# model setting pretrained: https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth # path to a pre-trained model, if using one model_name: tall # model name mask_grid_size: 16 num_classes: 2 embed_dim: 128 mlp_ratio: 4.0 patch_size: 4 window_size: [14, 14, 14, 7] depths: [2, 2, 18, 2] num_heads: [4, 8, 16, 32] ape: true # use absolution position embedding thumbnail_rows: 2 drop_rate: 0 drop_path_rate: 0.1 # dataset all_dataset: [FaceForensics++, FF-F2F, FF-DF, FF-FS, FF-NT, FaceShifter, DeepFakeDetection, Celeb-DF-v1, Celeb-DF-v2, DFDCP, DFDC, DeeperForensics-1.0, UADFV] train_dataset: [FaceForensics++] test_dataset: [Celeb-DF-v2] compression: c23 # compression-level for videos train_batchSize: 64 # training batch size test_batchSize: 64 # test batch size workers: 4 # number of data loading workers frame_num: {'train': 32, 'test': 32} # number of frames to use per video in training and testing resolution: 224 # resolution of output image to network with_mask: false # whether to include mask information in the input with_landmark: false # whether to include facial landmark information in the input video_mode: True # whether to use video-level data clip_size: 4 # number of frames in each clip, should be square number of an integer dataset_type: tall # data augmentation use_data_augmentation: false # Add this flag to enable/disable data augmentation data_aug: flip_prob: 0.5 rotate_prob: 0.5 rotate_limit: [-10, 10] blur_prob: 0.5 blur_limit: [3, 7] brightness_prob: 0.5 brightness_limit: [-0.1, 0.1] contrast_limit: [-0.1, 0.1] quality_lower: 40 quality_upper: 100 # mean and std for normalization mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] # optimizer config optimizer: # choose between 'adam' and 'sgd' type: adam adam: lr: 0.00002 # learning rate beta1: 0.9 # beta1 for Adam optimizer beta2: 0.999 # beta2 for Adam optimizer eps: 0.00000001 # epsilon for Adam optimizer weight_decay: 0.0005 # weight decay for regularization amsgrad: false sgd: lr: 0.0002 # learning rate momentum: 0.9 # momentum for SGD optimizer weight_decay: 0.0005 # weight decay for regularization # training config lr_scheduler: null # learning rate scheduler nEpochs: 100 # number of epochs to train for start_epoch: 0 # manual epoch number (useful for restarts) save_epoch: 1 # interval epochs for saving models rec_iter: 100 # interval iterations for recording logdir: ./logs # folder to output images and logs manualSeed: 1024 # manual seed for random number generation save_ckpt: true # whether to save checkpoint save_feat: true # whether to save features # loss function loss_func: cross_entropy # loss function to use losstype: null # metric metric_scoring: auc # metric for evaluation (auc, acc, eer, ap) # cuda cuda: true # whether to use CUDA acceleration cudnn: true # whether to use CuDNN for convolution operations