--- license: mit tags: - generated_from_trainer datasets: - null metrics: - accuracy model-index: - name: BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 results: - task: name: Text Classification type: text-classification metrics: - name: Accuracy type: accuracy value: 0.56 --- # BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-pubmedqa-1 This model is a fine-tuned version of [microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5452 - Accuracy: 0.56 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 57 | 0.9420 | 0.54 | | No log | 2.0 | 114 | 0.9420 | 0.54 | | No log | 3.0 | 171 | 1.0119 | 0.54 | | No log | 4.0 | 228 | 1.0724 | 0.54 | | No log | 5.0 | 285 | 1.1676 | 0.56 | | No log | 6.0 | 342 | 1.3050 | 0.56 | | No log | 7.0 | 399 | 1.3693 | 0.58 | | No log | 8.0 | 456 | 1.4860 | 0.56 | | 0.6035 | 9.0 | 513 | 1.5319 | 0.56 | | 0.6035 | 10.0 | 570 | 1.5452 | 0.56 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3