Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
datasets:
|
4 |
+
- blip-solutions/SlovAlpaca
|
5 |
+
language:
|
6 |
+
- sk
|
7 |
+
---
|
8 |
+
|
9 |
+
# SlovAlpaca
|
10 |
+
|
11 |
+
This repository contains the LORA weights finetuned on the translated version of the original Alpaca dataset (more info on the dataset card)
|
12 |
+
|
13 |
+
## Training procedure
|
14 |
+
|
15 |
+
The training was done on the 7B LLaMA model (decapoda-research/llama-7b-hf) quantized to 8bits with following Hyperparameters:
|
16 |
+
|
17 |
+
```
|
18 |
+
MICRO_BATCH_SIZE = 3
|
19 |
+
BATCH_SIZE = 128
|
20 |
+
GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE
|
21 |
+
EPOCHS = 2 # paper uses 3
|
22 |
+
LEARNING_RATE = 2e-5 # from the original paper
|
23 |
+
CUTOFF_LEN = 256 # 256 accounts for about 96% of the data
|
24 |
+
LORA_R = 4
|
25 |
+
LORA_ALPHA = 16
|
26 |
+
LORA_DROPOUT = 0.05
|
27 |
+
```
|
28 |
+
|
29 |
+
The sole goal of this project is to explore the effects of single language finetuning using the same dataset and methods as the original paper did and comapre the results
|
30 |
+
|
31 |
+
@misc{alpaca,
|
32 |
+
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
|
33 |
+
title = {Stanford Alpaca: An Instruction-following LLaMA model},
|
34 |
+
year = {2023},
|
35 |
+
publisher = {GitHub},
|
36 |
+
journal = {GitHub repository},
|
37 |
+
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
|
38 |
+
}
|
39 |
+
|
40 |
+
## How to use:
|
41 |
+
|
42 |
+
### Prerequisites
|
43 |
+
```
|
44 |
+
!pip install datasets loralib sentencepiece
|
45 |
+
!pip uninstall -y transformers
|
46 |
+
!pip install git+https://github.com/zphang/transformers@c3dc391#egg=transformers
|
47 |
+
!pip install git+https://github.com/huggingface/peft.git
|
48 |
+
!pip install bitsandbytes
|
49 |
+
```
|
50 |
+
|
51 |
+
|
52 |
+
### Load model:
|
53 |
+
|
54 |
+
```
|
55 |
+
from peft import PeftModel
|
56 |
+
from transformers import LLaMATokenizer, LLaMAForCausalLM, GenerationConfig
|
57 |
+
|
58 |
+
tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
59 |
+
|
60 |
+
model = LLaMAForCausalLM.from_pretrained(
|
61 |
+
"decapoda-research/llama-7b-hf",
|
62 |
+
load_in_8bit=True,
|
63 |
+
device_map="auto",
|
64 |
+
)
|
65 |
+
|
66 |
+
model = PeftModel.from_pretrained(model, "blip-solutions/SlovAlpaca")
|
67 |
+
```
|
68 |
+
|
69 |
+
### Generation
|
70 |
+
|
71 |
+
Here is a colab notebook for inference: https://colab.research.google.com/drive/1z4aMG7tGjchLBlg_iXDuqt3sH6bQRuQk?usp=sharing
|
72 |
+
|
73 |
+
```
|
74 |
+
PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
75 |
+
### Instruction:
|
76 |
+
Kde žijú lamy?
|
77 |
+
### Response:"""
|
78 |
+
|
79 |
+
inputs = tokenizer(
|
80 |
+
PROMPT,
|
81 |
+
return_tensors="pt",
|
82 |
+
)
|
83 |
+
input_ids = inputs["input_ids"].cuda()
|
84 |
+
|
85 |
+
generation_config = GenerationConfig(
|
86 |
+
temperature=0.6,
|
87 |
+
top_p=0.95,
|
88 |
+
repetition_penalty=1.15,
|
89 |
+
)
|
90 |
+
print("Generating...")
|
91 |
+
generation_output = model.generate(
|
92 |
+
input_ids=input_ids,
|
93 |
+
generation_config=generation_config,
|
94 |
+
return_dict_in_generate=True,
|
95 |
+
output_scores=True,
|
96 |
+
max_new_tokens=128,
|
97 |
+
)
|
98 |
+
for s in generation_output.sequences:
|
99 |
+
print(tokenizer.decode(s))
|
100 |
+
```
|
101 |
+
|
102 |
+
### Response:
|
103 |
+
|
104 |
+
```
|
105 |
+
Generating...
|
106 |
+
Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
107 |
+
### Instruction:
|
108 |
+
Kde žijú lamy?
|
109 |
+
### Response:
|
110 |
+
Lamy žiju v horách, na poli, alebo v lesoch.
|
111 |
+
```
|