File size: 2,444 Bytes
b60abfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98e1741
b60abfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
---
base_model: meta-llama/Llama-3.2-1B-Instruct
datasets: trl-internal-testing/descriptiveness-sentiment-trl-style
library_name: transformers
model_name: RLHF-PPO-PPOModel-LLama3-1B-v1
tags:
- generated_from_trainer
licence: license
---

# Model Card for RLHF-PPO-PPOModel-LLama3-1B-v1

This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the [trl-internal-testing/descriptiveness-sentiment-trl-style](https://huggingface.co/datasets/trl-internal-testing/descriptiveness-sentiment-trl-style) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
generator = pipeline("text-generation", model="bikalnetomi/RLHF-PPO-PPOModel-LLama3-1B-v1", device="cuda")
output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
print(output["generated_text"])
```

## Training procedure

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/netomi-ml/huggingface/runs/mt43tltq)

This model was trained with PPO, a method introduced in [Fine-Tuning Language Models from Human Preferences](https://huggingface.co/papers/1909.08593).

### Framework versions

- TRL: 0.12.1
- Transformers: 4.46.3
- Pytorch: 2.5.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3

## Citations

Cite PPO as:

```bibtex
@article{mziegler2019fine-tuning,
    title        = {{Fine-Tuning Language Models from Human Preferences}},
    author       = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
    year         = 2019,
    eprint       = {arXiv:1909.08593}
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```