--- license: mit tags: - generated_from_trainer datasets: - null metrics: - accuracy model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.74 --- # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7493 - Accuracy: 0.74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.9319 | 0.56 | | No log | 2.0 | 114 | 0.9160 | 0.56 | | No log | 3.0 | 171 | 0.8031 | 0.68 | | No log | 4.0 | 228 | 0.8340 | 0.66 | | No log | 5.0 | 285 | 0.7812 | 0.68 | | No log | 6.0 | 342 | 0.7751 | 0.7 | | No log | 7.0 | 399 | 0.7689 | 0.74 | | No log | 8.0 | 456 | 0.7573 | 0.72 | | 0.6152 | 9.0 | 513 | 0.7726 | 0.74 | | 0.6152 | 10.0 | 570 | 0.7493 | 0.74 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3