File size: 2,233 Bytes
f9b4059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61578bd
f9b4059
 
 
 
 
 
 
 
 
61578bd
 
f9b4059
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61578bd
 
 
 
 
 
 
 
 
 
f9b4059
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
tags:
- generated_from_trainer
datasets:
- null
metrics:
- accuracy
model-index:
- name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1
  results:
  - task:
      name: Text Classification
      type: text-classification
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.52
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1

This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0977
- Accuracy: 0.52

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 57   | 0.9515          | 0.54     |
| No log        | 2.0   | 114  | 0.9530          | 0.54     |
| No log        | 3.0   | 171  | 0.9705          | 0.46     |
| No log        | 4.0   | 228  | 0.9688          | 0.56     |
| No log        | 5.0   | 285  | 0.9674          | 0.58     |
| No log        | 6.0   | 342  | 0.9474          | 0.58     |
| No log        | 7.0   | 399  | 1.0309          | 0.54     |
| No log        | 8.0   | 456  | 1.0307          | 0.56     |
| 0.6657        | 9.0   | 513  | 1.0825          | 0.52     |
| 0.6657        | 10.0  | 570  | 1.0977          | 0.52     |


### Framework versions

- Transformers 4.10.2
- Pytorch 1.9.0+cu102
- Datasets 1.12.0
- Tokenizers 0.10.3