File size: 2,331 Bytes
8a9feda d7173d6 8a9feda d7173d6 8a9feda d7173d6 8a9feda d7173d6 8a9feda d7173d6 8a9feda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: apache-2.0
base_model: state-spaces/mamba2-370m
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: mamba2-370m
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/truonggiabjnh2003-fpt-university/Detect%20AI%20Generated%20Text/runs/9ne43uyr)
# mamba2-370m
This model is a fine-tuned version of [state-spaces/mamba2-370m](https://huggingface.co/state-spaces/mamba2-370m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1239
- Accuracy: 0.9792
- Precision: 0.9795
- Recall: 0.9792
- F1: 0.9793
- Auroc: 0.9969
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
- label_smoothing_factor: 0.03
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:|
| 0.3764 | 0.1930 | 500 | 0.2099 | 0.9392 | 0.9385 | 0.9392 | 0.9375 | 0.9822 |
| 0.197 | 0.3861 | 1000 | 0.2205 | 0.9315 | 0.9462 | 0.9315 | 0.9344 | 0.9929 |
| 0.1748 | 0.5791 | 1500 | 0.1453 | 0.9690 | 0.9690 | 0.9690 | 0.9690 | 0.9942 |
| 0.1601 | 0.7721 | 2000 | 0.1352 | 0.9750 | 0.9756 | 0.9750 | 0.9752 | 0.9954 |
| 0.1542 | 0.9652 | 2500 | 0.2024 | 0.9428 | 0.9450 | 0.9428 | 0.9400 | 0.9935 |
### Framework versions
- Transformers 4.43.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.19.1
- Tokenizers 0.19.1
|