Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 798.37 +/- 155.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:546ae4ca78067dd72499124cba100de24f00bc1996414e1c5c2e80be34a7d7a2
|
3 |
+
size 129192
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f625bb89160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f625bb891f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f625bb89280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f625bb89310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f625bb893a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f625bb89430>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f625bb894c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f625bb89550>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f625bb895e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f625bb89670>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f625bb89700>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f625bb89790>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f625bb7f2d0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1678324606810860300,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2hhbmJrL3RvcmNoX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2hhbmJrL3RvcmNoX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAxgZT7fl8a/h0TcvZIY0D+e+p6/fMenPXQO7r4w/7S/EQE5P9IGl72V7/g+amU8wJShq7+BNW++/akDP8j2aj9iIya/YK3Pv05STD+zzA888qZgPxKrBMAisgU/zYU+QGHJjr9HuQM/sfDDPq3tuL+3VT69BxoLwDxZ1r8lDy4/UePRvoXSLDw8lwo/nTzIvtXjOj9q3Kc8VNOEP9NAhT6zHt2/WqHDOzN0bj9Ba4C6PN5nP3VWB7+2/Cs/B0fmPkwf1j/2Nj1ALjR9vxhQy7xAfWU/VsP4v7Hwwz6t7bi/E8zyPQWuAb921hk/kSrrPlJatD+nLhnABI9VPhLef7/dbQg/Q+gFv9rsOb7MBTdAK7BAu9B3db9H7m4/Sar9OzKIsD8hiC68wvS4PrqdRT8ILxq/z3iYP+vDgb63DkzAYcmOv1bD+L+x8MM+re24vy4bp76iYwfAZmyuv/AR+D/vHdm+9kV1vwSJe75wZXW/Hnw4P0vwRb0RUz2+unpFwKcXpL9zZC2+GVkHPx+gAj8/ymG+MmW+v/EHTD8bgr+7lBITP4JWPcBtTBg/er4qQGHJjr9HuQM/sfDDPq3tuL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACNxnE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADGndvQAAAACJb+e/AAAAAAe+ZD0AAAAAtu3iPwAAAAAW66M8AAAAABLqAEAAAAAAPegEPQAAAACYWOu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAne+BNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFaSrr0AAAAAZOfcvwAAAAAOCPO9AAAAALXL3T8AAAAAKu/1PQAAAACev/0/AAAAAMGtor0AAAAAlSb8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0ZR7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAGDjy8AAAAAIum/b8AAAAAZqTCvQAAAABDG/M/AAAAAMDkmj0AAAAAuZn7PwAAAAB4ZO49AAAAAJZ+578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaIIw0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4JpevQAAAAAGRuu/AAAAAIKuBL4AAAAARNPrPwAAAAC6Mgi9AAAAAHUf9D8AAAAAJZ32vQAAAAAK8wDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcamdc0LtyMAWyUTegDjAF0lEdAp0LgrH2h7HV9lChoBkdAl3kCgwoLHGgHTegDaAhHQKdFuHGjsUt1fZQoaAZHQJSCIi2UjcFoB03oA2gIR0CnSNfxUedTdX2UKGgGR0CUU+oa1kUcaAdN6ANoCEdAp0mHuG9HtnV9lChoBkdAlICGTHKfWmgHTegDaAhHQKdPXeBxxT91fZQoaAZHQJfCNzIV/MJoB03oA2gIR0CnUjV3dKukdX2UKGgGR0CM5hxXnyNGaAdNSANoCEdAp1QFR1oxpXV9lChoBkdAkbUa8QI2O2gHTegDaAhHQKdVVSOR1YB1fZQoaAZHQJgV6f4AS39oB03oA2gIR0CnW+aGxlg/dX2UKGgGR0CVbBTDwYtQaAdN6ANoCEdAp16/QMQVbnV9lChoBkdAlqhTJhfBvmgHTegDaAhHQKdgjWluWKN1fZQoaAZHQJVV0GeMAFRoB03oA2gIR0CnYdr1EmY0dX2UKGgGR0CSfc1L8JlbaAdN6ANoCEdAp2hePBBRh3V9lChoBkdAl2u1QQ+UyGgHTegDaAhHQKdrMFOfukV1fZQoaAZHQJg36BwuM/BoB03oA2gIR0CnbQHs9jgAdX2UKGgGR0CHW5TOxB3SaAdN6ANoCEdAp25SciGFjHV9lChoBkdAlnqSo86mwmgHTegDaAhHQKd00sgdOqN1fZQoaAZHQJNftmOEM9doB03oA2gIR0Cnd59deIEbdX2UKGgGR0CWLVcqOLiuaAdN6ANoCEdAp3luqPwNLHV9lChoBkdAliHP6O5rg2gHTegDaAhHQKd6vq0MPSV1fZQoaAZHQJD6Anx8UmFoB03oA2gIR0CngUpgkTpQdX2UKGgGR0CSW7FbmlqKaAdN6ANoCEdAp4QcLBsQ/XV9lChoBkdAgkSj5j6N2mgHTegDaAhHQKeF69U0elt1fZQoaAZHQJLZNlRP421oB03oA2gIR0CnhzwSzw+ddX2UKGgGR0CPlVNKyv9taAdN6ANoCEdAp43CckMTe3V9lChoBkdAiX4wfyPMjmgHTegDaAhHQKeQl1JUYKp1fZQoaAZHQJQ2BlMAWBVoB03oA2gIR0CnkmO5BkZrdX2UKGgGR0CSwsLk0aZQaAdN6ANoCEdAp5O2V9nbqXV9lChoBkdAkVdAI+nqFGgHTegDaAhHQKeaMRujynV1fZQoaAZHQIBuw4S6DoRoB03oA2gIR0CnnQdHUc4pdX2UKGgGR0B+07w4KhL5aAdN6ANoCEdAp57VhVlwtXV9lChoBkdAfVCMuvllsmgHTegDaAhHQKegJWUbDMx1fZQoaAZHQIyTRu/DcdpoB03oA2gIR0Cnpq0PH1e0dX2UKGgGR0CLZKhTOxB3aAdN6ANoCEdAp6mDNIK+jHV9lChoBkdAisMyde6ZpmgHTegDaAhHQKerT1hb4ah1fZQoaAZHQH28ej7ALzBoB03oA2gIR0CnrJoakyk9dX2UKGgGR0CAuXrB0p3HaAdN6ANoCEdAp7Mi9Zid8XV9lChoBkdAkiT+RPoFFGgHTegDaAhHQKe1+tfXwsp1fZQoaAZHQJJ84nw5NoJoB03oA2gIR0Cnt8qIi1RcdX2UKGgGR0CTVcdHUc4paAdN6ANoCEdAp7kaP4mCy3V9lChoBkdAj6CA/C66KGgHTegDaAhHQKe/mwYcebN1fZQoaAZHQFC6tjCpFThoB03oA2gIR0CnwnCQT238dX2UKGgGR0CFRKAe7tiQaAdN6ANoCEdAp8RB71Iy03V9lChoBkdAj/LNuDSPVGgHTegDaAhHQKfFlMEidJ91fZQoaAZHQIVmv6qKgqVoB03oA2gIR0CnzBqmKqGUdX2UKGgGR0CQFF5IYm9haAdN6ANoCEdAp87yJuVHF3V9lChoBkdAXGB66asp5WgHTegDaAhHQKfQwi22G7B1fZQoaAZHQI39qtq59VpoB03oA2gIR0Cn0hJAMUh3dX2UKGgGR0CS0arYXfqHaAdN6ANoCEdAp9iBvaURnXV9lChoBkdAj3Ab/ffoBGgHTegDaAhHQKfbU5DJEIB1fZQoaAZHQJJIXSgGr0doB03oA2gIR0Cn3RiCjDbbdX2UKGgGR0CO220aZQYUaAdN6ANoCEdAp95eFvhqCnV9lChoBkdASO4jfNzKcWgHTegDaAhHQKfkz/cWTHN1fZQoaAZHQJPkTJbMX8BoB03oA2gIR0Cn5513Ux20dX2UKGgGR0CCkCPDHfdiaAdN6ANoCEdAp+leZmZmZnV9lChoBkdAZoDN7jT8YWgHTegDaAhHQKfqpi2Dxsl1fZQoaAZHQIoBI6r/82toB03oA2gIR0Cn8RWUbDMvdX2UKGgGR0CC50k+HJtBaAdN6ANoCEdAp/Po9C/oJXV9lChoBkdAiJUfpdKNAGgHTegDaAhHQKf1s4gieNF1fZQoaAZHQHHxLJ8v25BoB03oA2gIR0Cn9wPx6OYIdX2UKGgGR0CJUx7sv7FbaAdN6ANoCEdAp/2DFVDKHXV9lChoBkfAbEdnuAqd6WgHTegDaAhHQKgATbmEGqx1fZQoaAZHwHLXK/Zdv89oB03oA2gIR0CoAhiXIEKWdX2UKGgGR8A/hC7sfJV9aAdN6ANoCEdAqANce+23KHV9lChoBkdAYznsMRYigWgHTegDaAhHQKgJw0/GEPF1fZQoaAZHQHSxiLQ5WBBoB03oA2gIR0CoDI82zfJndX2UKGgGR0BlsViay8jBaAdN6ANoCEdAqA5UzQ/oq3V9lChoBkdAkcuv3N9piGgHTegDaAhHQKgPn101ZT11fZQoaAZHQJOrLXumaYxoB03oA2gIR0CoFf4Q8OkMdX2UKGgGR0CRJ8NLDhtMaAdN6ANoCEdAqBi7tCzC13V9lChoBkdAhK2ZbILgGmgHTegDaAhHQKgahH5Jsft1fZQoaAZHQJMeKndfsu5oB03oA2gIR0CoG9B2wFC+dX2UKGgGR0CE9zhqCYkWaAdN6ANoCEdAqCI5EYwZfnV9lChoBkdAknK0UKzAvmgHTegDaAhHQKglANkOI691fZQoaAZHQGz2/SpiqhloB03oA2gIR0CoJtTgl4TsdX2UKGgGR0CF9e7nxJ/YaAdN6ANoCEdAqCgj17IDHXV9lChoBkdAh44BWPtD2WgHTegDaAhHQKgue5n13+x1fZQoaAZHQI9S5/0/W2BoB03oA2gIR0CoMUOc+aBqdX2UKGgGR0CGukZJkGzKaAdN6ANoCEdAqDMEd92HL3V9lChoBkdAgY8lXiiqQ2gHTegDaAhHQKg0T88cMmZ1fZQoaAZHQIP2B9gF5fNoB03oA2gIR0CoOr+SKWLQdX2UKGgGR0CJtNtdAxBWaAdN6ANoCEdAqD2NT72tdXV9lChoBkdAf60HdoFmnWgHTegDaAhHQKg/V4s3AEd1fZQoaAZHQIxDe1KGtZFoB03oA2gIR0CoQKTfJmuldX2UKGgGR0CDN4Cjk+5faAdN6ANoCEdAqEcdtIkJKXV9lChoBkdAeLSwKjSG8GgHTegDaAhHQKhJ5t2s7uF1fZQoaAZHQIa495Sm65JoB03oA2gIR0CoS6siB5HFdX2UKGgGR8BgbKT+vQnhaAdN6ANoCEdAqEzzq0MPSXV9lChoBkdAhmeMdDIBBGgHTegDaAhHQKhTVgNPP9l1fZQoaAZHQImCZTbWVeNoB03oA2gIR0CoVhl0YCQtdX2UKGgGR0CCR2UoKD02aAdN6ANoCEdAqFfmZE2HcnV9lChoBkdAj1r0bcXWOWgHTegDaAhHQKhZO5aNdZ91fZQoaAZHQIYSpid8RcxoB03oA2gIR0CoX7Pj4pMIdX2UKGgGR0CS0cP6be/IaAdN6ANoCEdAqGJ9pj+aSnV9lChoBkdAjRwH4fwI+mgHTegDaAhHQKhkTURWcSZ1fZQoaAZHQJB8V+UhV2loB03oA2gIR0CoZZxEv0yydX2UKGgGR0CN6Gohpxm1aAdN6ANoCEdAqGwKJl8PWnV9lChoBkdAkpWbXUYsNGgHTegDaAhHQKhu16j32251fZQoaAZHQJITcrf+CK9oB03oA2gIR0CocKSIpH7QdX2UKGgGR0CTwWOclPadaAdN6ANoCEdAqHHyHymQ83VlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14bdf9b2bc7962aafeda0b9f9f277a0a647ac5f16222b98c6a9e38419e8f5f2c
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:791bd95917dcaf05c0fcdb7ca14f6f2487fc61ac1e4dc4f954391dd90aca241b
|
3 |
+
size 56894
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-50-generic-x86_64-with-glibc2.29 # 56~20.04.1-Ubuntu SMP Tue Sep 27 15:51:29 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.8.0a2
|
4 |
+
- PyTorch: 1.12.0+cu113
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.20.1
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f625bb89160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f625bb891f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f625bb89280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f625bb89310>", "_build": "<function ActorCriticPolicy._build at 0x7f625bb893a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f625bb89430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f625bb894c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f625bb89550>", "_predict": "<function ActorCriticPolicy._predict at 0x7f625bb895e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f625bb89670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f625bb89700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f625bb89790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f625bb7f2d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678324606810860300, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV2wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVC9ob21lL2hhbmJrL3RvcmNoX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMVC9ob21lL2hhbmJrL3RvcmNoX3ZlbnYvbGliL3B5dGhvbjMuOC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAxgZT7fl8a/h0TcvZIY0D+e+p6/fMenPXQO7r4w/7S/EQE5P9IGl72V7/g+amU8wJShq7+BNW++/akDP8j2aj9iIya/YK3Pv05STD+zzA888qZgPxKrBMAisgU/zYU+QGHJjr9HuQM/sfDDPq3tuL+3VT69BxoLwDxZ1r8lDy4/UePRvoXSLDw8lwo/nTzIvtXjOj9q3Kc8VNOEP9NAhT6zHt2/WqHDOzN0bj9Ba4C6PN5nP3VWB7+2/Cs/B0fmPkwf1j/2Nj1ALjR9vxhQy7xAfWU/VsP4v7Hwwz6t7bi/E8zyPQWuAb921hk/kSrrPlJatD+nLhnABI9VPhLef7/dbQg/Q+gFv9rsOb7MBTdAK7BAu9B3db9H7m4/Sar9OzKIsD8hiC68wvS4PrqdRT8ILxq/z3iYP+vDgb63DkzAYcmOv1bD+L+x8MM+re24vy4bp76iYwfAZmyuv/AR+D/vHdm+9kV1vwSJe75wZXW/Hnw4P0vwRb0RUz2+unpFwKcXpL9zZC2+GVkHPx+gAj8/ymG+MmW+v/EHTD8bgr+7lBITP4JWPcBtTBg/er4qQGHJjr9HuQM/sfDDPq3tuL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACNxnE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADGndvQAAAACJb+e/AAAAAAe+ZD0AAAAAtu3iPwAAAAAW66M8AAAAABLqAEAAAAAAPegEPQAAAACYWOu/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAne+BNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFaSrr0AAAAAZOfcvwAAAAAOCPO9AAAAALXL3T8AAAAAKu/1PQAAAACev/0/AAAAAMGtor0AAAAAlSb8vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD0ZR7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAGDjy8AAAAAIum/b8AAAAAZqTCvQAAAABDG/M/AAAAAMDkmj0AAAAAuZn7PwAAAAB4ZO49AAAAAJZ+578AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACaIIw0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA4JpevQAAAAAGRuu/AAAAAIKuBL4AAAAARNPrPwAAAAC6Mgi9AAAAAHUf9D8AAAAAJZ32vQAAAAAK8wDAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJcamdc0LtyMAWyUTegDjAF0lEdAp0LgrH2h7HV9lChoBkdAl3kCgwoLHGgHTegDaAhHQKdFuHGjsUt1fZQoaAZHQJSCIi2UjcFoB03oA2gIR0CnSNfxUedTdX2UKGgGR0CUU+oa1kUcaAdN6ANoCEdAp0mHuG9HtnV9lChoBkdAlICGTHKfWmgHTegDaAhHQKdPXeBxxT91fZQoaAZHQJfCNzIV/MJoB03oA2gIR0CnUjV3dKukdX2UKGgGR0CM5hxXnyNGaAdNSANoCEdAp1QFR1oxpXV9lChoBkdAkbUa8QI2O2gHTegDaAhHQKdVVSOR1YB1fZQoaAZHQJgV6f4AS39oB03oA2gIR0CnW+aGxlg/dX2UKGgGR0CVbBTDwYtQaAdN6ANoCEdAp16/QMQVbnV9lChoBkdAlqhTJhfBvmgHTegDaAhHQKdgjWluWKN1fZQoaAZHQJVV0GeMAFRoB03oA2gIR0CnYdr1EmY0dX2UKGgGR0CSfc1L8JlbaAdN6ANoCEdAp2hePBBRh3V9lChoBkdAl2u1QQ+UyGgHTegDaAhHQKdrMFOfukV1fZQoaAZHQJg36BwuM/BoB03oA2gIR0CnbQHs9jgAdX2UKGgGR0CHW5TOxB3SaAdN6ANoCEdAp25SciGFjHV9lChoBkdAlnqSo86mwmgHTegDaAhHQKd00sgdOqN1fZQoaAZHQJNftmOEM9doB03oA2gIR0Cnd59deIEbdX2UKGgGR0CWLVcqOLiuaAdN6ANoCEdAp3luqPwNLHV9lChoBkdAliHP6O5rg2gHTegDaAhHQKd6vq0MPSV1fZQoaAZHQJD6Anx8UmFoB03oA2gIR0CngUpgkTpQdX2UKGgGR0CSW7FbmlqKaAdN6ANoCEdAp4QcLBsQ/XV9lChoBkdAgkSj5j6N2mgHTegDaAhHQKeF69U0elt1fZQoaAZHQJLZNlRP421oB03oA2gIR0CnhzwSzw+ddX2UKGgGR0CPlVNKyv9taAdN6ANoCEdAp43CckMTe3V9lChoBkdAiX4wfyPMjmgHTegDaAhHQKeQl1JUYKp1fZQoaAZHQJQ2BlMAWBVoB03oA2gIR0CnkmO5BkZrdX2UKGgGR0CSwsLk0aZQaAdN6ANoCEdAp5O2V9nbqXV9lChoBkdAkVdAI+nqFGgHTegDaAhHQKeaMRujynV1fZQoaAZHQIBuw4S6DoRoB03oA2gIR0CnnQdHUc4pdX2UKGgGR0B+07w4KhL5aAdN6ANoCEdAp57VhVlwtXV9lChoBkdAfVCMuvllsmgHTegDaAhHQKegJWUbDMx1fZQoaAZHQIyTRu/DcdpoB03oA2gIR0Cnpq0PH1e0dX2UKGgGR0CLZKhTOxB3aAdN6ANoCEdAp6mDNIK+jHV9lChoBkdAisMyde6ZpmgHTegDaAhHQKerT1hb4ah1fZQoaAZHQH28ej7ALzBoB03oA2gIR0CnrJoakyk9dX2UKGgGR0CAuXrB0p3HaAdN6ANoCEdAp7Mi9Zid8XV9lChoBkdAkiT+RPoFFGgHTegDaAhHQKe1+tfXwsp1fZQoaAZHQJJ84nw5NoJoB03oA2gIR0Cnt8qIi1RcdX2UKGgGR0CTVcdHUc4paAdN6ANoCEdAp7kaP4mCy3V9lChoBkdAj6CA/C66KGgHTegDaAhHQKe/mwYcebN1fZQoaAZHQFC6tjCpFThoB03oA2gIR0CnwnCQT238dX2UKGgGR0CFRKAe7tiQaAdN6ANoCEdAp8RB71Iy03V9lChoBkdAj/LNuDSPVGgHTegDaAhHQKfFlMEidJ91fZQoaAZHQIVmv6qKgqVoB03oA2gIR0CnzBqmKqGUdX2UKGgGR0CQFF5IYm9haAdN6ANoCEdAp87yJuVHF3V9lChoBkdAXGB66asp5WgHTegDaAhHQKfQwi22G7B1fZQoaAZHQI39qtq59VpoB03oA2gIR0Cn0hJAMUh3dX2UKGgGR0CS0arYXfqHaAdN6ANoCEdAp9iBvaURnXV9lChoBkdAj3Ab/ffoBGgHTegDaAhHQKfbU5DJEIB1fZQoaAZHQJJIXSgGr0doB03oA2gIR0Cn3RiCjDbbdX2UKGgGR0CO220aZQYUaAdN6ANoCEdAp95eFvhqCnV9lChoBkdASO4jfNzKcWgHTegDaAhHQKfkz/cWTHN1fZQoaAZHQJPkTJbMX8BoB03oA2gIR0Cn5513Ux20dX2UKGgGR0CCkCPDHfdiaAdN6ANoCEdAp+leZmZmZnV9lChoBkdAZoDN7jT8YWgHTegDaAhHQKfqpi2Dxsl1fZQoaAZHQIoBI6r/82toB03oA2gIR0Cn8RWUbDMvdX2UKGgGR0CC50k+HJtBaAdN6ANoCEdAp/Po9C/oJXV9lChoBkdAiJUfpdKNAGgHTegDaAhHQKf1s4gieNF1fZQoaAZHQHHxLJ8v25BoB03oA2gIR0Cn9wPx6OYIdX2UKGgGR0CJUx7sv7FbaAdN6ANoCEdAp/2DFVDKHXV9lChoBkfAbEdnuAqd6WgHTegDaAhHQKgATbmEGqx1fZQoaAZHwHLXK/Zdv89oB03oA2gIR0CoAhiXIEKWdX2UKGgGR8A/hC7sfJV9aAdN6ANoCEdAqANce+23KHV9lChoBkdAYznsMRYigWgHTegDaAhHQKgJw0/GEPF1fZQoaAZHQHSxiLQ5WBBoB03oA2gIR0CoDI82zfJndX2UKGgGR0BlsViay8jBaAdN6ANoCEdAqA5UzQ/oq3V9lChoBkdAkcuv3N9piGgHTegDaAhHQKgPn101ZT11fZQoaAZHQJOrLXumaYxoB03oA2gIR0CoFf4Q8OkMdX2UKGgGR0CRJ8NLDhtMaAdN6ANoCEdAqBi7tCzC13V9lChoBkdAhK2ZbILgGmgHTegDaAhHQKgahH5Jsft1fZQoaAZHQJMeKndfsu5oB03oA2gIR0CoG9B2wFC+dX2UKGgGR0CE9zhqCYkWaAdN6ANoCEdAqCI5EYwZfnV9lChoBkdAknK0UKzAvmgHTegDaAhHQKglANkOI691fZQoaAZHQGz2/SpiqhloB03oA2gIR0CoJtTgl4TsdX2UKGgGR0CF9e7nxJ/YaAdN6ANoCEdAqCgj17IDHXV9lChoBkdAh44BWPtD2WgHTegDaAhHQKgue5n13+x1fZQoaAZHQI9S5/0/W2BoB03oA2gIR0CoMUOc+aBqdX2UKGgGR0CGukZJkGzKaAdN6ANoCEdAqDMEd92HL3V9lChoBkdAgY8lXiiqQ2gHTegDaAhHQKg0T88cMmZ1fZQoaAZHQIP2B9gF5fNoB03oA2gIR0CoOr+SKWLQdX2UKGgGR0CJtNtdAxBWaAdN6ANoCEdAqD2NT72tdXV9lChoBkdAf60HdoFmnWgHTegDaAhHQKg/V4s3AEd1fZQoaAZHQIxDe1KGtZFoB03oA2gIR0CoQKTfJmuldX2UKGgGR0CDN4Cjk+5faAdN6ANoCEdAqEcdtIkJKXV9lChoBkdAeLSwKjSG8GgHTegDaAhHQKhJ5t2s7uF1fZQoaAZHQIa495Sm65JoB03oA2gIR0CoS6siB5HFdX2UKGgGR8BgbKT+vQnhaAdN6ANoCEdAqEzzq0MPSXV9lChoBkdAhmeMdDIBBGgHTegDaAhHQKhTVgNPP9l1fZQoaAZHQImCZTbWVeNoB03oA2gIR0CoVhl0YCQtdX2UKGgGR0CCR2UoKD02aAdN6ANoCEdAqFfmZE2HcnV9lChoBkdAj1r0bcXWOWgHTegDaAhHQKhZO5aNdZ91fZQoaAZHQIYSpid8RcxoB03oA2gIR0CoX7Pj4pMIdX2UKGgGR0CS0cP6be/IaAdN6ANoCEdAqGJ9pj+aSnV9lChoBkdAjRwH4fwI+mgHTegDaAhHQKhkTURWcSZ1fZQoaAZHQJB8V+UhV2loB03oA2gIR0CoZZxEv0yydX2UKGgGR0CN6Gohpxm1aAdN6ANoCEdAqGwKJl8PWnV9lChoBkdAkpWbXUYsNGgHTegDaAhHQKhu16j32251fZQoaAZHQJITcrf+CK9oB03oA2gIR0CocKSIpH7QdX2UKGgGR0CTwWOclPadaAdN6ANoCEdAqHHyHymQ83VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.0-50-generic-x86_64-with-glibc2.29 # 56~20.04.1-Ubuntu SMP Tue Sep 27 15:51:29 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.8.0a2", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.20.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:70f52a7a061239cc05440ddec830d900098231b65226edcb20f8fd402f7d0543
|
3 |
+
size 1112348
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 798.3749627737158, "std_reward": 155.8476154678108, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-09T11:45:37.872139"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30fceac4dff631cbc20f12194f3de4d03f02a3490af480a5db7ce31be556a6fb
|
3 |
+
size 2521
|