File size: 8,062 Bytes
09bf9a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from typing import Callable, List, Optional, Union
from torch.utils.data import Dataset

import decord
decord.bridge.set_bridge('torch')

from einops import rearrange

import random
import os
import json
from PIL import Image, ImageFilter
import numpy as np
import cv2
from scipy import ndimage
import tempfile
import ffmpeg

from transformers import CLIPTokenizer


class FramesDataset(Dataset):
    def __init__(
            self,
            samples_dir: str,
            prompt_map_path: Union[str, list[str]],
            width: int = 512,
            height: int = 512,
            video_length: int = 16,
            sample_start_index: int = 0,
            sample_count: int = 1,
            sample_frame_rate: int = 8,
            variance_threshold: int = 50,
            tokenizer: CLIPTokenizer = None,
    ):

        print("FramesDataset", "init", width, height, video_length, sample_count)

        self.width = width
        self.height = height
        self.video_length = video_length
        self.sample_count = sample_count
        self.tokenizer = tokenizer
        self.samples_dir = samples_dir
        self.sample_start_index = sample_start_index
        self.sample_frame_rate = sample_frame_rate
        self.variance_threshold = variance_threshold

        self.samples = []

        self.prompt_map = None

        with open(prompt_map_path, 'r') as f:
            self.prompt_map = json.loads(f.read())

        self.frames_path = [str(k) for k in self.prompt_map.keys()]

        print("FramesDataset", "init", "frames_path", len(self.frames_path))

    def load(self):
        print("FramesDataset", "load", "samples_dir", self.samples_dir)

        def extract_integer(filename):
            return int(filename.split('.')[0])

        self.samples = []
        files = sorted(os.listdir(self.samples_dir), key=extract_integer)
        for filename in files:
            if 'json' in filename:
                with open(f"{self.samples_dir}/{filename}", 'r') as f:
                    sample = json.loads(f.read())
                    sample['prompt_ids'] = self.tokenize(sample['prompt'])
                    self.samples.append(sample)
        print("FramesDataset", "load", "samples", len(self.samples))

    def tokenize(self, prompt):
        input_ids = self.tokenizer(
            prompt,
            max_length=self.tokenizer.model_max_length,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        ).input_ids[0]

        return input_ids

    def prepare(self):
        print("FramesDataset", "prepare")

        candidates = []
        for dir_path in self.frames_path:
            candidates = candidates + self.load_key_frames(dir_path)

        print("FramesDataset", "prepare", "candidates", len(candidates))

        self.pick(self.sample_count, candidates)

    def pick(self, count, candidates):
        print("FramesDataset", "pick", count, len(candidates))

        sample_index = self.sample_start_index
        while True:
            key_frame = random.choice(candidates)
            print("FramesDataset", "pick", "key_frame", key_frame)

            dir_name = os.path.dirname(key_frame)
            file_name = os.path.basename(key_frame)
            frame_number = int(file_name.split(".")[0])

            sample = []
            for i in range(frame_number, frame_number + self.video_length):
                frame_path = f"{dir_name}/{i}.png"
                frame = Image.open(frame_path)
                frame = frame.resize((self.width, self.height))
                sample.append(np.array(frame))

            sample = np.array(sample)

            print("FramesDataset", "pick", "reading sample", sample.shape)

            if not self.check(sample):
                print("FramesDataset", "pick", "skip")
                continue

            print("FramesDataset", "pick", "checked")

            prompt = self.get_prompt(key_frame)

            sample_file = f"{self.samples_dir}/{sample_index}.mp4"
            self.write_video(sample, sample_file, self.sample_frame_rate)
            print("FramesDataset", "pick", "sample_file", sample_file)

            meta_file = f"{self.samples_dir}/{sample_index}.json"
            with open(meta_file, 'w') as f:
                f.write(json.dumps({
                    'key_frame': key_frame,
                    'video_file': sample_file,
                    'prompt': prompt,
                }))
            print("FramesDataset", "pick", "meta_file", meta_file)

            sample_index = sample_index + 1
            if sample_index == self.sample_start_index + self.sample_count:
                print("FramesDataset", "pick", "done")
                break

    def write_video(self, frames, video_file, video_fps):
        with tempfile.TemporaryDirectory() as frames_dir:
            for index, frame in enumerate(frames):
                Image.fromarray(frame).save(f"{frames_dir}/{index}.png")

            (ffmpeg
                .input(f"{frames_dir}/%d.png")
                .output(video_file, vcodec='libx264', vf=f"fps={video_fps}")
                .overwrite_output()
                .run())

    def get_prompt(self, key_frame):
        print("FramesDataset", "get_prompt", key_frame)

        dir_name = os.path.dirname(key_frame)
        file_name = os.path.basename(key_frame)
        number = int(file_name.split(".")[0])
        prompt = ""
        if dir_name in self.prompt_map:
            prompt_map = self.prompt_map[dir_name]
            for k in prompt_map:
                if number >= int(k):
                    print("FramesDataset", "get_prompt", k, prompt_map[k])
                    return prompt_map[k]

        print("FramesDataset", "get_prompt", "not found")
        return prompt

    def check(self, sample):
        diffs = []
        for i in range(0, len(sample)-1):
            diffs.append(np.sum(self.blur(sample[i]) - self.blur(sample[i-1])))

        first_diff = diffs[0]
        variance = np.var(diffs)**(1/2)/first_diff * 100
        threshold = self.variance_threshold

        return variance < threshold

    def blur(self, frame):
        image = Image.fromarray(frame)
        image = image.filter(ImageFilter.GaussianBlur(radius=5))
        return np.array(image)

    def load_key_frames(self, dir_path):
        print("FramesDataset", "load_key_frames", dir_path)

        if not os.path.isdir(dir_path):
            raise Exception("Dir not exist")

        def extract_integer(filename):
            return int(filename.split('.')[0])

        candidates = []

        files = sorted(os.listdir(dir_path), key=extract_integer)
        print("FramesDataset", "load_key_frames", "files", len(files))
        count = len(files)
        for index, file_name in enumerate(files):
            file_path = f"{dir_path}/{file_name}"

            if 'png' in file_name and index + self.video_length <= count:
                candidates.append(file_path)

        print("FramesDataset", "load_key_frames", "candidates", len(candidates))
        return candidates

    def __len__(self):
        return len(self.samples)

    def __getitem__(self, index):
        meta = self.samples[index]
        vr = decord.VideoReader(meta['video_file'])
        sample_index = list(range(0, len(vr)))[:self.video_length]
        video = vr.get_batch(sample_index)
        video = rearrange(video, "f h w c -> f c h w")
        meta['pixel_values'] = (video / 127.5 - 1.0)
        return meta

if __name__ == "__main__":

    tokenizer = CLIPTokenizer.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder="tokenizer")

    dataset = FramesDataset(
        samples_dir = "test/FramesDataset/samples_dir",
        prompt_map_path = 'test/FramesDataset/prompt_map.json',
        width = 512,
        height = 512,
        video_length = 16,
        sample_count = 1,
        tokenizer = tokenizer,
        variance_threshold  = 40,
    )

    dataset.prepare()
    #dataset.load()
    #print(len(dataset), dataset[0]['key_frame'], dataset[0]['prompt'])