|
import torch |
|
from transformers import pipeline |
|
import gradio as gr |
|
|
|
MODEL_NAME = "JackismyShephard/whisper-medium.en-finetuned-gtzan" |
|
|
|
device = 0 if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = pipeline( |
|
task="audio-classification", |
|
model=MODEL_NAME, |
|
device=device, |
|
) |
|
|
|
def classify_audio(filepath): |
|
preds = pipe(filepath, top_k = 10) |
|
outputs = {} |
|
for p in preds: |
|
outputs[p["label"]] = p["score"] |
|
return outputs |
|
|
|
demo = gr.Interface( |
|
fn=classify_audio, |
|
inputs= gr.Audio(label="Audio file", type="filepath"), |
|
outputs=gr.Label(), |
|
title="Music Genre Classification", |
|
description=( |
|
"Classify long-form audio or microphone inputs with the click of a button! Demo uses the" |
|
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to classify audio files" |
|
" of arbitrary length." |
|
), |
|
examples="./examples", |
|
cache_examples=True, |
|
allow_flagging="never", |
|
) |
|
|
|
demo.launch() |