of participants forthcoming.)*
149
-
150
- **Model Type:** Transformer-based Language Model
151
-
152
- **Checkpoints format:** `transformers`
153
-
154
- **Version:** 1.0.0
155
-
156
- **Languages:** Multiple; see [training data](#training-data)
157
-
158
- **License:** Apache 2.0
159
-
160
- **Release Date Estimate:** Friday, 28.October.2022
161
-
162
- **Send Questions to:** niklas@huggingface.co
163
-
164
- **Funded by:**
165
- * The French government.
166
- * Hugging Face ([website](https://huggingface.co)).
167
-
168
- </details>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
 
 
170
 
171
- ## Technical Specifications
172
- *This section includes details about the model objective and architecture, and the compute infrastructure.*
173
- *It is useful for people interested in model development.*
174
 
175
  <details>
176
- <summary>Click to expand</summary>
177
-
178
- ### Model Architecture and Objective
179
-
180
- * Same architecture as [mt5](https://arxiv.org/abs/2010.11934)
181
 
182
- * Encoder-decoder architecture
183
-
184
- **Objective Function:** Cross Entropy with mean reduction on target tokens (see [API documentation](https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss)).
185
 
186
- ### Compute infrastructure
187
 
188
- Models were finetuned on [TPUv4](https://cloud.google.com/tpu/docs/system-architecture-tpu-vm#tpu_v4):
189
- - `mt0-small` was finetuned on TPUv4-64
190
- - `mt0-base` was finetuned on TPUv4-64
191
- - `mt0-large` was finetuned on TPUv4-64
192
- - `mt0-xl` was finetuned on TPUv4-128
193
- - `mt0-xxl` was finetuned on TPUv4-256
194
- - `mt0-mt-xxl` was finetuned on TPUv4-256
195
- - `mt0-p3-xxl` was finetuned on TPUv4-256
196
 
197
- #### Software
 
 
 
198
 
199
- * T5X([Github link](https://github.com/google-research/t5x), [paper](https://arxiv.org/abs/2203.17189))
200
-
201
  </details>
202
 
203
- ---
204
-
205
- # Training
206
- *This section provides information about the training data, the speed and size of training elements, and the environmental impact of training.*
207
- *It is useful for people who want to learn more about the model inputs and training footprint.*
208
 
209
  <details>
210
- <summary>Click to expand</summary>
211
-
212
- ## Training Data
213
- *This section provides a high-level overview of the training data. It is relevant for anyone who wants to know the basics of what the model is learning.*
214
-
215
- It was pretrained on mC4 and then finetuned on xP3, P3 or xP3mt.
216
-
217
- ### Languages
218
 
219
- // TODO @thomasw21: Copy list from mt5
220
-
221
- ## Speeds, Sizes, Times
222
-
223
- // TODO @adarob: Maybe we can push tensorboard on this repo as well
224
-
225
- - Training logs:
226
-
227
- - Checkpoint size: 51.7GB (Bf16 weights)
228
-
229
- - Number of epochs: 1
230
-
231
- - Precision: bfloat16
232
 
 
233
 
234
- ## Environmental Impact
 
235
 
236
- The evaluation supercomputer, [Jean Zay](http://www.idris.fr/eng/jean-zay/), uses mostly nuclear energy. The heat generated by it is reused for heating campus housing.
 
 
 
237
 
238
  </details>
239
 
240
- ---
241
-
242
- # Uses
243
-
244
- *This section addresses questions around how the model is intended to be used, discusses the foreseeable users of the model (including those affected by the model), and describes uses that are considered out of scope or misuse of the model.*
245
- *It is useful for anyone considering using the model or who is affected by the model.*
246
 
247
  <details>
248
- <summary>Click to expand</summary>
249
-
250
- ## How to use
251
-
252
- This model can be easily used and deployed using HuggingFace's ecosystem. This needs `transformers` and `accelerate` installed. The model can be downloaded as follows:
253
 
254
  ```python
 
255
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
256
 
257
- checkpoint = "..." # "checkpoint_1006000" for example
258
- model_name = "bigscience/mt0-xxl"
259
- model = AutoModelForSeq2SeqLM.from_pretrained(model_name, revision=checkpoint, torch_dtype="auto", device_map="auto")
260
- tokenizer = AutoTokenizer.from_pretrained(model_name, revision=checkpoint)
261
 
262
- inputs = tokenizer.encode("Commentaire: C'est la meilleure crêpière que j'ai jamais eu. Je l'adore.\nCe commentaire est-il positif ou négatif?", return_tensors="pt")
 
 
 
263
  outputs = model.generate(inputs)
264
  print(tokenizer.decode(outputs[0]))
265
  ```
266
 
267
- ## Intended Use
268
-
269
- This model is being created in order to enable public research on large language models (LLMs). LLMs are intended to be used for language generation or as a pretrained base model that can be further finetuned for specific tasks. Use cases below are not exhaustive.
270
-
271
- ### Direct Use
272
-
273
- - Text generation
274
-
275
- - Exploring characteristics of language generated by a language model
276
-
277
- - Examples: Cloze tests, counterfactuals, generations with reframings
278
-
279
- ### Downstream Use
280
-
281
- - Tasks that leverage language models include: Information Extraction, Question Answering, Summarization
282
-
283
  </details>
284
 
285
- ---
286
-
287
- # Risks and Limitations
288
- *This section identifies foreseeable harms and misunderstandings.*
289
-
290
- <details>
291
- <summary>Click to expand</summary>
292
-
293
- Model may:
294
-
295
- - Overrepresent some viewpoints and underrepresent others
296
-
297
- - Contain stereotypes
298
-
299
- - Contain [personal information](#personal-data-and-information)
300
 
301
- - Generate:
302
 
303
- - Hateful, abusive, or violent language
304
 
305
- - Discriminatory or prejudicial language
306
 
307
- - Content that may not be appropriate for all settings, including sexual content
308
 
309
- - Make errors, including producing incorrect information as if it were factual
 
 
 
310
 
311
- - Generate irrelevant or repetitive outputs
312
 
313
- - Induce users into attributing human traits to it, such as sentience or consciousness
314
 
315
- </details>
316
 
317
- ---
 
318
 
319
  # Evaluation
320
- *This section describes the evaluation protocols and provides the results.*
321
-
322
-
323
- <details>
324
- <summary>Click to expand</summary>
325
-
326
- ## Results
327
- *Results are based on the [Metrics](#metrics).*
328
-
329
- **Train-time Evaluation:**
330
 
331
- // TODO @adarob: Pending if we can get access to tensorboard
332
 
333
- **Zero-shot evaluations:**
334
-
335
- // TODO @niklas
336
-
337
-
338
- </details>
339
-
340
- ---
341
-
342
- # Recommendations
343
-
344
- *This section provides information on warnings and potential mitigations.*
345
-
346
- <details>
347
- <summary>Click to expand</summary>
348
-
349
- - Indirect users should be made aware when the content they're working with is created by the LLM.
350
-
351
- - Users should be aware of [Risks and Limitations](#risks-and-limitations), and include an appropriate age disclaimer or blocking interface as necessary.
352
-
353
- - Models trained or finetuned downstream of MT0 should include an updated Model Card.
354
-
355
- - Users of the model should provide mechanisms for those affected to provide feedback, such as an email address for comments.
356
-
357
- </details>
358
-
359
- ---
360
-
361
- # Glossary and Calculations
362
-
363
- *This section defines common terms and how metrics are calculated.*
364
- <details>
365
- <summary>Click to expand</summary>
366
-
367
- - <a name="loss">**Loss:**</a> A calculation of the difference between what the model has learned and what the data shows ("groundtruth"). The lower the loss, the better. The training process aims to minimize the loss.
368
-
369
- - <a name="perplexity">**Perplexity:**</a> This is based on what the model estimates the probability of new data is. The lower the perplexity, the better. If the model is 100% correct at predicting the next token it will see, then the perplexity is 1. Mathematically this is calculated using entropy.
370
-
371
- - <a name="high-stakes">**High-stakes settings:**</a> Such as those identified as "high-risk AI systems" and "unacceptable risk AI systems" in the European Union's proposed [Artificial Intelligence (AI) Act](https://artificialintelligenceact.eu/annexes/).
372
-
373
- - <a name="critical-decisions">**Critical decisions:**</a> Such as those defined in [the United States' proposed Algorithmic Accountability Act](https://www.congress.gov/117/bills/s3572/BILLS-117s3572is.pdf).
374
-
375
- - <a name="human-rights">**Human rights:**</a> Includes those rights defined in the [Universal Declaration of Human Rights](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf).
376
-
377
- - <a name="personal-data-and-information">**Personal Data and Personal Information:**</a> Personal data and information is defined in multiple data protection regulations, such as "[personal data](https://gdpr-info.eu/issues/personal-data/)" in the [European Union's General Data Protection Regulation](https://gdpr-info.eu); and "personal information" in the Republic of South Africa's [Protection of Personal Information Act](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf), The People's Republic of China's [Personal information protection law](http://en.npc.gov.cn.cdurl.cn/2021-12/29/c_694559.htm).
378
-
379
- - <a name="sensitive-characteristics">**Sensitive characteristics:**</a> This includes specifically protected categories in human rights (see [UHDR, Article 2](https://www.un.org/sites/un2.un.org/files/2021/03/udhr.pdf)) and personal information regulation (see GDPR, [Article 9; Protection of Personal Information Act, Chapter 1](https://www.gov.za/sites/default/files/gcis_document/201409/3706726-11act4of2013popi.pdf))
380
-
381
- - <a name="deception">**Deception:**</a> Doing something to intentionally mislead individuals to believe something that is false, such as by creating deadbots or chatbots on social media posing as real people, or generating text documents without making consumers aware that the text is machine generated.
382
-
383
- </details>
384
-
385
- ---
386
-
387
- # More Information
388
- *This section provides links to writing on dataset creation, technical specifications, lessons learned, and initial results.*
389
-
390
- <details>
391
- <summary>Click to expand</summary>
392
-
393
- ## Intermediate checkpoints
394
-
395
- For academic (or any) usage, we published the intermediate checkpoints, corresponding to the model state at each 1000 steps. There are available as branches in this repository. You can use them using `transformers`:
396
-
397
- ```python
398
- from transformers import AutoModel
399
-
400
- checkpoint = "..." # "checkpoint_1006000" for example
401
- model = AutoModel.from_pretrained("bigscience/mt0-xxl", revision=checkpoint, torch_dtype="auto", device_map="auto")
402
- ```
403
-
404
- ## Dataset Creation
405
-
406
- // TODO @niklas: Point to the arxiv paper
407
-
408
- ## Original checkpoints
409
-
410
- The checkpoints in this repo correspond to the HuggingFace Transformers format. We'll provide T5X checkpoints as well.
411
-
412
- # Citing MT0
413
-
414
- Please use the following bibtex entry to cite T0:
415
  ```bibtex
416
- TODO @niklas
417
- ```
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - bigscience/xP3mt
4
+ - mc4
5
  license: apache-2.0
6
+ language:
 
7
  - af
8
  - am
9
  - ar
 
105
  - yo
106
  - zh
107
  - zu
108
+ pipeline_tag: text-generation
109
+ widget:
110
+ - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous review as positive, neutral or negative?"
111
+ example_title: "zh-en sentiment"
112
+ - text: "一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?"
113
+ example_title: "zh-zh sentiment"
114
+ - text: "Suggest at least five related search terms to \"Mạng neural nhân tạo\"."
115
+ example_title: "vi-en query"
116
+ - text: "Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels»."
117
+ example_title: "fr-fr query"
118
+ - text: "Explain in a sentence in Telugu what is backpropagation in neural networks."
119
+ example_title: "te-en qa"
120
+ - text: "Why is the sky blue?"
121
+ example_title: "en-en qa"
122
+ - text: "Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is \"Heroes Come in All Shapes and Sizes\". Story (in Spanish):"
123
+ example_title: "es-en fable"
124
+ - text: "Write a fable about wood elves living in a forest that is suddenly invaded by ogres. The fable is a masterpiece that has achieved praise worldwide and its moral is \"Violence is the last refuge of the incompetent\". Fable (in Hindi):"
125
+ example_title: "hi-en fable"
126
+ model-index:
127
+ - name: mt0-xxl-mt
128
+ results:
129
+ - task:
130
+ type: Coreference resolution
131
+ dataset:
132
+ type: winogrande
133
+ name: Winogrande XL (xl)
134
+ config: xl
135
+ split: validation
136
+ revision: a80f460359d1e9a67c006011c94de42a8759430c
137
+ metrics:
138
+ - type: Accuracy
139
+ value: 62.67
140
+ - task:
141
+ type: Coreference resolution
142
+ dataset:
143
+ type: Muennighoff/xwinograd
144
+ name: XWinograd (en)
145
+ config: en
146
+ split: test
147
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
148
+ metrics:
149
+ - type: Accuracy
150
+ value: 83.31
151
+ - task:
152
+ type: Coreference resolution
153
+ dataset:
154
+ type: Muennighoff/xwinograd
155
+ name: XWinograd (fr)
156
+ config: fr
157
+ split: test
158
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
159
+ metrics:
160
+ - type: Accuracy
161
+ value: 78.31
162
+ - task:
163
+ type: Coreference resolution
164
+ dataset:
165
+ type: Muennighoff/xwinograd
166
+ name: XWinograd (jp)
167
+ config: jp
168
+ split: test
169
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
170
+ metrics:
171
+ - type: Accuracy
172
+ value: 80.19
173
+ - task:
174
+ type: Coreference resolution
175
+ dataset:
176
+ type: Muennighoff/xwinograd
177
+ name: XWinograd (pt)
178
+ config: pt
179
+ split: test
180
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
181
+ metrics:
182
+ - type: Accuracy
183
+ value: 80.99
184
+ - task:
185
+ type: Coreference resolution
186
+ dataset:
187
+ type: Muennighoff/xwinograd
188
+ name: XWinograd (ru)
189
+ config: ru
190
+ split: test
191
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
192
+ metrics:
193
+ - type: Accuracy
194
+ value: 79.05
195
+ - task:
196
+ type: Coreference resolution
197
+ dataset:
198
+ type: Muennighoff/xwinograd
199
+ name: XWinograd (zh)
200
+ config: zh
201
+ split: test
202
+ revision: 9dd5ea5505fad86b7bedad667955577815300cee
203
+ metrics:
204
+ - type: Accuracy
205
+ value: 82.34
206
+ - task:
207
+ type: Natural language inference
208
+ dataset:
209
+ type: anli
210
+ name: ANLI (r1)
211
+ config: r1
212
+ split: validation
213
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
214
+ metrics:
215
+ - type: Accuracy
216
+ value: 49.5
217
+ - task:
218
+ type: Natural language inference
219
+ dataset:
220
+ type: anli
221
+ name: ANLI (r2)
222
+ config: r2
223
+ split: validation
224
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
225
+ metrics:
226
+ - type: Accuracy
227
+ value: 42.0
228
+ - task:
229
+ type: Natural language inference
230
+ dataset:
231
+ type: anli
232
+ name: ANLI (r3)
233
+ config: r3
234
+ split: validation
235
+ revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094
236
+ metrics:
237
+ - type: Accuracy
238
+ value: 48.17
239
+ - task:
240
+ type: Natural language inference
241
+ dataset:
242
+ type: super_glue
243
+ name: SuperGLUE (cb)
244
+ config: cb
245
+ split: validation
246
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
247
+ metrics:
248
+ - type: Accuracy
249
+ value: 87.5
250
+ - task:
251
+ type: Natural language inference
252
+ dataset:
253
+ type: super_glue
254
+ name: SuperGLUE (rte)
255
+ config: rte
256
+ split: validation
257
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
258
+ metrics:
259
+ - type: Accuracy
260
+ value: 84.84
261
+ - task:
262
+ type: Natural language inference
263
+ dataset:
264
+ type: xnli
265
+ name: XNLI (ar)
266
+ config: ar
267
+ split: validation
268
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
269
+ metrics:
270
+ - type: Accuracy
271
+ value: 58.03
272
+ - task:
273
+ type: Natural language inference
274
+ dataset:
275
+ type: xnli
276
+ name: XNLI (bg)
277
+ config: bg
278
+ split: validation
279
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
280
+ metrics:
281
+ - type: Accuracy
282
+ value: 59.92
283
+ - task:
284
+ type: Natural language inference
285
+ dataset:
286
+ type: xnli
287
+ name: XNLI (de)
288
+ config: de
289
+ split: validation
290
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
291
+ metrics:
292
+ - type: Accuracy
293
+ value: 60.16
294
+ - task:
295
+ type: Natural language inference
296
+ dataset:
297
+ type: xnli
298
+ name: XNLI (el)
299
+ config: el
300
+ split: validation
301
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
302
+ metrics:
303
+ - type: Accuracy
304
+ value: 59.2
305
+ - task:
306
+ type: Natural language inference
307
+ dataset:
308
+ type: xnli
309
+ name: XNLI (en)
310
+ config: en
311
+ split: validation
312
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
313
+ metrics:
314
+ - type: Accuracy
315
+ value: 62.25
316
+ - task:
317
+ type: Natural language inference
318
+ dataset:
319
+ type: xnli
320
+ name: XNLI (es)
321
+ config: es
322
+ split: validation
323
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
324
+ metrics:
325
+ - type: Accuracy
326
+ value: 60.92
327
+ - task:
328
+ type: Natural language inference
329
+ dataset:
330
+ type: xnli
331
+ name: XNLI (fr)
332
+ config: fr
333
+ split: validation
334
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
335
+ metrics:
336
+ - type: Accuracy
337
+ value: 59.88
338
+ - task:
339
+ type: Natural language inference
340
+ dataset:
341
+ type: xnli
342
+ name: XNLI (hi)
343
+ config: hi
344
+ split: validation
345
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
346
+ metrics:
347
+ - type: Accuracy
348
+ value: 57.47
349
+ - task:
350
+ type: Natural language inference
351
+ dataset:
352
+ type: xnli
353
+ name: XNLI (ru)
354
+ config: ru
355
+ split: validation
356
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
357
+ metrics:
358
+ - type: Accuracy
359
+ value: 58.67
360
+ - task:
361
+ type: Natural language inference
362
+ dataset:
363
+ type: xnli
364
+ name: XNLI (sw)
365
+ config: sw
366
+ split: validation
367
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
368
+ metrics:
369
+ - type: Accuracy
370
+ value: 56.79
371
+ - task:
372
+ type: Natural language inference
373
+ dataset:
374
+ type: xnli
375
+ name: XNLI (th)
376
+ config: th
377
+ split: validation
378
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
379
+ metrics:
380
+ - type: Accuracy
381
+ value: 58.03
382
+ - task:
383
+ type: Natural language inference
384
+ dataset:
385
+ type: xnli
386
+ name: XNLI (tr)
387
+ config: tr
388
+ split: validation
389
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
390
+ metrics:
391
+ - type: Accuracy
392
+ value: 57.67
393
+ - task:
394
+ type: Natural language inference
395
+ dataset:
396
+ type: xnli
397
+ name: XNLI (ur)
398
+ config: ur
399
+ split: validation
400
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
401
+ metrics:
402
+ - type: Accuracy
403
+ value: 55.98
404
+ - task:
405
+ type: Natural language inference
406
+ dataset:
407
+ type: xnli
408
+ name: XNLI (vi)
409
+ config: vi
410
+ split: validation
411
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
412
+ metrics:
413
+ - type: Accuracy
414
+ value: 58.92
415
+ - task:
416
+ type: Natural language inference
417
+ dataset:
418
+ type: xnli
419
+ name: XNLI (zh)
420
+ config: zh
421
+ split: validation
422
+ revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16
423
+ metrics:
424
+ - type: Accuracy
425
+ value: 58.71
426
+ - task:
427
+ type: Sentence completion
428
+ dataset:
429
+ type: story_cloze
430
+ name: StoryCloze (2016)
431
+ config: "2016"
432
+ split: validation
433
+ revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db
434
+ metrics:
435
+ - type: Accuracy
436
+ value: 94.66
437
+ - task:
438
+ type: Sentence completion
439
+ dataset:
440
+ type: super_glue
441
+ name: SuperGLUE (copa)
442
+ config: copa
443
+ split: validation
444
+ revision: 9e12063561e7e6c79099feb6d5a493142584e9e2
445
+ metrics:
446
+ - type: Accuracy
447
+ value: 88.0
448
+ - task:
449
+ type: Sentence completion
450
+ dataset:
451
+ type: xcopa
452
+ name: XCOPA (et)
453
+ config: et
454
+ split: validation
455
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
456
+ metrics:
457
+ - type: Accuracy
458
+ value: 81.0
459
+ - task:
460
+ type: Sentence completion
461
+ dataset:
462
+ type: xcopa
463
+ name: XCOPA (ht)
464
+ config: ht
465
+ split: validation
466
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
467
+ metrics:
468
+ - type: Accuracy
469
+ value: 79.0
470
+ - task:
471
+ type: Sentence completion
472
+ dataset:
473
+ type: xcopa
474
+ name: XCOPA (id)
475
+ config: id
476
+ split: validation
477
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
478
+ metrics:
479
+ - type: Accuracy
480
+ value: 90.0
481
+ - task:
482
+ type: Sentence completion
483
+ dataset:
484
+ type: xcopa
485
+ name: XCOPA (it)
486
+ config: it
487
+ split: validation
488
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
489
+ metrics:
490
+ - type: Accuracy
491
+ value: 88.0
492
+ - task:
493
+ type: Sentence completion
494
+ dataset:
495
+ type: xcopa
496
+ name: XCOPA (qu)
497
+ config: qu
498
+ split: validation
499
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
500
+ metrics:
501
+ - type: Accuracy
502
+ value: 56.0
503
+ - task:
504
+ type: Sentence completion
505
+ dataset:
506
+ type: xcopa
507
+ name: XCOPA (sw)
508
+ config: sw
509
+ split: validation
510
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
511
+ metrics:
512
+ - type: Accuracy
513
+ value: 81.0
514
+ - task:
515
+ type: Sentence completion
516
+ dataset:
517
+ type: xcopa
518
+ name: XCOPA (ta)
519
+ config: ta
520
+ split: validation
521
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
522
+ metrics:
523
+ - type: Accuracy
524
+ value: 81.0
525
+ - task:
526
+ type: Sentence completion
527
+ dataset:
528
+ type: xcopa
529
+ name: XCOPA (th)
530
+ config: th
531
+ split: validation
532
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
533
+ metrics:
534
+ - type: Accuracy
535
+ value: 76.0
536
+ - task:
537
+ type: Sentence completion
538
+ dataset:
539
+ type: xcopa
540
+ name: XCOPA (tr)
541
+ config: tr
542
+ split: validation
543
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
544
+ metrics:
545
+ - type: Accuracy
546
+ value: 76.0
547
+ - task:
548
+ type: Sentence completion
549
+ dataset:
550
+ type: xcopa
551
+ name: XCOPA (vi)
552
+ config: vi
553
+ split: validation
554
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
555
+ metrics:
556
+ - type: Accuracy
557
+ value: 85.0
558
+ - task:
559
+ type: Sentence completion
560
+ dataset:
561
+ type: xcopa
562
+ name: XCOPA (zh)
563
+ config: zh
564
+ split: validation
565
+ revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187
566
+ metrics:
567
+ - type: Accuracy
568
+ value: 87.0
569
+ - task:
570
+ type: Sentence completion
571
+ dataset:
572
+ type: Muennighoff/xstory_cloze
573
+ name: XStoryCloze (ar)
574
+ config: ar
575
+ split: validation
576
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
577
+ metrics:
578
+ - type: Accuracy
579
+ value: 91.0
580
+ - task:
581
+ type: Sentence completion
582
+ dataset:
583
+ type: Muennighoff/xstory_cloze
584
+ name: XStoryCloze (es)
585
+ config: es
586
+ split: validation
587
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
588
+ metrics:
589
+ - type: Accuracy
590
+ value: 93.38
591
+ - task:
592
+ type: Sentence completion
593
+ dataset:
594
+ type: Muennighoff/xstory_cloze
595
+ name: XStoryCloze (eu)
596
+ config: eu
597
+ split: validation
598
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
599
+ metrics:
600
+ - type: Accuracy
601
+ value: 91.13
602
+ - task:
603
+ type: Sentence completion
604
+ dataset:
605
+ type: Muennighoff/xstory_cloze
606
+ name: XStoryCloze (hi)
607
+ config: hi
608
+ split: validation
609
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
610
+ metrics:
611
+ - type: Accuracy
612
+ value: 90.73
613
+ - task:
614
+ type: Sentence completion
615
+ dataset:
616
+ type: Muennighoff/xstory_cloze
617
+ name: XStoryCloze (id)
618
+ config: id
619
+ split: validation
620
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
621
+ metrics:
622
+ - type: Accuracy
623
+ value: 93.05
624
+ - task:
625
+ type: Sentence completion
626
+ dataset:
627
+ type: Muennighoff/xstory_cloze
628
+ name: XStoryCloze (my)
629
+ config: my
630
+ split: validation
631
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
632
+ metrics:
633
+ - type: Accuracy
634
+ value: 86.7
635
+ - task:
636
+ type: Sentence completion
637
+ dataset:
638
+ type: Muennighoff/xstory_cloze
639
+ name: XStoryCloze (ru)
640
+ config: ru
641
+ split: validation
642
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
643
+ metrics:
644
+ - type: Accuracy
645
+ value: 91.66
646
+ - task:
647
+ type: Sentence completion
648
+ dataset:
649
+ type: Muennighoff/xstory_cloze
650
+ name: XStoryCloze (sw)
651
+ config: sw
652
+ split: validation
653
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
654
+ metrics:
655
+ - type: Accuracy
656
+ value: 89.61
657
+ - task:
658
+ type: Sentence completion
659
+ dataset:
660
+ type: Muennighoff/xstory_cloze
661
+ name: XStoryCloze (te)
662
+ config: te
663
+ split: validation
664
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
665
+ metrics:
666
+ - type: Accuracy
667
+ value: 90.4
668
+ - task:
669
+ type: Sentence completion
670
+ dataset:
671
+ type: Muennighoff/xstory_cloze
672
+ name: XStoryCloze (zh)
673
+ config: zh
674
+ split: validation
675
+ revision: 8bb76e594b68147f1a430e86829d07189622b90d
676
+ metrics:
677
+ - type: Accuracy
678
+ value: 93.05
679
  ---
680
 
681
+ ![xmtf](https://github.com/bigscience-workshop/xmtf/blob/master/xmtf_banner.png?raw=true)
682
+
683
+ # Table of Contents
684
+
685
+ 1. [Model Summary](#model-summary)
686
+ 2. [Use](#use)
687
+ 3. [Limitations](#limitations)
688
+ 4. [Training](#training)
689
+ 5. [Evaluation](#evaluation)
690
+ 7. [Citation](#citation)
691
+
692
+ # Model Summary
693
+
694
+ > We present BLOOMZ & mT0, a family of models capable of following human instructions in dozens of languages zero-shot. We finetune BLOOM & mT5 pretrained multilingual language models on our crosslingual task mixture (xP3) and find our resulting models capable of crosslingual generalization to unseen tasks & languages.
695
+
696
+ - **Repository:** [bigscience-workshop/xmtf](https://github.com/bigscience-workshop/xmtf)
697
+ - **Paper:** [Crosslingual Generalization through Multitask Finetuning](https://arxiv.org/abs/2211.01786)
698
+ - **Point of Contact:** [Niklas Muennighoff](mailto:niklas@hf.co)
699
+ - **Languages:** Refer to [mc4](https://huggingface.co/datasets/mc4) for pretraining & [xP3](https://huggingface.co/bigscience/xP3) for finetuning language proportions. It understands both pretraining & finetuning languages.
700
+ - **BLOOMZ & mT0 Model Family:**
701
+
702
+ <table>
703
+ <tr>
704
+ <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3>xP3</a>. Recommended for prompting in English.
705
+ </tr>
706
+ <tr>
707
+ <td>Parameters</td>
708
+ <td>300M</td>
709
+ <td>580M</td>
710
+ <td>1.2B</td>
711
+ <td>3.7B</td>
712
+ <td>13B</td>
713
+ <td>560M</td>
714
+ <td>1.1B</td>
715
+ <td>1.7B</td>
716
+ <td>3B</td>
717
+ <td>7.1B</td>
718
+ <td>176B</td>
719
+ </tr>
720
+ <tr>
721
+ <td>Finetuned Model</td>
722
+ <td><a href=https://huggingface.co/bigscience/mt0-base>mt0-base</a></td>
723
+ <td><a href=https://huggingface.co/bigscience/mt0-small>mt0-small</a></td>
724
+ <td><a href=https://huggingface.co/bigscience/mt0-large>mt0-large</a></td>
725
+ <td><a href=https://huggingface.co/bigscience/mt0-xl>mt0-xl</a></td>
726
+ <td><a href=https://huggingface.co/bigscience/mt0-xxl>mt0-xxl</a></td>
727
+ <td><a href=https://huggingface.co/bigscience/bloomz-560m>bloomz-560m</a></td>
728
+ <td><a href=https://huggingface.co/bigscience/bloomz-1b1>bloomz-1b1</a></td>
729
+ <td><a href=https://huggingface.co/bigscience/bloomz-1b7>bloomz-1b7</a></td>
730
+ <td><a href=https://huggingface.co/bigscience/bloomz-3b>bloomz-3b</a></td>
731
+ <td><a href=https://huggingface.co/bigscience/bloomz-7b1>bloomz-7b1</a></td>
732
+ <td><a href=https://huggingface.co/bigscience/bloomz>bloomz</a></td>
733
+ </tr>
734
+ </tr>
735
+ <tr>
736
+ <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/bigscience/xP3mt>xP3mt</a>. Recommended for prompting in non-English.</th>
737
+ </tr>
738
+ <tr>
739
+ <td>Finetuned Model</td>
740
+ <td></td>
741
+ <td></td>
742
+ <td></td>
743
+ <td></td>
744
+ <td><a href=https://huggingface.co/bigscience/mt0-xxl-mt>mt0-xxl-mt</a></td>
745
+ <td></td>
746
+ <td></td>
747
+ <td></td>
748
+ <td></td>
749
+ <td><a href=https://huggingface.co/bigscience/bloomz-7b1-mt>bloomz-7b1-mt</a></td>
750
+ <td><a href=https://huggingface.co/bigscience/bloomz-mt>bloomz-mt</a></td>
751
+ </tr>
752
+ <th colspan="12">Multitask finetuned on <a style="font-weight:bold" href=https://huggingface.co/datasets/Muennighoff/P3>P3</a>. Released for research purposes only. Strictly inferior to above models!</th>
753
+ </tr>
754
+ <tr>
755
+ <td>Finetuned Model</td>
756
+ <td></td>
757
+ <td></td>
758
+ <td></td>
759
+ <td></td>
760
+ <td><a href=https://huggingface.co/bigscience/mt0-xxl-p3>mt0-xxl-p3</a></td>
761
+ <td></td>
762
+ <td></td>
763
+ <td></td>
764
+ <td></td>
765
+ <td><a href=https://huggingface.co/bigscience/bloomz-7b1-p3>bloomz-7b1-p3</a></td>
766
+ <td><a href=https://huggingface.co/bigscience/bloomz-p3>bloomz-p3</a></td>
767
+ </tr>
768
+ <th colspan="12">Original pretrained checkpoints. Not recommended.</th>
769
+ <tr>
770
+ <td>Pretrained Model</td>
771
+ <td><a href=https://huggingface.co/google/mt5-base>mt5-base</a></td>
772
+ <td><a href=https://huggingface.co/google/mt5-small>mt5-small</a></td>
773
+ <td><a href=https://huggingface.co/google/mt5-large>mt5-large</a></td>
774
+ <td><a href=https://huggingface.co/google/mt5-xl>mt5-xl</a></td>
775
+ <td><a href=https://huggingface.co/google/mt5-xxl>mt5-xxl</a></td>
776
+ <td><a href=https://huggingface.co/bigscience/bloom-560m>bloom-560m</a></td>
777
+ <td><a href=https://huggingface.co/bigscience/bloom-1b1>bloom-1b1</a></td>
778
+ <td><a href=https://huggingface.co/bigscience/bloom-1b7>bloom-1b7</a></td>
779
+ <td><a href=https://huggingface.co/bigscience/bloom-3b>bloom-3b</a></td>
780
+ <td><a href=https://huggingface.co/bigscience/bloom-7b1>bloom-7b1</a></td>
781
+ <td><a href=https://huggingface.co/bigscience/bloom>bloom</a></td>
782
+ </tr>
783
+ </table>
784
+
785
+
786
+ # Use
787
+
788
+ ## Intended use
789
+
790
+ We recommend using the model to perform tasks expressed in natural language. For example, given the prompt "*Translate to English: Je t’aime.*", the model will most likely answer "*I love you.*". Some prompt ideas from our paper:
791
+ - 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评?
792
+ - Suggest at least five related search terms to "Mạng neural nhân tạo".
793
+ - Write a fairy tale about a troll saving a princess from a dangerous dragon. The fairy tale is a masterpiece that has achieved praise worldwide and its moral is "Heroes Come in All Shapes and Sizes". Story (in Spanish):
794
+ - Explain in a sentence in Telugu what is backpropagation in neural networks.
795
+
796
+ **Feel free to share your generations in the Community tab!**
797
 
798
+ ## How to use
799
 
800
+ ### CPU
 
 
801
 
802
  <details>
803
+ <summary> Click to expand </summary>
 
 
 
 
804
 
805
+ ```python
806
+ # pip install -q transformers
807
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
808
 
809
+ checkpoint = "bigscience/mt0-xxl-mt"
810
 
811
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
812
+ model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint)
 
 
 
 
 
 
813
 
814
+ inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt")
815
+ outputs = model.generate(inputs)
816
+ print(tokenizer.decode(outputs[0]))
817
+ ```
818
 
 
 
819
  </details>
820
 
821
+ ### GPU
 
 
 
 
822
 
823
  <details>
824
+ <summary> Click to expand </summary>
 
 
 
 
 
 
 
825
 
826
+ ```python
827
+ # pip install -q transformers accelerate
828
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
 
 
 
 
 
 
 
 
 
 
829
 
830
+ checkpoint = "bigscience/mt0-xxl-mt"
831
 
832
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
833
+ model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")
834
 
835
+ inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
836
+ outputs = model.generate(inputs)
837
+ print(tokenizer.decode(outputs[0]))
838
+ ```
839
 
840
  </details>
841
 
842
+ ### GPU in 8bit
 
 
 
 
 
843
 
844
  <details>
845
+ <summary> Click to expand </summary>
 
 
 
 
846
 
847
  ```python
848
+ # pip install -q transformers accelerate bitsandbytes
849
  from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
850
 
851
+ checkpoint = "bigscience/mt0-xxl-mt"
 
 
 
852
 
853
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
854
+ model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint, device_map="auto", load_in_8bit=True)
855
+
856
+ inputs = tokenizer.encode("Translate to English: Je t’aime.", return_tensors="pt").to("cuda")
857
  outputs = model.generate(inputs)
858
  print(tokenizer.decode(outputs[0]))
859
  ```
860
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
861
  </details>
862
 
863
+ <!-- Necessary for whitespace -->
864
+ ###
 
 
 
 
 
 
 
 
 
 
 
 
 
865
 
866
+ # Limitations
867
 
868
+ **Prompt Engineering:** The performance may vary depending on the prompt. For BLOOMZ models, we recommend making it very clear when the input stops to avoid the model trying to continue it. For example, the prompt "*Translate to English: Je t'aime*" without the full stop (.) at the end, may result in the model trying to continue the French sentence. Better prompts are e.g. "*Translate to English: Je t'aime.*", "*Translate to English: Je t'aime. Translation:*" "*What is "Je t'aime." in English?*", where it is clear for the model when it should answer. Further, we recommend providing the model as much context as possible. For example, if you want it to answer in Telugu, then tell the model, e.g. "*Explain in a sentence in Telugu what is backpropagation in neural networks.*".
869
 
870
+ # Training
871
 
872
+ ## Model
873
 
874
+ - **Architecture:** Same as [mt5-xxl](https://huggingface.co/google/mt5-xxl), also refer to the `config.json` file
875
+ - **Finetuning steps:** 7000
876
+ - **Finetuning tokens:** 1.29 billion
877
+ - **Precision:** bfloat16
878
 
879
+ ## Hardware
880
 
881
+ - **TPUs:** TPUv4-256
882
 
883
+ ## Software
884
 
885
+ - **Orchestration:** [T5X](https://github.com/google-research/t5x)
886
+ - **Neural networks:** [Jax](https://github.com/google/jax)
887
 
888
  # Evaluation
 
 
 
 
 
 
 
 
 
 
889
 
890
+ We refer to Table 7 from our [paper](https://arxiv.org/abs/2211.01786) & [bigscience/evaluation-results](https://huggingface.co/datasets/bigscience/evaluation-results) for zero-shot results on unseen tasks. The sidebar reports zero-shot performance of the best prompt per dataset config.
891
 
892
+ # Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
893
  ```bibtex
894
+ @misc{muennighoff2022crosslingual,
895
+ title={Crosslingual Generalization through Multitask Finetuning},
896
+ author={Niklas Muennighoff and Thomas Wang and Lintang Sutawika and Adam Roberts and Stella Biderman and Teven Le Scao and M Saiful Bari and Sheng Shen and Zheng-Xin Yong and Hailey Schoelkopf and Xiangru Tang and Dragomir Radev and Alham Fikri Aji and Khalid Almubarak and Samuel Albanie and Zaid Alyafeai and Albert Webson and Edward Raff and Colin Raffel},
897
+ year={2022},
898
+ eprint={2211.01786},
899
+ archivePrefix={arXiv},
900
+ primaryClass={cs.CL}
901
+ }
902
+ ```